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 ABSTRACT 

 
This paper is considering a semi-approximate approach in investigating the Burgers’ 
problem. The process of the discretization of Burgers’ problem has taken place which 
it starts with the second-order finite difference in the discretize process together with 
the linearization part by using the semi-approximate implicit scheme in a way to 
achieve the approximation equation, thus generating the corresponding linear system 
equations. Besides, the Gauss-Seidel (GS), Successive Over-Relaxation (SOR) and 
explicit group (EG) iterative method has combined together with the SOR iterative 
method, namely as 4-point EGSOR (4EGSOR) has been introduced in this study for 
resolving the linear system. To assess the proficiency of the suggested methods on the 
approximation equation, the numerical test has been conducted by considering three 
parameters, which are computational time, iteration number and maximum absolute 
error. The findings indicate that the 4EGSOR method outperforms both SOR and GS 
iterative methods.    
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1. Introduction 
 

The early discovery of the Burgers’ equation was in 1915 by Bateman. Burger itself introduced a 
new improvised and stable solution to the Burgers’ problem in 1939 [1]. By referring to Bateman, 
Burgers’ equation was categorized as a nonlinear (NL) equation, which is under the parabolic partial 
differential equations (PDEs). It has been applied in diverse areas of applied mathematics including 
instances like diffusion wave in fluid dynamics, nonlinear acoustics, gas dynamic, traffic flows and 
heat conduction [2,3]. 

In this study, we attempt to seek the approximate solutions of the following Burgers’ equation, 
accompanied by a brief explanation of each characteristic, presented by Se Bonkile et al., [4]: 
 

 
* Corresponding author. 
E-mail address: jumat@ums.edu.my 
 
https://doi.org/10.37934/araset.61.1.127137 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 61, Issue 1 (2026) 127-137 

128 
 

2

2

,
k k

k
t n n

k  


  
+ =                                                             (1) 

 
subject to initial conditions: 
 

( )  ,0 ( ),   , ,k n g n n  =    

 
and the Dirichlet boundary conditions: 
 

( ) ( ) ( ) ( )0 1, ,   , ,   0.k t g t k t g t t = =   

 
The characteristics:  
 

i. 𝛾 is a viscosity with 𝛾 > 0 

ii. 𝑘
𝛿𝑘

𝛿𝑛
 is known as NL convective term. 

 
In many cases, obtaining the exact solution of Burgers’ equation is not feasible. Thus, several 

numerical techniques have been outlined to develop the numerical solutions of Eq. (1) [5]. In previous 
studies, the approximate solution of Eq. (1) has been constructed using homotopy perturbation 
method (HPM), compact difference method (CDM), finite difference (FD) scheme, B-Spline method, 
variational iteration method (VIM), finite element (FE) scheme and differential quadrature method 
(DQM). For instance, Biazar and Ghazvini presented HPM [6] to acquire the approximate solution of 
Eq. (1). Next, Noorzad et al., [7] applied the combination of VIM and HPM to handle Burgers’ problem. 
Mohyud-Din et al., [8] proposed a modified version of VIM by introducing He’s polynomials. 
Furthermore, Pandey et al., [9] applied the Douglas FD scheme in order to reduced Eq. (1) to the heat 
equation. Kaysar et al., [10] proposed three new semi-implicit FD methods to find the solution of Eq. 
(1). Meanwhile, new fully implicit FD scheme has been proposed by Mohamed [11].  

Besides that, Chen and Zhang [12] implemented a weak Galerkin FE method. The numerical test 
has been implied and the results show that the approach was applicable to the Burgers’ equation. 
Based on the study of Tamsir et al., [13], the study has imposed the cubic B-Spline DQM in extended 
version into Eq. (1). Mittal and Jain [14] solve 1D Burgers’ equation by implementing cubic B-splines 
over FE with modified version. In 2017, Aswin et al., [15] also employed a polynomial based DQM 
and quasi-linearization is used to eliminate nonlinearity. Yang et al., [16] presented high-order CDM 
to generate approximation equation of Eq. (1), then Thomas algorithm is used to acquire the 
approximate solution of the tridiagonal linear system (LS). 

Recently, the implementation of semi-approximate (SA) approach based on the NL Burger’s 
equations was found to be effective in converting a NL system into a LS [17]. The solution of LS can 
then be solve using direct methods or iterative methods. In this study, we consider a second-order 
implicit finite difference (SIFD) scheme to discretize the Eq. (1) to form the approximation equation, 
which leads into a system of NL. Then, we employ a semi-approximate implicit (SAI) approach to 
transform the NL system into a LS. By implementing such an approach, the highly computational 
complexity of formulating a linear system, such as by using Newton method, can be avoided. 
Following that, we consider 4EGSOR method to address the large and sparse LS generated from the 
process of discretization of one-dimensional Burgers’ equation.  
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This paper consists of five parts. In the subsequent part, we elaborate on the formulation of SA 
approach employed to the Burgers’ equation, leading to the generation of a system of linear 
equations. Following that, we discuss the formulation of 4EGSOR iterative method to achieve the 
approximate solution of the generated LS. Following that, three numerical examples were presented 
to demonstrate the computational time, iteration number and maximum absolute error of the 
4EGSOR method in comparison to GS and SOR methods. Finally, we conclude the findings in the last 
section. 
 
2. Formation of Semi-Approximate Implicit Approximation Equation 

 
As discussed earlier, the SIFD scheme is applied to Eq. (1) to derive its corresponding NL 

approximation equation. Subsequently, the SAI approach is employed to formulate the NL 
approximation equation for the development of a LS. Prior to entering the discretization process, Eq.  
(1) can be simplified into new equation as follows 

 

( )
2

2
, , .

k k k
G n t k

t n n

  


  
+ =                                             (2) 

 

where ( ), ,G n t k is denoted as a NL function. Next, we contemplate the segmentation of the solution 

domain, denoted as 𝑦𝑖, 𝑖 = 0, 1, 2, . . . , 𝑚 − 1 and 𝑡𝑗, 𝑗 = 0, 1, 2, … ,𝑚 − 1. Following this, 

implementing the SIFD discretization scheme on Eq. (2), yields the corresponding NL approximation 
equation as articulated by Zainal, Sulaiman and Alibubin [18]. 

 

( )
( )

( ). 1 .

. 1. 1 2. 1 1. 1 1. 1 . 1 1. 12
,  ,  ,  2 ,

i j i j

i j j j m j i j i j i j

k k
g k k k k k k

t h

+

+ + − + − + + + +

−
+ = − +

 
         (3) 

 
where 

 

( ) 1. 1 1. 1

. 1. 1 2. 1 1. 1 1 . 1,  ,  ,  ,  ,  ,  .
2

i j i j

i j j j m j i j i j

k k
g k k k d n t k

h

+ + − +

+ + − + + +

− 
=  

 
                      (4) 

 
Due to the existence of NL term in Eq. (4), it is necessary to eliminate this term using the SA 

approach in order to formulate a LS for Eq. (1) [19]. To achieve this, the term 𝑦𝑖.𝑗+1 in Eq. (4) is 

approximated as 𝑦𝑖.𝑗, given the significantly low value of ∆𝑡. As a result, Eq. (4) can be transformed 

into: 
 

( ) 1. 1 1. 1

. 1. 1 1. 1 1. 1 1 .,  ,  ,  ,  ,  ,  .
2

i j i j

i j j j m j i j i j

k k
g k k k d n t k

h

+ + − +

+ + − + +

− 
=  

 
                                   (5) 

 
To minimize computational complexity, the SAI approximation equation for Eq. (1), presented as: 
 

. 1. 1 . 1 1. 1 . ,   1,  2, 3, ,  1,i j i j i i j i j i jp k q k k G i m− + + + +− + − = = −                                                 (6) 

 
where 
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( ) ( ) ( )

( ) ( )

. 2 2

.

. .2

1 2
1

2 1
,    ,   ,    .

2 .

i j

i j

i i i i j i j

i i i

t
g

h kh h
p q c g G

c c h t ch

 



  
+ +      

= = = − =     

 

 
By referring to the approximation Eq. (6), it becomes apparent that a sequence of LS at every time 

step (𝑗 + 1) can be constructed as: 
 

1 ,j jBk G+ =                                                          (7) 

 
where 
 

( ) ( )

1

2 2

3 3

2 2

1 1 1 1

1

1

1
,

1m m

m m m m

q

p q

p q
B

p q

p q

− −

− − −  −

− 
 
− −
 
 − −

=  
 
 − −
 

−  

 

1 1. 1 2. 1 3. 1 1. 1

1. 1 0. 1 2. 3. 2. 1. . 1

,  ,  ,  , ,

,  ,  ,  , ,  .

T

j j j j m j

T

j j j j j m j m j m j

k k k k k

G G p k G G G G k

+ + + + − +

+ − − +

 =  

 = + + 

 

 
3. Formation of 4EGSOR Iterative Method 

 
In the preceding section, the mention of the linear system in Eq. (7) makes it evident that its 

coefficient matrix exhibits sparsity and a large scale. This section will present the structure of the 
4EGSOR iteration, which was introduced by Evans [20] to address sparse linear systems. This method 
aims to minimize the computational complexity by solving several small groups of points instead of 
handling a large system of linear equations per iteration. Hence, the coefficients matrix, 𝐵 are divided 
into small groups of four points. The illustration of the 4EGSOR iteration is depicted in Figure 1, where 
it is apparent that the last block is incomplete block with three node points are identified as an 
ungrouped case [21]. 
 

 
Fig. 1. Implementation of 4EGSOR method for solution domain 𝑚 = 16 

 
By considering SAI approximation equation of Burgers’ problem in Eq. (8), let consider any group 

of four points represented in a (4x4) linear system at any given time step (𝑗 + 1) can be formulated 
as follows: 
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. 1 1

1. 11 1 2

2. 12 2 3

3. 13 3 4

1

1
,

1

i ji

i ji i

i ji i

i ji i

kq r

kp q r

kp q r

kp q r

+

+ ++ +

+ ++ +

+ ++ +

−     
    

− −     =
    − −
    

−       

                                                             (8) 

 
where 
 

1 1. 1 .

2 1.

1

3 2.

2

4 4, 1 3.

3

1
,

.

1
,

.

1
,

.

1
.

.

i i j i j

i

i j

i

i j

i

i j i j

i

r p k k
t q

r k
t q

r k
t q

r k k
t q

− +

+

+

+

+

+ + +

+

= +


=


=


= +


 

 
Now, upon obtaining the inverse matrix of Eq. (8) the 4-point EG (4EG) method are given as: 
 

( )1 1

. 1 1

1. 1 1 1 2

2. 1 2 2 3

3. 1 3 3 4

1

1
,

1

v

i j i

i j i i

i j i i

i j i i

k q r

k p q r

k p q r

k p q r

+ −

+

+ + + +

+ + + +

+ + + +

−     
     

− −     =
     − −
     

−     

                                                            (9) 

 
By incorporating one weighted parameter, ω, into Eq. (9), the 4EGSOR iterative method can 

generally formulated as: 
 

( )

( )

( )1 1

. 1 . 1 1

1. 1 1. 1 1 1 2

2. 1 2. 1 2 2 3

3. 1 3. 1 3 3 4

1

1
1 ,

1

v v

i j i j i

i j i j i i

i j i j i i

i j i j i i

k k q r

k k p q r

k k p q r

k k p q r

 

+ −

+ +

+ + + + + +

+ + + + + +

+ + + + + +

−       
       

− −       = − +
       − −
       

−         

                                               (10) 

 
where the permissible range for the parameter 𝜔 is defined as 1 < 𝜔 < 2. For the last block 
comprising three node points at 𝑖 = 𝑚 − 4 as illustrated in Figure 1 can be stated as  

 

. 1 1

1 1 1. 1 2

2 2 2. 1 3

1

1 ,

i i j

i i i j

i i i j

q k r

p q k r

p q k r

+

+ + + +

+ + + +

 −   
    

− − =    
    −    

                                                                        (11) 

 
where 

 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 61, Issue 1 (2026) 127-137 

132 
 

1 1. 1 .

2 1.

1

3 3, 1 2.

2

1
,

.

1
,

.

1
.

.

i i j i j

i

i j

i

i j i j

i

r p k k
t q

r k
t q

r k k
t q

− +

+

+

+ + +

+

= +


=


= +


 

 
Next, through the computation of the inverse matrix of Eq. (11), the 3-point EG (3EG) method 

with parameter 𝜔 can be generally formulated as: 
 

( )

( )

( )1 1

. 1 . 1 1

1. 1 1. 1 1 1 2

2. 1 2. 1 2 2 3

1

1 1 .

v v

i j i j i

i j i j i i

i j i j i i

k k q r

k k p q r

k k p q r

 

+ −

+ +

+ + + + + +

+ + + + + +

    −   
       

= − + − −       
       −      

                                                        (12) 

 
Therefore, based on Eq. (10) and Eq. (12), Algorithm 1 provided below elucidates the 

implementation details of the 4EGSOR and 3EGSOR methods. 
 

Algorithm 1: 4EGSOR scheme 

i. Assign value 𝑘𝑗+1
(0)

← 0 and 𝜀 ← 10−10    

ii. Designate the optimum value for ω 

iii. Calculate 𝑘𝑖.𝑗+1
(𝑣+1)

: 

For 𝑖 = 1, 5, 9, … ,𝑚 − 8, calculate 𝑘𝑖.𝑗+1
(𝑣+1)

 using 

 
( )

( )

( )1 1

. 1 . 1 1

1. 1 1. 1 1 1 2

2. 1 2. 1 2 2 3

3. 1 3. 1 3 3 4

1

1
1 ,

1

v v

i j i j i

i j i j i i

i j i j i i

i j i j i i

k k q r

k k p q r

k k p q r

k k p q r

 

+ −

+ +

+ + + + + +

+ + + + + +

+ + + + + +

−       
       

− −       = − +
       − −
       

−         

 

 

For 𝑖 = 𝑚 − 4, calculate 𝑘𝑖.𝑗+1
(𝑣+1)

 using       

 

  

( )

( )

( )1 1

. 1 . 1 1

1. 1 1. 1 1 1 2

2. 1 2. 1 2 2 3

1

1 1 .

v v

i j i j i

i j i j i i

i j i j i i

k k q r

k k p q r

k k p q r

 

+ −

+ +

+ + + + + +

+ + + + + +

    −   
       

= − + − −       
       −      

 

 

iv. Conduct the test of convergence and |𝑘𝑖.𝑗+1
(𝑣+1)

− 𝑘𝑖.𝑗+1
(𝑣)

| ≤ 𝜀 = 10−10 . If yes, 

proceed to the subsequent step. Otherwise, revert to preceding step. 
v. Present approximate solution. 

 
4. Numerical Experiments 

 
To analyse the proficiency of the 4EGSOR, let’s consider three examples of NL Burgers’ problem. 

In order to conduct a comparative analysis, we evaluated the proposed iterations alongside the GS 
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and SOR, designated as reference methods. The numerical results obtained from implementing all 
proposed iterations were scrutinized based on three criteria which are maximum absolute error, 
computational time (sec), iteration number [22-24].  

 
4.1 Example [25] 

 
Consider the given problem Eq. (1), where the initial value equation (IVE) is derived from the exact 

solution [26]. 
 

( ), tan ,   0.
1 2 2

n
k n t n t

t t



 

  
= +   

+ +  
                    (13) 

 
4.2 Example [27] 

 
Consider the given problem Eq. (1), where the IVE is derived from the exact solution [28]. 

 

( ) ( )
2

, ( ) tanh ,   0.
z

k n t n zt t


 
= − −                                  (14) 

 
4.3 Example [29] 

 
Consider the given problem Eq. (1), where the IVE is derived from the exact solution [30]. 
 

( )

2 2 2 2

2 2 2 2

4

4

1
sin sin 2

4, 2 ,   0.
1 1

1 cos cos 2
4 2

t t

t t

ne ne
k n t t

ne ne

   

   

 


 

− −

− −

 
+ 

=  
 + +
 

                 (15) 

 
As can be seen in Table 1, Table 2, Table 3 and Table 4, the numerical results that have been 

tabulated showing that there is a huge significant difference between those presented iteration 
especially for the 4EGSOR compared to SOR iterative method with the reduction percentage 90.46% 
- 99.07%, 87.43% - 98.86% and 89.53% - 99.16% respectively for the iteration number for example 1, 
2 and 3. While the reading of the reduction percentage for computational time is quite huge too with 
83.72% - 98.91%, 79.45% - 98.71% and 78.08% - 99.04% respectively.  The 4EGSOR has demonstrated 
enhancements in both iteration number and computational time when compared to the SOR 
iterative method. The reduction percentage for both iteration number and computational time, 
showing that the 4EGSOR has higher percentage compared to the SOR iterative method. 

 
 
 
 
 
 
 
 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 61, Issue 1 (2026) 127-137 

134 
 

Table 1 
The comparison of results for three difference examples in 
term of iteration number 

Example m Iteration number 

GS SOR 4EGSOR 

1 1024 
2048 
4096 
8192 
16384 

304 
1076 
3818 
13395 
46100 

79 
154 
300 
584 
1138 

29 
57 
111 
217 
427 

2 1024 
2048 
4096 
8192 
16384 

175 
618 
2218 
7926 
27969 

60 
116 
225 
440 
857 

22 
43 
84 
162 
319 

3 1024 
2048 
4096 
8192 
16384 

172 
605 
2165 
7713 
27111 

48 
92 
175 
333 
632 

18 
34 
64 
120 
227 

 
Table 2 
The comparison of results for three difference examples in term 
of computational time 
Example m Computational Time 

GS SOR 4EGSOR 

1 1024 
2048 
4096 
8192 
16384 

1.29 
8.51 
61.32 
417.43 
2882.05 

0.40 
1.38 
5.47 
20.57 
80.45 

0.21 
0.59 
2.14 
8.04 
31.47 

2 1024 
2048 
4096 
8192 
16384 

0.73 
4.84 
34.74 
249.34 
1826.78 

0.31 
1.06 
4.18 
15.50 
60.76 

0.15 
0.45 
1.60 
6.03 
23.50 

3 1024 
2048 
4096 
8192 
16384 

0.73 
4.86 
35.07 
248.15 
1749.57 

0.25 
0.88 
3.28 
11.72 
44.44 

0.16 
0.37 
1.24 
4.55 
16.81 
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Table 3 
The comparison of results for three difference examples in 
term of maximum absolute error 
Example m Maximum Absolute Error 

GS SOR 4EGSOR 

1 1024 
2048 
4096 
8192 
16384 

1.85386E-07 
7.60356E-07 
3.04821E-06 
1.21582E-05 
4.83882E-05 

6.34677E-08 
4.53404E-08 
1.96375E-08 
1.21364E-07 
2.89036E-07 

7.42303E-08 
6.95476E-08 
5.68860E-08 
5.03990E-07 
3.31796E-07 

2 1024 
2048 
4096 
8192 
16384 

1.69446E-06 
2.00203E-06 
3.24059E-06 
8.19095E-06 
2.79898E-06 

1.60216E-06 
1.61364E-06 
1.68263E-06 
1.79016E-06 
1.95586E-06 

1.75745E-06 
1.75730E-06 
1.78119E-06 
1.78824E-06 
1.79461E-06 

3 1024 
2048 
4096 
8192 
16384 

3.06929E-04 
3.07213E-04 
3.08327E-04 
3.12758E-04 
3.30469E-04 

3.06845E-04 
3.06877E-04 
3.06923E-04 
3.07016E-04 
3.07139E-04 

3.06442E-04 
3.06448E-04 
3.06456E-04 
3.06475E-04 
3.06475E-04 

 
Table 4 
Percentage of decrement of iteration number and computational time of 
SOR and 4EGSOR iterative methods compared with GS iterative method 
Example Method Iteration number Computational time 

1 SOR 74.01% - 97.53% 68.99% - 97.21% 
4EGSOR 90.46% - 99.07% 83.72% - 98.91% 

2 SOR 65.71% - 96.94% 57.53% - 96.67% 
4EGSOR 87.43% - 98.86% 79.45% - 98.71% 

3 SOR 72.09% - 97.67% 65.75% - 97.46% 
4EGSOR 89.53% - 99.16% 78.08% - 99.04% 

 
5. Conclusions 

 
In this study, we present the implementation of the second-order implicit finite difference for 

discretization, coupled with a semi-approximate approach employed in solving the Burgers’ problem 
for the linearization process, resulting in the formulation of the corresponding approximation linear 
system. The numerical solutions, as outlined in Table 1, Table 2, Table 3 and Table 4, unequivocally 
manifest a substantial reduction in both the iteration number and computational time when utilizing 
the proposed iterative methods, particularly the 4EGSOR, in comparison to the conventional SOR 
iterative method. The comprehensive numerical findings ascertain the superior performance of the 
4EGSOR iterative method over GS and SOR, evidenced by its notable efficiency in terms of iteration 
number and execution time. This discernible enhancement can be attributed to the diminished 
computational complexity inherent in the 4EGSOR approach, characterized by the involvement of 
fewer nodes points in the iteration process. 
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