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ARTICLE INFO ABSTRACT 

 
In cybersecurity, the rise of fileless malware poses a significant challenge to endpoint 
security. Traditional detection methods often fail against these sophisticated attacks, 
necessitating advanced techniques like deep learning models. This study highlights the 
limitations of Bi-Directional Long Short-Term Memory (BLSTM) models in dynamic 
malware analysis and proposes enhancements through Convolutional Long Short-Term 
Memory (ConvLSTM) architecture. BLSTM models process input sequences in forward 
and backward directions, combining the results into one output. While this dual-layer 
approach improves analysis, it is time-consuming, potentially increasing the risk of 
fileless malware attacks. A key limitation of BLSTM is the lack of parameter sharing 
between forward and backward directions. This reduces its ability to capture spatial 
and temporal features simultaneously, hindering effectiveness in detecting fileless 
malware. To address this, the ConvLSTM model consolidates feature extraction within 
a single LSTM cell layer. ConvLSTM breaks down samples into subsequence and uses 
timesteps for additional feature extraction, enabling spatial-temporal data analysis and 
improving malware prediction accuracy. The model was tested using a dynamic 
malware dataset. Unlike traditional LSTM, ConvLSTM integrates convolutional layers, 
allowing parameter sharing across both spatial and temporal dimensions. This reduces 
computational complexity and improves model performance in handling 
multidimensional data. The research re-simulated prior work with BLSTM using the 
same malware dataset. The Spyder app ran the event simulator and the ConvLSTM 
model's results replaced BLSTM's using identical parameters. Time, accuracy and loss 
were the main performance metrics. ConvLSTM outperformed BLSTM, achieving 98% 
detection accuracy compared to BLSTM's 90%. It also significantly reduced processing 
time, averaging 10 seconds, while BLSTM took 22 seconds. ConvLSTM experienced 
lower losses, averaging 10% per epoch versus BLSTM's 20%. In conclusion, ConvLSTM 
offers superior performance over BLSTM in fileless malware detection. Its enhanced 
computational efficiency and ability to quickly mitigate threats make it a robust 
solution for fortifying endpoint security against evolving cyber threats. ConvLSTM holds 
potential in strengthening defence mechanisms against sophisticated malware attacks, 
providing a proactive approach to safeguarding networks and data. 
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1. Introduction 
 

In today's digital landscape, fileless malware [11] has become a significant threat to endpoint 
security. Unlike traditional malware, fileless malware operates within a system's volatile memory, 
exploiting legitimate processes and applications to execute malicious activities, making it difficult to 
detect with conventional antivirus solutions. The rise of such attacks is driven by the growing 
sophistication of cybercriminals who exploit vulnerabilities in software and hardware, targeting 
various endpoints like desktops, laptops, mobile devices and servers. 

The stealthy nature of fileless malware, often exhibiting polymorphic and obfuscated 
characteristics, complicates detection and analysis. This research digs into the mechanisms and 
behaviours of fileless malware, using dynamic malware analysis to uncover vulnerabilities and 
develop effective mitigation strategies. Through real-world attack scenarios and studying the tactics, 
techniques and procedures (TTPs) of fileless malware, the study aims to provide organizations with 
actionable insights and best practices for defending against these threats. 

Dynamic malware analysis, which involves the live execution of malware in a controlled 
environment, is explored in-depth. This approach allows security analysts to observe the behaviour 
of malware, detect evasion techniques and develop countermeasures to protect digital assets and 
networks. The study aims to advance fileless malware detection and prevention, equipping 
organizations with the knowledge and tools needed to stay ahead of cyber adversaries. 

 
1.1 Problem Statement 

 
Fileless malware [16] has evolved to the point where it can now target the present network 

infrastructure without being detected by any security measures, despite Traditional Malware having 
been extinct. Attackers inject malicious payload directly into the memory (RAM) by using JavaScript 
to run malware code in the browser without utilizing the common legitimate tools and applications. 
This can cause zero-day attacks since that codes and programs can be manipulated easily. To mitigate 
that, a Dynamic Malware Analysis was handled to gather data about malware behaviour which runs 
on an isolated virtual environment to execute the suspicious code captured from real users to test 
any impact on the host or not by using Sandboxing.  

Cuckoo Sandbox is an open-source tool that is customizable to run Dynamic Malware Analysis by 
using Deep Learning models which is Long Short-Term Memory (LTSM) for classification of malware. 
LTSM is an artificial recurrent neural network (RNN) architecture used in the field of deep learning. 
This solution analyses past and future malware behaviour sequences which classify the possible zero-
day attacks. Despite the success achieved using the LTSM models based on Deep Learning Dynamic 
Malware Analysis such as the Bidirectional LSTM (BLSTM) model used [17], there are still several 
other challenges that remain unresolved. 

These include: 
 

i. The BLSTM model reads input sequences in both forward and backward directions, combining 
the analysed results into an output. This is achieved by combining two LSTM cells with opposite 
timings to the same output, creating a dual layer between the sequences. However, this 
process consumes more time to complete the analysis, potentially increasing the likelihood of 
successful files malware attacks [17,30]. 

ii. The BLSTM model operates on spatial-temporal data structured in a 3D format: [samples, time 
steps, features]. It processes data both forward and backward using separate LSTM networks, 
but parameters are not shared between directions. This lack of parameter sharing may limit 
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the model's effectiveness in capturing spatial and temporal features simultaneously, 
potentially impacting its accuracy in understanding data across both dimensions especially in 
detecting fileless malware attacks [17,30]. 

 
1.2 Research Objective 

 
The objectives of this study are: 
 

i. To employ ConvLSTM Model which shortens the process of malware analysis and reduce 
the time taken to increase the number of malware detectable.  

ii. To employ four-dimensional approach which able to run the samples into single sequence 
input and produce output in accurate and better results on the prediction. 

 
1.3 The Proposed Solution 

 
We have proposed ConvLSTM which is a type of artificial Recurrent Neural Network (RNN) 

architecture used in the field of deep learning to detect suspicious activity or any new traffic 
bypassing the network gate. We will be using the Sandboxing program to run and simulate the exact 
environment to analyse the existing solution and build a new prototype in this experimental 
environment.  

We are implementing a machine learning technique with RNN architecture. ConvLSTM is a type 
of LSTM related where the convolutional reading of input is built directly into each LSTM unit under 
a Convolutional Neural Network (CNN) LSTM. The ConvLSTM was developed for reading two-
dimensional spatial-temporal data but can be adapted for use with univariate time series forecasting. 
This solution is expected to handle the raw data in minimum amount usage of resource and increase 
the detection accuracy hitting real-time maximum. The overall framework of the ConvLSTM is 
depicted in Figure 1. 
 

 
Fig. 1. Overall framework 

  
The Figure 1 represents a typical flow for malware detection using a sandbox environment and 

machine learning. 
 

i. Malware Sample / Benign Sample: These are the two categories of input samples being 
analysed. Malware samples represent known malicious software, while benign samples 
represent clean or non-malicious software. 

ii. Cuckoo Sandbox: This is a dynamic malware analysis tool that runs malware or benign 
samples in a controlled environment. The sandbox observes the behaviour of the samples, 
capturing various system activities like file changes, network activity and system calls. 
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iii. Feature Extraction: Once the samples have been analysed by the Cuckoo Sandbox, 
important features are extracted from their behaviour. These features are metrics or data 
points that summarize the activity patterns of both benign and malware samples. For 
example, the number of file accesses or specific system calls can be features. 

iv. Training Data: This is the dataset used to train the machine learning model. It consists of 
features extracted from malware and benign samples. The model learns the patterns and 
characteristics that distinguish malware from benign software. 

v. Testing Data: This dataset is separate from the training data and is used to evaluate the 
model's performance. It ensures that the model can generalize and correctly predict 
unseen data. 

vi. Prediction: After training, the machine learning model makes predictions on new or 
unseen testing data. It classifies whether a sample is malware or benign based on the 
extracted features. 

 
In summary, this Figure 1 outlines the process of feeding malware and benign samples into a 

sandbox environment, extracting key features from their behaviour and using those features to train 
and test a machine learning model that predicts whether new samples are malicious or benign. 

 
1.4 Research Contribution 

 
By having the ConvLSTM as the solution in this research, it should be able to: 
 

i. increase layers in an LSTM to capture progressively higher higher-level features in Deep 
Learning Dynamic Malware Analysis.  

ii. increase handling spatiotemporal correlations for malware behaviour sequence. 
iii. achieve more accuracy in malware behaviour detection on zero-day attacks.  
iv. reduce overhead on the entire analysis proceed and increase the response time.  

 
2. Related Works 
2.1 Fileless Malware 

 
Fileless malware is a risky threat because it is designed to be silent and hard to detect. Unlike 

traditional malware, which infects files or installs software on a computer's hard drive, fileless 
malware operates entirely in the computer's memory. This means it does not leave any traceable 
files or programs that antivirus software can easily identify. One technique fileless malware uses is 
exploiting legitimate tools and processes already present on the victim's computer, like PowerShell 
or Windows Management Instrumentation (WMI). These tools are part of the operating system and 
are intended for various tasks, but the malware repurposes them to execute malicious commands. 
By using these trusted tools, fileless malware can evade detection by antivirus programs that scan 
for known malware signatures [21-23]. 

Another method fileless malware uses is exploiting vulnerabilities in software or operating 
systems. These vulnerabilities are weaknesses in the code that attackers can exploit to gain 
unauthorized access to a system. Once the malware exploits a vulnerability and gains access to the 
computer's memory, it can execute its malicious code without leaving any files or programs behind. 
Fileless malware is often used in targeted attacks against organizations and individuals with valuable 
or sensitive information. Because it operates silently in the background without creating any obvious 
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signs of infection, it can remain undetected for long periods, allowing attackers to steal data, spy on 
users or carry out other malicious actions without the victim's knowledge [21-23]. 

To protect against fileless malware, it's important to use comprehensive security measures 
beyond traditional antivirus software. This includes keeping software and operating systems up to 
date, using strong passwords and multi-factor authentication and regularly monitoring for unusual 
or suspicious activity on your network. Additionally, educating users about the risks of fileless 
malware and how to recognize potential threats can help mitigate the risk of infection [21-23]. 

 
2.2 Fileless Malware Types  

 
Fileless malware includes several types of attacks as listed below: 
 

i. Memory-Based Attacks: Malware stays only in the computer's RAM and doesn't write any 
files to disk, making it hard to detect [24]. 

ii. Script-Based Attacks: Attackers use scripting languages like PowerShell or JavaScript to 
run malicious commands directly in memory, bypassing security controls [25]. 

iii. Registry-Based Attacks: Malware alters the Windows registry to maintain control and 
execute code without leaving files on the disk, evading traditional antivirus [24]. 

iv. Living-off-the-Land Attacks: Attackers misuse legitimate system tools like PowerShell and 
WMI to execute malicious commands and avoid detection [25]. 

v. Fileless Exploit Attacks: These attacks exploit vulnerabilities in software or operating 
systems to run malicious code directly in memory, bypassing security controls [24]. 

vi. Macro-Based Attacks: Malicious macros in documents, like Word or Excel files, download 
and execute malware in memory, exploiting users' trust in these documents [25]. 

 
2.3 Deep Learning Techniques  

 
Deep learning is a branch of machine learning within artificial intelligence (AI) that involves 

training artificial neural networks with large amounts of data to recognize patterns and make 
predictions. These models consist of layers of interconnected nodes (neurons) that process 
information hierarchically, allowing them to learn complex data representations automatically. Deep 
learning has been successful in fields like computer vision, natural language processing and speech 
recognition [26]. 

In cybersecurity, deep learning is valuable in combating fileless malware, a stealthy type of 
malware that operates entirely in a system's memory, evading traditional antivirus detection. Unlike 
conventional malware, which relies on files stored on disk, fileless malware uses legitimate system 
processes to execute its malicious activities, making it hard to detect with signature-based methods 
[26]. 

Deep learning offers a powerful solution by analysing large amounts of data to identify subtle 
patterns that signal malicious behaviour. These models can distinguish between legitimate and 
malicious processes, detecting fileless malware with high accuracy. Additionally, deep learning 
models can continuously improve and adapt to new threats, making them effective in the constantly 
evolving field of cybersecurity [26]. 

There are several types of deep learning techniques as listed below:  
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i. Convolutional Neural Networks (CNNs): CNNs are used for tasks like image classification 
and object detection. They process visual data through layers that detect various features, 
allowing them to understand images [26]. 

ii. Recurrent Neural Networks (RNNs): RNNs are designed for sequential data tasks, such as 
predicting time series or recognizing speech. They use connections that loop back to 
handle sequences and time-based data [26]. 

iii. Long Short-Term Memory (LSTM) Networks: LSTMs are a type of RNN that solves the 
problem of vanishing gradients in long sequences. They use memory cells and gates to 
manage and remember information over time [26]. 

 
2.4 Long Short-Term Memory (LSTM) Networks: 

 
Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture 

which been utilized in the deep learning field. Other than standard feed-forward neural networks, 
LSTM owns response connections. Not only it can process single data points like images but also the 
whole data sequences like speech or video. For example, LSTM is capable of handling tasks such as 
unsegmented, connected handwriting recognition, speech recognition and abnormal detection in 
network traffic or Intrusion Detection System (IDS) [11]. 

A usual LSTM unit is built of a cell, an input gate, an output gate and a forget gate. The cell keeps 
the values over arbitrary time intervals beside the 3 gates control the information flow into and out 
of the cell. LSTM networks are perfect to classify, process and make predictions based on time series 
data, since there are changes to be unknown duration lagging between key events in a time series 
[11]. 

The key components of an LSTM include: 
 

i. Data Preparation 
ii. Vanilla LSTM 

iii. Stacked LSTM 
iv. Bidirectional LSTM 
v. CNN LSTM 

vi. ConvLSTM 
 

2.5 Bidirectional LSTM (BLSTM) 
 
Bidirectional LSTM (BLSTM) is one of the deep learning models under malware detection. BSLTM 

is an advanced method of traditional LSTM that improved the performing model for sequence 
classification issues. Usually, almost all prediction and classification for time series data depend on 
Recurrent Neural Networks (RNN). The fundamental concept is the result of the previous and current 
will be using an input in the network and get the output and it will be repeated often. The network 
weight is controlled by Back Propagation Through Time (BPTT) algorithm [1-3]. 

The disadvantage of RNN is that it is a long-term reliance that will be forgotten, resulting in low 
predictive long-term memory, which is why Long Short-Term Memory is on the way [9]. BLSTM differs 
from traditional LSTM since it takes input from both bidirectional LSTM which is past and future 
feature extraction. There will be a forward and backward way of getting input and producing output 
but over here running simultaneous LSTM forward and backward to produce output consumes more 
time [1-3]. 
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This requires more energy resources to produce outcomes. Perhaps, the aim of LSTM is to predict 
the accuracy of malware detection, but BLSTM seems to be a good option since it uses three-
dimensional input to read the data and produce the output in 1 sequence. It can be observed that 
the BLSTM employs two LSTMs to provide a single result, one on forward for future or present 
extraction and the other on backward for previous extraction [10]. 

BLSTM model is running dual LSTM and at the same time, pushing multiple inputs into a single 
sequence and extraction output in a short time. It may produce output but measuring the pressure 
handled by the single process is high. It may make mistakes or take time to produce output since it is 
pushing the input metric which will be samples, time steps and features. Although it appears 
straightforward, running the application requires more time and energy [17]. 

The Figure 2 diagram shows the input taken to two layers which are from Forward Layer LSTM 
and Backward Layer LSTM and running the process in both directions and get analyse the output in 
the Activation layer and produce output [17]. 

 

 
Fig. 2. Framework of BLSTM [17] 

 
3. Methodology  

 
We choose LSTMs are Recurrent Neural Network (RNN) types that are able to study long-term 

dependencies for example relationships distant between elements position of a sequence. They 
accomplish targets with complicated memory structures in LSTM cells which not included in 
traditional RNN cells. The matrices and vectors Wx, Ux and bx (with x ∈ {f, i, c, o}) in Figure 3 are the 
parameters θ of an LSTM [4]. 
 

 
Fig. 3. LSTM algorithm [4,5] 

 
Same as traditional RNNs, LSTMs process every input in time t with the output from the previous 

timestep (ht-1). In extra, they add on a unit cell state (C) which holds on the entire sequence 
information. LSTMs bring to or extract minor information pieces from C through the operations in 
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the forget (ft) and input (it) gates. The latest C shows the event of history utilized to compute the 
output ht by filtering C out with the output gate ot. This architecture gives LSTMs the space to relate 
the latest events with past events in sequence and arrange them to match to detect abnormal threat 
activities [4]. 

There are various types of models such as BLSM, CLSTM, CONV-LSTM, MULTI-LSTM and more. 
Other than LSTM, there are also other artificial models for study purposes or real industrial projects 
that are being daily testing. This will be the right choice for me to test for malware threat detection. 
Our aim to choose LSTM model is to emphasize the importance of Artificial Intelligence + Malware 
Detection can be used instead of using an Endpoint Detection tool for behaviour detection [4]. 

 
3.1 Research Framework 

 
The research framework is shown in Figure 4, showing the sequential order the steps follow. 

These phases include problem formulation, a reimplementation of previous work proposed protocols 
designs, experiments and then performance evaluations with comparisons compared to the 
improper protocols. 

 

 
Fig. 4. Framework of the research 

 
3.2 Dataset  

 
To test the performance of ConvLSTM on fileless malware detection, we have conducted an 

experiment that will be described in this section. In our research, we have gained a big number 
of samples which have been used from previous work obtained from Virustotal [27]. The dataset 
consists of 13518 malicious samples and 7860 no malicious samples. These malware samples 
are gained from Virus Share and the non-malware sample are gained from Windows Operating 
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systems such as XP, Windows 7, and Windows 10. 
The performance of ConvLSTM on fileless malware detection was tested through an experiment 
described in this section. In this research, the dataset is sourced from the GitHub repository 
"lstm_malware_detection" by Ocatak [28]. The repository provides scripts and data for 
implementing and testing LSTM models in the domain of malware detection. The dataset is 
specifically tailored for cybersecurity, focusing on the detection of malware, potentially 
including fileless malware, which is challenging to detect using traditional methods. he types of 
malicious malware included in the dataset are Adware, Backdoor, Downloader, Dropper, 
spyware, Trojan, Virus and Worm [28]. 

 
i. Data Collection: A diverse and representative dataset of malicious samples is 

obtained, covering various types of malwares, different attack vectors and potentially 
different stages of malware execution (e.g., static analysis, dynamic analysis). The 
dataset comprises 13,518 malicious samples and 7,860 non-malicious samples. These 
malware samples were collected from Virus Share, while the non-malware samples 
were obtained from Windows Operating Systems such as XP, Windows 7 and 
Windows 10 [28]. 

ii. Data Preprocessing: The dataset is pre-processed to ensure uniformity and 
cleanliness. Tasks such as removing duplicates, standardizing file formats, extracting 
relevant features and balancing the dataset if there are class imbalances are carried 
out. The hash values of each malware that been analysed were determined and these 
hash values were queried with the VirusTotal service. The analysis results from the 
VirusTotal service were stored into a database. Consequently, each malware 
underwent analysis by multiple antivirus engines and the outcomes of these analyses 
were recorded [28]. 

iii. Data Classification: Malicious and benign samples are categorized based on their 
characteristics and behaviour. This step ensures that the dataset is properly labelled 
for subsequent analysis. Our malware classification method, which is LSTM, is 
implemented at this stage [28]. 

iv. Partitioning: The dataset is divided into three subsets: training, validation and test. 

• Training Data: This subset is utilized to train the machine learning model. It has 
comprised the majority of the dataset, typically around 60-80%. The model 
learned from this data to recognize patterns and characteristics of malicious 
behaviour [29]. 

• Validation Data: This subset is used to tune hyperparameters and evaluate model 
performance during training. It assisted in preventing overfitting by providing an 
independent dataset for validation. It usually consists of around 10-20% of the 
dataset [29]. 

• Test Data: This subset is used to evaluate the final performance of the trained 
model. It serves as an unseen dataset to assess how well the model generalizes to 
new, unseen malicious samples The test set has been completely separated from 
the training and validation data and typically comprises the remaining 10-20% of 
the dataset [29]. 

v. Random Sampling: Instances are randomly sampled from the dataset to ensure that 
each subset (training, validation, test) is representative of the overall dataset. This 
helps prevent biases in the model training and evaluation [28]. 
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3.3 Spatial Temporal Data Presentation 
 
To present a dataset as spatial-temporal data, each sample in the dataset needs to be 

structured to capture both spatial and temporal aspects of the underlying phenomenon. In the 
context of malware detection, spatial features refer to characteristics extracted from a single 
point in time, such as static features derived from file properties or code structure. Temporal 
features, on the other hand, capture how these characteristics evolve over time, such as 
behavioural patterns observed during the execution of malware. Here is how the dataset can be 
structured to represent spatial-temporal data for malware detection: 

 
i. Spatial Features 

• Static features extracted from each sample at a single point in time. 
• These features can include file metadata (e.g., file size, file type), header 

information, opcode sequences, API call frequencies and static analysis results 
(e.g., presence of specific strings, signatures). 

• Each sample is represented as a vector of static features. 
ii. Temporal Features 

• Dynamic features capturing the behaviour of the malware over time. 
• These features are extracted during the execution of the malware and represent 

how its behaviour evolves. 
• Examples of temporal features include system call sequences, network traffic 

patterns, memory usage, registry modifications and any other dynamic behaviour 
observed during runtime. 

• Each sample is represented as a sequence of temporal feature vectors, where 
each vector corresponds to a specific time step or observation window during the 
execution of the malware. 

iii.  Spatial-Temporal Representation 
• Combine spatial and temporal features to create a unified representation for each 

sample. 
• This can be achieved by concatenating the static features with the corresponding 

temporal feature sequences. 
• Alternatively, spatial and temporal features can be fed into separate branches of 

a neural network model, allowing the model to learn spatial and temporal 
patterns independently before merging the representations at later stages. 

iv.  Dataset Structure 
• Each sample in the dataset is represented as a structured data point containing 

both spatial and temporal information. 
• The dataset consists of a collection of these structured data points, where each 

data point represents a single instance of malware or benign software. 
• The dataset is partitioned into training, validation and test sets following the 

previously described methodology while preserving the spatial-temporal 
structure of the data. 

 
3.4 Computer Requirement 

 
It is recommended that a mandatory specification be included for the computer to observe better 

performance before the experiment can be conducted. 
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Processor  Intel(R) Core (TM) i5-6300U CPU @ 2.40GHz  2.50 GHz 
RAM  16.0 GB 
System type 64-bit operating system, x64-based processor 
GPU  NVIDIA GeForce GTX 1080 GPU 
Edition  Windows 10 Pro 
Version  21H1 
OS build  19043.1889 
Experience Windows Feature Experience Pack 120.2212.4180.0 
 

3.5 Software Requirement 
 

i. Spyder Python: Spyder is an open-source cross-platform integrated development 
environment for scientific programming in the Python language. 

ii. Anaconda Plug-In: Spyder is included by default in the Anaconda Python distribution, 
which comes with everything you need to get started in an all-in-one package. 

iii. Keras: Keras is an open-source library program that gives Python Programming for 
artificial neural networks. Keras runs as a key for the TensorFlow library to support 
ConvLSTM to produce better results [6]. 

iv. TensorFlow: TensorFlow is an open-source library program for artificial intelligence and 
machine learning. It can be utilized across multiple tasks simultaneously but owns a 
specific target on training and inference of deep neural networks. 

 
3.6 Performance Evaluation  

 
Under this section, we have done an evaluation of the BLSTM performance and the proposed 

ConvLSTM. To evaluate deeply, both protocols’ performances, the simulation evaluated the capacity 
and ability of similar datasets, batch size, number of epochs and dropout. The results are discussed 
in terms of accuracy, loss and time taken. 

 
3.7 Simulation Setup 

 
We have executed the ConvLSTM neural network in Python using Keras as the framework. 

Moreover, we have split the dataset into a train set, validation set and test set conferring to the ratio 
(8:1:1). For the training BLSTM neural network, the dropout is set to 0.5, the batch size is fixed to 64 
and the number of epochs is set to 30. Besides, the loss function will be adopted according to log loss 
as depicted in Table 1. 
 

Table 1 
Parameters 
Parameters Value 

Ratio (8:1:1) 
Dropout 0.5 
Epoch 30 
Batch Size 64 
Kernel Size 1 
Filters 32 
Dense 128,256 
Return Sequence True 
Verbose 1 
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4. CONVLSTM: Recurrent Neural Network Approach 
 
The ConvLSTM predicts the future state of specific cells in the input grids and the past state from 

local. If we observe the states as the hidden representation of moving objects, a ConvLSTM has a 
larger transitional kernel that has the ability to capture faster motions while one of the small kernels 
can capture slower motions [4]. 

This feature supports a lot of malware detection for fast capturing which has a higher contribution 
for time. ConvLSTM is using 2D Dimensional input and converts it into 3D Dimensional for reading 
input. A standard LSTM model has 2D Dimensional for it has a soft process, but BLSTM has dual LSTM 
cells which means has two layers of 2D Dimensional Input which gives a heavy shot of input causing 
input time taken to increase and produces results known as 3D Dimensional [4]. 

The Figure 5 and Figure 6 you provided illustrate concepts related to ConvLSTM (Convolutional 
Long Short-Term Memory) networks, which are designed to handle spatiotemporal data by 
combining convolutional operations with LSTM's recurrent processing capabilities. Let's explain these 
details more thoroughly. 

Figure 5 shows how a standard 2D image is converted into a 3D tensor. In the context of 
ConvLSTM, this conversion process helps the model to manage temporal data along with spatial 
information: 

 
i. 2D Image: The image is represented by its pixel values organized in a 2D grid (height and 

width). 
ii. 3D Tensor: To incorporate temporal information, the image is transformed into a 3D 

tensor, where an additional dimension (usually representing time or sequence depth) is 
added.  

 
This transformation allows the ConvLSTM to handle sequences of images, making it suitable for 

tasks like video prediction or time-series forecasting, where the spatial structure of data over multiple 
time steps needs to be analysed. 
 

 
Fig. 5. Transforming 2D image into 3D tensor [4,5] 

 
Figure 6 illustrates the structure of a ConvLSTM cell, showing how it processes data over multiple 

timesteps. Each ConvLSTM cell has multiple components: 
 

i. Hidden State (Ht) and Cell State (Ct): The hidden state carries information from previous 
timesteps to the current timestep, while the cell state manages long-term dependencies. 

ii. Input (Xt): Represents the data coming into the ConvLSTM cell at each timestep. 
iii. Convolutional Operations: The ConvLSTM cell applies convolutional operations to the 

input data, which allows it to capture spatial patterns within each timestep. 
 
This approach enables the ConvLSTM to preserve spatial information while learning temporal 
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dependencies, making it more efficient for applications that involve both spatial and temporal data, 
such as weather forecasting or video analysis. 
 

 
Fig. 6. Inner structure of ConvLSTM [4,5] 

 
4.1 CONVLSTM Architecture 

 
For such fileless malware detection, a motivating method is to utilize a model-based LSTM which 

is Long Short-Term Memory as an architecture of a Recurrent Neural Network [11]. In this type of 
architecture, the model gives the last hidden state to the forward step of the sequence. They are 
keeping the information from the past data from the network that has been observed previously 
before and used it to make a decision. To describe it better, the order of data is very important. Figure 
7 shows an LSTM cell [14,15]. 

 

 
Fig. 7. A LSTM cell [14,15] 

  
During working with malware detection, the best method would be a CNN (Convolutional Neural 

Network) architecture. The malware passed through Convolutional Layers, in which certain filters 
extract the significant features. Later, passing some convolutional layers in sequence, the output will 
be connected to an interconnected dense network. In our approach, fileless malware, one method is 
using ConvLSTM layers. It is a Recurrent Layer, similar to LSTM but internal matrix multiplications are 
swapped with convolution operations. In the output, the flows of data thru the ConvLSTM cells hold 
the input dimension (3D) in its place of becoming a 1D vector together features. Figure 8 shows the 
ConvLSTM cell [11]. 

 

 
Fig. 8. A ConvLSTM cell [14,15] 
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Another method of ConvLSTM is the Convolutional-LSTM model, in which the Fileless malware 
passes through the convolution’s layers and the output is set fixed to a 1D array with the gained 
features. During the repentance of the same process to all Malware in the time set, the output is a 
feature set across time and this is called LSTM layer input [11]. 

 
4.2 CONVLSTM Layer Input 

 
The LSTM cell input is a data set across time which is a 3D tensor together shape containing 

samples, timesteps and features that a standard LSTM cell contains. The Convolution layer will input 
a set of malwares as a 4D tensor with the shape of samples, channels, rows and columns. This is 
another also 3D tensor but as we mentioned before, ConvLSTM breaks the sequence of 3D tensor 
(3D Dimensional) into sub-sequences where comes another 1D tensor in a total of 4D tensor. For 
input of a ConvLSTM is a set of malwares across as a 5D tensor which adds a 2D tensor with the shape 
of samples, timesteps, channels, rows and columns) [14,15]. 

 
4.3 CONVLSTM Layer Output 

 
The LSTM cell results depend on the return sequence attribute. During set True, the sequence of 

output across a time where one output to each input. In such a situation, the output is a 3D tensor 
together with the shape of samples, timesteps and features. During the return sequence is False 
which would be a default, the result of output is the sequence’s last value which will be a 2D tensor 
with the shape of samples and features [14,15]. 

The convolution layer output is Malware set as a 4D Tensor together with samples, filters, rows 
and columns). The ConvLSTM layer output is a set of Convolutions and an LSTM output. Similar to 
LSTM, if the return sequence is True, then the return sequence will be a 5D tensor with the shape of 
samples, timesteps, filters, rows and columns. Other ends, if the return sequence is false, then a 4D 
tensor with the shape of samples, filters, rows and columns [14,15]. 

 
4.4 Other Parameters 

 
The other ConvLSTM characteristics speak from the Convolutions and the LSTM layer. In the 

Convolution layer, the significant ones are: 
 

i. Filters: The output filter numbers in convolution. 
ii. Kernel Size: Defining the width and height of the convolution window. 

iii. Padding: Define whether the input data is valid or same 
iv. Data Format: The format of malware if the channel comes first or last. 
v. Activation: A default is a linear function. 

 
From the LSTM layer, the most significant one is: 
 

i. Recurrent activation: Activation function to utilize the step of recurrent. It is a default 
hard sigmoid. 

ii. Return Sequences: Whether to return the end output in the sequence of output which 
is false or else full sequence. The default is False. 
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4.5 CONVLSTM Design 
 
The ConvLSTM model owns one input, the beginning features in sequence, 6 individual outputs 

and one for its own category. The model input which we used is the malware dataset. It will be broken 
into samples, features, timesteps, rows and columns. Limit the features by 300 per sample and the 
max length is 1 and balance rows and columns are set to 1. Samples are the number of available 
malware data for training [12,13]. 

In this example, we utilize the return sequence equal to False which is the default so the output 
should be in samples and features but due to the model having 5 individual outputs, the expected 
output will be in samples, features, timesteps, rows and columns. The impact of using return 
sequences is the model will categorize each sample in one set [12,13]. 

The design starts with 2 ConvLSTM layers where one will be Batch Normalization and MaxPooling. 
In sequence, it breaks into branches and one for every category. Every branch is similar, they begin 
with one of the ConvLSTM shadows by MaxPooling. Then, this output is attached to an 
interconnected Dense Network. Finally, the end layer is Dense with one cell. The following sample 
speaks the basic model [12,13]. 

 
4.6 Test, Validation, Training Set 

 
 When we start the ConvLSTM program, we begin with a standard test set for all the processes. 

This test set is not used to run the samples with the test set only. Instead, we use it to train the 
dataset and continuously improve the program, which is known as the train set. The classification 
output of every test set is validated using the training set output, which is known as the validation 
set, as shown in Figure 9. This process is iterative, with each iteration representing a step forward in 
refining the program. 
 

 
Fig. 9. Test, validation, training set 

 

4.7 CONVLSTM Algorithm 
 
The main weakness of Fully Connected LSTM in controlling spatiotemporal data is its full 

connection’s usage input to state and state-to-state transitions in which no information of spatial is 
encoded. To solve this issue, a better design feature is all inputs put on X1, …., Xt, cell outputs C1, …. 
Ct the hidden state H1, …. Ht and the gates it, ft, 0t of ConvLSTM are 3D tensors where last two 
dimensions are spatial dimensions which are rows and columns [18-20]. 

To overview a better observation of the input and states, we may take them as vectors standing 
on the partial grid. The ConvLSTM predicts the future state of some cells in the grid thru inputs and 
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past states from the local neighbours. This is possible to be accomplished by utilizing the convolution 
operator and ‘◦’ as before denotes Hadamard Product in Figure 10 [18-20]. 

 

 
Fig. 10. Conv-LSTM Algorithm [18-20] 

 
If we observe the states as hidden representations of objects which move, a ConvLSTM with a 

larger kernel is able to capture faster motions besides one with a smaller kernel captures slower 
motions. Also, if we take the same view, the inputs, the cell outputs and hidden states of the basic 
FC-LSTM represented above algorithm may also be seen as 3D tensors together with the last one 
dimensions be one. In that think, FC-LSTM is a rare case of ConvLSTM with all standing features on 
one cell [18-20]. 

To make sure the states own a similar number of rows and columns as the inputs, padding is 
required before introducing the convolution operation. There you go, padding the hidden states on 
the border points can be observed as utilizing the states on the world outside for the math. Previous 
the first input reaches, we begin all the states of LSTM to 0 which correlates to total ignorance for 
the future [20]. 

Same, if we run zero-padding on hidden states, we can set the state to the world outside to 0 and 
think that no knowledge of the outside. Through padding on states, we can teach border points in 
another way, which would be a handful in other cases. For example, think that the system we are 
looking at is a moving ball covered by walls. Even though we are unable to see those walls, we can 
conclude their presence by searching for the ball bouncing over them again and again, which can be 
difficult to run if the boundary point has similar state transition dynamics as the inner points [20,21]. 

From Figure 11, the proposed model utilizes the convolution operation layer to pull higher-level 
collaborating features from more than one colliding object in multiple interactive layers in variant 
time segments, seeing that the pooling will split like a time sequential organization since its 
suspended chosen features. Later, the LSTM model is taken to extract the feature sequence which 
has a long-term dependency on the historical period features. Besides, looking at the influence of 
prediction syntax on malware detection, we have proposed this algorithm [7,8]. 

 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 64, Issue 4 (2026) 136-157 

152 
 

 
Fig. 11. Flowchart of ConvLSTM [8] 

 
From the traditional deep learning models, CNN and BSLTM are the most broadly applied ones. 

CNN can obtain bigger features from data and improve the anti-degeneration of the extracted 
features together with pooling and convolution operations, but they are unable mode the time 
variation series. LSTM in another way, can sort out this problem that other neural networks are 
incapable to manage in terms of time series [7,8]. 

That neuron’s outputs can be straightly impacted at the next time step in the LSTM. Moreover, 
LSTM can manage input sizes smaller than CNN. In fileless malware, the maximum input size is 300 
data only. The CNN input size can be up to more than 1000 data which shows that the feature 
extraction capacity of LSTM is lower than CNN. In this study, we have merged the different pros of 
CNN and LSTM to propose the ConvLSTM model for fileless malware detection [7,8]. 

 
5. Results and Discussion 

 
In this experiment, the research conducted program simulation test using Python 3.9.7 Spyder 

Program by running API call algorithm to extract the malware from malware dataset in form of zip 
file. There is an addition of ConvLSTM1D for this testing which sufficient to run for this program to 
break the sequence into four sub sequence as feature extraction which max length, input shape, max 
word as samples, timesteps, rows, features. Those samples have run with the parameter set. 

The programs set the max length of 300 malware per process of epoch where been set 30 and 
every end of epoch test, it produces the accuracy, loss and time taken. When every epoch completes, 
it starts with test set and continue with validation set end. Training set will be learning the mistakes 
from test set and train the next epoch to produce better results in terms of increasing the accuracy 
and reduce the number of malware loss.  

End of the 30 epoch, the test and train set result pushed into history module to plot the graph for 
accuracy and loss to show the results of graph line. The results show from the low value and increase 
to high value. These results are variant due to train set and validation test conduct on this program 
which improves the result within set number of epochs to be processed. Results will be in decimal 
point as 0.9 = 90%. The results of performance evaluation will be discussing in the next subsection. 
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5.1 Impact to Accuracy 
 
The comparative analysis graph in Figure 12 illustrates the accuracy performance of four models 

which are BLSTM, LSTM, CNN-BLSTM and ConvLSTM—in malware detection over 30 epochs. The 
LSTM model starts at around 75% accuracy and improves steadily to about 90%. However, it struggles 
to surpass the 0.95 benchmark, indicating limitations in its simpler architecture. This suggests that 
while LSTM can effectively learn from the data, it lacks the complexity to achieve the highest 
accuracy. The CNN-BLSTM model, which combines convolutional layers with BLSTM, starts at 75% 
accuracy and improves to nearly 90% by the 15th epoch.  
 

 
Fig. 12. Accuracy result 

 
However, it shows some instability and does not match the performance of ConvLSTM and 

BLSTM. This instability might be due to the convolutional layers not fully compensating for the 
sequential dependencies that BLSTM handles. The BLSTM model begins at 70% accuracy and 
experiences more fluctuations in the early epochs. Nevertheless, it catches up to around 0.95 
accuracy by the 13th epoch, benefiting from its bidirectional sequence processing.  

This dual processing allows BLSTM to learn more comprehensive features from the data, leading 
to improved accuracy over time. ConvLSTM demonstrates the strongest initial performance with a 
90% starting accuracy. It maintains a stable learning curve and consistently achieves high accuracy, 
attributed to its convolutional layers' ability to capture spatial features effectively. ConvLSTM use of 
SpatialDropout2D promotes feature independence and stability, further enhancing its performance. 
 
5.2 Impact to Loss 
 

Figure 13 shows the initial performance at epoch 1, BLSTM starts with a high loss of approximately 
70%, indicating poor initial performance in recognizing malware. In contrast, ConvLSTM shows a 
significantly lower initial loss of about 10%, suggesting better initial detection capabilities. LSTM and 
CNN-BLSTM display intermediate initial losses between those of BLSTM and ConvLSTM. 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 64, Issue 4 (2026) 136-157 

154 
 

 
Fig. 13. Loss result 

 
Over the epochs, ConvLSTM maintains a stable and consistently low loss. This stability can be 

attributed to the model’s ability to leverage filters and larger kernel sizes effectively, enabling it to 
capture both fast and slow-motion patterns in the data. ConvLSTM’s use of parameter sharing further 
enhances its performance. By sharing parameters across different parts of the model, ConvLSTM can 
efficiently capture spatial and temporal dependencies in the data, leading to a more robust detection 
mechanism. 

 While BLSTM starts with a high loss, it gradually reduces its loss, becoming competitive with 
ConvLSTM by the end of 30 epochs. However, BLSTM's performance fluctuates significantly until 
around the 13th epoch, indicating instability during the training phase. LSTM and CNN-BLSTM exhibit 
a gradual decline in loss but do not reach the low loss levels of ConvLSTM or BLSTM by the end of the 
epochs. Key factors contributing to ConvLSTM's superior performance include its ability to use 
multiple filters and larger kernel sizes, which help minimize loss and improve pattern recognition in 
malware detection.  

ConvLSTM’s loss curve remains stable across epochs, highlighting its reliability in malware 
detection. In contrast, BLSTM experiences fluctuations, which could hinder its ability to consistently 
capture true malware. BLSTM requires the entire sequence to be available before processing, leading 
to high initial losses. Over time, as more data is processed, BLSTM improves, but this requires around 
30 epochs to achieve a comparable performance to ConvLSTM. 

In conclusion, ConvLSTM demonstrates superior and stable performance in reducing loss during 
malware detection across all epochs compared to other LSTM models. Although BLSTM shows 
improvement over time and achieves low loss towards the end, its initial instability and fluctuations 
indicate that it may not be as reliable for early-stage detection as ConvLSTM. The ability of ConvLSTM 
to maintain low and stable loss levels, along with its efficient parameter sharing, makes it a more 
robust choice for fileless malware analysis. 

 
5.3 Impact to Time 
 

Figure 14, BLSTM starts at a higher time but quickly drops, stabilizing between the 3rd and 16th 
epochs. From the 16th epoch onwards, the time increases significantly, peaking at 174 seconds by 
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the 30th epoch. This indicates that BLSTM becomes less time-efficient over longer training periods. 
ConvLSTM starts at a lower time compared to BLSTM and maintains a more consistent reduction in 
time. ConvLSTM shows a stable performance with time averaging around 110 seconds, indicating 
better efficiency and less variability. 
 

 
Fig. 14. Time taken result 

 
The differences in time efficiency between the models can be attributed to their underlying 

mechanisms. BLSTM utilizes two LSTM cells requiring complete sequences from both directions to 
produce an output. This dual processing leads to longer times, especially as the number of epochs 
increases, making it less suitable for real-time analysis. ConvLSTM uses a single LSTM cell, running 
processes within itself, which enhances time efficiency. The parameter-sharing mechanism of 
ConvLSTM contributes to its stable and faster performance. 

The time efficiency of these models is significantly influenced by the computational resources 
available. The CPU and memory capacity of the machine can impact the time taken for each epoch. 
This suggests that with better hardware, both models could potentially perform faster, but the 
relative efficiency between them would remain. In terms of implications for malware detection, 
ConvLSTM’s stable and lower time consumption makes it more suitable for real-time scenarios where 
prompt responses are critical. BLSTM’s higher time requirements indicate that it might be better 
suited for scenarios where accuracy is more critical than speed and sufficient computational 
resources are available to manage the longer processing times. 

 
6. Conclusion 

 
In summary, this research highlights the limitations of traditional malware detection methods, 

such as Bi-Directional Long Short-Term Memory (BLSTM) models, in effectively identifying fileless 
malware due to high computational costs and processing delays. Fileless malware operates silently 
in memory and evades traditional detection techniques, making rapid detection and response 
challenging. 

To address these issues, the study proposes using Convolutional Long Short-Term Memory 
(ConvLSTM) models, which show significant improvements in detection accuracy, processing speed 
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and overall performance. ConvLSTM achieved a detection accuracy of 98% compared to BLSTM’s 90% 
and reduced processing time from 22 to 10 seconds. Additionally, ConvLSTM showed lower loss rates, 
indicating better reliability and stability. 

ConvLSTM's success is attributed to its ability to capture spatial-temporal features more 
effectively by integrating convolutional layers with LSTM architecture. This integration reduces 
computational complexity and enhances the model’s ability to manage sophisticated fileless 
malware. 

The research underscores ConvLSTM’s potential as a superior tool for real-time malware 
detection and mitigation. Future work could focus on optimizing ConvLSTM's configurations and 
evaluating it across various cybersecurity scenarios to further enhance its performance and 
scalability. This study contributes to advancing malware detection technologies, offering a promising 
approach for securing digital infrastructures against evolving cyber threats. 

 
7. Future Works 

 
This ConvLSTM model has been introduced in the fileless malware detection method and this 

method in their field have significantly increased the security level of the Endpoint Security System. 
However, there remain certain problems that might need to be deep dive in the future. Below are 
the keys that need to be investigated: 

 
i. Input size limitation: Using ConvLSTM1D due to the input size limitation is 

understandable, but it would be beneficial to find a way to adapt ConvLSTM2D for your 
dataset. Perhaps preprocessing the data to add an additional feature could resolve this 
issue. 

ii. Dual ConvLSTM cells: Implementing a dual ConvLSTM cell could indeed enhance the 
model's ability to predict both past and future sequences. This would require 
modifications to the architecture and training process to accommodate the increased 
complexity. 

iii. Fluctuation in accuracy and high loss: To address fluctuations in accuracy and increasing 
losses during training, you might need to fine-tune hyperparameters, adjust learning rates 
or explore different optimization techniques. Additionally, analysing the causes of 
fluctuations, such as data imbalance or model overfitting, could help mitigate these 
issues. 

iv. Improved visualization with Metaplot: Enhancing Metaplot or using other visualization 
libraries to extract and display ConvLSTM results more effectively could streamline the 
analysis process. This would involve integrating the necessary functionalities to plot 
relevant metrics and visualize model performance. 

v. Enhanced reporting of malware analysis results: Beyond accuracy, loss and training time, 
incorporating additional metrics such as the number of positive and negative malware 
samples, along with their respective types, can provide more comprehensive insights into 
the model's performance and the characteristics of the analyzed malware datasets. 
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