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 ABSTRACT 

 Blood glucose (BG) prediction has advanced to a state of the art thanks to deep learning 
models, which have been demonstrated to enhance type 1 diabetes (T1D) therapy. 
Nevertheless, most current models are limited to single-horizon prediction and have 
several practical drawbacks, including poor interpretability. In this study, we develop a 
novel approach to optimize the forecasting model in the training processes using the 
Optuna function, cross-validation, and the latest dataset. We offer a novel deep learning 
framework for multi-horizon BG prediction: the temporal fusion transformer (TFT). TFT 
employs a self-attention mechanism to extract long-term temporal dependencies and 
enables a model with an auto-tuning adjustment approach on hyperparameters and a 
cross-validation function on univariate and multivariate input models. On a clinical 
dataset with T1D subjects, namely ShanghaiT1DM (16 subjects), D1NAMO (9 subjects), 
and OhioT1DM (6 subjects) datasets, it achieved an average root mean square error 
(RMSE) of the three datasets used. The TFT model gave a lower error score than the 
baseline models of neural hierarchical interpolation for time series (N-HiTS) and long 
short-term memory (LSTM) with the values of 10.08+0.31 mg/dL and 12.34+0.62 mg/dL 
on the univariate input model and 9.18+1.21 mg/dL and 14.33+0.52	mg/dL on the 
multivariate input model for the prediction horizons of 30 and 60 minutes, respectively. 
This result explained that the TFT model was adequate for carrying out multi-horizon BG 
value-level forecasting and potentially deploying on-edge devices to improve clinical 
efforts to manage BG levels for T1D patients in real-time application. 
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1. Introduction 
 

The impact of diabetes has surpassed 500 million people and represents a significant global health 
challenge while also placing economic strain on numerous nations [1]. As of present, there is no 
known cure for diabetes, specifically in Type 1 Diabetes (T1D) patients who are unable to naturally 
produce insulin due to the immune system destruction of insulin-producing cells in the pancreas. 
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Hence, individuals with T1D require external insulin, and it is crucial to achieve consistent, enduring 
management of blood glucose (BG) levels[2].  People facing unregulated BG levels due to diabetes 
face risks of both increased (hyperglycemia) or decreased (hypoglycemia) levels. Short-term and 
long-term complications arising from these fluctuations, such as kidney disease, eye disease, and 
heart problems, might be alleviated by taking proactive steps involving forecasting methods to 
maintain steady and continuous control over their BG levels [3]. Effectively achieving consistent 
management of BG levels requires accurate control[4]. Precise forecasting of BG levels using patient 
time series data for T1D patients is a valuable asset that facilitates proactive interventions and timely 
administration of medications to enhance the management of T1D patients. 

In recent decades, researchers have widely embraced Continuous Glucose Monitoring (CGM), 
specifically in managing T1D by assessing the concentration of BG values every 5 to 15 minutes and 
derive essential data to generate precise BG forecasting. The progress in artificial intelligence, 
particularly in deep learning technology, exhibits impressive performance in establishing BG-level 
management systems for T1D patients via BG-level forecasting[5],[6],[7]. The application of BG value 
forecasting using Deep Neural Network (DNN) has been deployed. It has shown superior forecasting 
outcomes compared to traditional machine learning algorithms like support vector regression 
(SVR)[8]. Many researchers have specifically extracted temporal characteristics from input sequences 
by utilizing hidden states[9], drawing from recurrent neural networks (RNNs)[10], which encompass 
long short-term memory (LSTM)[11],[12], and gated recurrent units (GRUs) [13]. In addition to the 
progress of systems utilizing attention mechanisms, it has spurred the creation of transformer-based 
models in time series forecasting applications, exemplified by Informer [14] and Autoformer[15]. 
Moreover, research has shown that models such as neural hierarchical interpolation for time series 
(N-HiTS) forecasting exhibit superior performance, mainly when dealing with limited data[16]. 

Recently, transformer-based DNN models have emerged in time series forecasting, exemplified 
by the temporal fusion transformer (TFT), a multi-layered transformer equipped with specialized 
gating mechanisms catering to various real-time data. The engineers precisely designed the TFT to 
analyze and forecast patterns in time series data. This architecture effectively manages intricate 
temporal dependencies among data points within a time series. A key benefit of TFT is its utilization 
of the Self-Attention Mechanism, which enables the model to grasp strong representations of 
temporal patterns inherent in time series data. This technique lets TFT discern essential relationships 
and patterns among data points within specific time frames, regardless of specific temporal 
distances. Therefore,	TFT can explicitly use multi-horizon time series forecasting to predict accurately 
over varying time intervals[17]. 

Additionally, TFT gains an advantage from its capability to integrate external factors or 
supplementary variables that impact time series data. By assimilating such contextual details, the 
model can learn and utilize extra information to improve its forecasting accuracy. Additionally, TFT's 
primary strength resides in its adaptability and flexibility. Engineered to accommodate diverse time 
series data, this model's capacity to grasp intricate patterns enables more precise forecasting. 
Combining these features positions TFT as a resilient model for handling highly complex forecasting 
tasks in time series data[17]. 

In this work, by leveraging TFT with its inherent strengths, we propose a TFT model and develop 
a novel approach to optimize the forecasting model in the training processes using the Optuna 
function for auto-tuning hyperparameter values and using the latest dataset. It was applied to derive 
univariate and multivariate input models for the blood glucose time-series forecasting under varying 
conditions across three distinct T1DM datasets, employing specific approaches. To prevent 
hypoglycemic and hyperglycemic occurrences based on better accusation of forecasting value from 
the time series model, transformer-based algorithm, namely TFT as the proposed model, while the 
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multilayer perceptron (MLP)-based N-HiTS and RNN-based LSTM as the baseline models. The models 
were utilized to forecast future BG values at the 30 and 60-minute prediction horizons (PHs) from the 
recording data value of time series data. The selection of these PH settings was motivated by the 
body's insulin absorption rate, and carbohydrates aligning with clinical thresholds that aid in 
proactive interventions[18],[19],[20] and facilitating comparison with commonly used model 
outcomes[21],[22],[23]. The following sections organize the remainder of this paper. Section 2 
elucidates the framework and specific approaches of the proposed and baseline models and their 
processes. Section 3 deliberates on the experiments, results of the training processes conducted, and 
error score to evaluate the performance of the proposed and baseline models. Finally, Section 4 
presents the research conclusions and recommendations for future studies to Implement the best 
model on a high-performance edge device to boost computation speed [24], and explore wearable 
possibilities. 
 
2. Methodology 
 

This study introduces a deep learning approach for BG forecasting utilizing the Temporal Fusion 
Transformer (TFT) model for analysis with univariate and multivariate input. Historical BG values from 
CGM readings (in mg/dl), carbohydrate and insulin intakes as observed input data, with known input 
data were the timestamps, performance of the multivariate input model is slightly superior because 
it has other variables as additional features for the support accuracy of the target variable[25]. In the 
univariate input model, we only considered the observed input data consisting of CGM readings and 
known input data as the timestamps, while the univariate input models have the advantage that they 
eliminate the need for manual input[26]. The CGM was the target variable between univariate and 
multivariate input models during the training phaseput model. 

The three datasets used in this research are not in silico data generated through simulation but 
clinical data collected from real-life conditions, namely ShanghaiT1DM (16 subjects)[27], D1NAMO 
(9 subjects)[28], and OhioT1DM (6 subjects) datasets[29]. The study employs an approach to 
determining optimal hyperparameter values via auto-tuning functions. Figure 1 visually represents 
the comprehensive workflow of this research. The study adopts multiple procedural steps, 
encompassing data configuration based on the three T1D datasets, the BG time-series data trains the 
three models, and a time-series cross-validation technique optimizes the hyperparameters for 30 and 
60-minute prediction horizons (PHs) [30][31][32][33], and evaluation of the model performance.  

 

 
Fig. 1. Block diagram of the BG prediction framework 

 
In this study, we utilized three models with a consistent approach: TFT as the proposed model, 

N-HiTS, and LSTM as baseline models to compare the performance of the proposed model. N-HiTS is 
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a cutting-edge model with an MLP-based deep neural architecture that addresses challenges in time 
series forecasting by incorporating innovative hierarchical interpolation and multi-rate data sampling 
techniques[34]. This model has been recognized as one of the state-of-the-art base point forecasters 
alongside TFT[35]. The advantage of N-HiTS lies in its ability to provide accurate forecasts by 
leveraging hierarchical interpolation methods, which enable it to effectively handle complex time 
series data structures and varying sampling rates[34]. LSTM, an architecture of DNN based on 
Recurrent Neural Network (RNN), learns discrete-time steps by maintaining constant error flow in 
specific units and controlling gradient impact. It demonstrates spatial-temporal locality and 
computational complexity per time step. LSTM utilizes diverse pattern representations in the 
simulated data research, outperforming various recurrent network speeds and effectiveness, 
particularly in handling tasks with prolonged time lags[12][36].  
 
2.1 Stage 1: Data Setting 
 
       The study utilized three distinct datasets made available online for research aims to support the 
development of deep learning models. These models used only the CGM readings as input for the 
univariate input model. Additionally, we transformed carbohydrate and insulin information Into 
binary values (0 and 1) to serve as supplementary variables in the multivariate input model for 
forecasting the BG time series[25]. The data were organized and indexed according to date and time 
using the Python datetime function.  

The T1D datasets used in this study originated from three distinct sources. Dataset 1, originating 
from ShanghaiT1DM, is publicly accessible for research purposes and contains data from 12 adult 
patients diagnosed with T1D. We collected these data under real-life conditions, including CGM 
readings and information on carbohydrates and insulin, spanning 3 to 14 days. Measurements were 
taken at 15-minute intervals[27],[37]. Dataset 2, extracted from the OhioT1DM dataset released in 
2020, encompasses information from individuals diagnosed with T1D. This study utilized the most 
recent dataset, gathered by monitoring six patients at 5-minute intervals. The dataset comprises 
CGM readings, carbohydrate and insulin intake details, and documented life events consistently 
collected over eight weeks[29]. Dataset 3, sourced from D1NAMO, includes individual health 
indicators and activity levels among individuals with T1D. This dataset comprises accelerometer data, 
electrocardiogram (ECG) readings, respiration data, CGM readings, and information on 
carbohydrates and insulin. The measurements were obtained by monitoring nine patients at 5-
minute intervals over four days[28][38].  

All datasets have missing values in the CGM measurements due to several plausible reasons, 
such as signal loss and sensor calibration. Proper pre-processing to extract appropriate T1D patient 
data and characteristics is essential involving using a sensor operating range of 40–400 mg/dL to 
handle the missing values with clipping values and applying linear extrapolation [39],[40]. We split 
each dataset into 80% for training and 20% for testing. We used the final 25% from each training set 
to create a validation set. This two-step data split is common in machine learning-based BG prediction 
research[6][41][42][43]. 
 
2.2 Stage 2: DNN BG forecasting models 
 

This study proposes the architectural design of the TFT model as the primary model for 
forecasting BG values. Mean Absolute Error (MAE) is the loss function for the proposed model 
architecture during the training process. We produced the input data and the corresponding target 
values used by the model; TFT provides powerful exponential linear unit (ELU) activation to reduce 
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the impact of outliers or noise on input time series data. After feeding the data into the TFT model, 
the parameters are automatically updated through back-propagation using the Adam optimizer. We 
use 200 training epochs with a patience level of 20 to reduce overfitting and provide an early stopping 
mechanism[26]. 

Meanwhile, configuring hyperparameters is crucial to attain better forecasting performance 
before model training. Determining the optimal hyperparameter values for the proposed model 
involves adjusting several combinations of commonly used primary hyperparameter values. These 
values significantly influence the model training, serving as an initial step in model learning. 
Inappropriate hyperparameter values could hinder effective model learning. 

Moreover, the baseline models N-HiTS and LSTM were developed similarly to the primary model. 
Later, we will compare these models and conclude by ascertaining which model performs best in 
forecasting BG values based on three model performance metrics described in section 2.3 for each 
PHs of 30 and 60 minutes, respectively. We developed the forecasting models using Python 3.10.10, 
PyTorch 2.0.1, and Nvidia GeForce GTX 1650 SUPER as the GPU computational device. The GPU 
technology will be highly beneficial as models with many parameters require extensive computation 
time[44]. 
  
2.2.1 Auto-tuning function 
 

Automatic tuning functions were employed across all models to attain the optimal 
hyperparameter values. The Optuna auto-tuning function was used to automatically get the best 
hyperparameter values. This auto-tuning function is a search algorithm from the Ray tune library[45], 
designed for hyperparameter optimization. Optuna offers advantages in automating hyperparameter 
tuning, optimizing complex hyperparameter spaces, and supporting various optimization 
algorithms[46]. By leveraging Optuna in time series modeling, researchers can enhance the accuracy 
and efficiency of forecasting models[47]. This automation saves time and effort compared to manual 
tuning, allowing for a more systematic and comprehensive exploration of hyperparameter 
configurations[48]. Manual selection of model hyperparameter values can be time-consuming, 
especially when considering multiple hyperparameter combinations.	

Furthermore, it is more accurate because the auto-tuning process explores numerous 
hyperparameter combinations. The manual method involves trial and error in selecting 
hyperparameter values, usually testing only a few commonly used combinations[49],[50]. Table 1 
presents the main hyperparameter value combinations used in this study[51],[52]. 

   
  Table 1. 

           Combination of hyperparameter values 
Main hyperparameter types Combination values 
"n_head" 
"hidden_size" 
"learning_rate" 
"max_steps" 
"batch_size" 
"windows_batch_size"  
"random_seed" 
"scaler_type" 

: tune.choice([4, 8]),                               # Number of multi head attention 
: tune.choice([64, 128, 256]),                # Size of embeddings and encoders 
: tune.loguniform(1e-4, 1e-2, 1e-1),     # Initial learning rate 
: tune.choice([200, 500, 1000]),            # Max number of training iterations 
: tune.choice([32, 64, 128]),                   # Number of series in batch 
: tune.choice([128, 256, 512]),               # Number of windows in batch 
: tune.randint(1, 20),                                # Random seed  
: tune. choice( [‘robust’, ‘standard’]  # Type of scaler 
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2.2.2 Cross-Validation with Chained Windows 
 
In this study, developing deep learning models involved training the model with each dataset 

utilized and employing the best-obtained hyperparameter values for BG forecasting, incorporating 
time series cross-validation as part of the training process. The cross-validation applied in this study 
is a method where the data is partitioned into several windows, conducting chained windows cross-
validation in each window by expanding and transitioning the data for time series model training and 
validation. This ensures the model performance with new sequence data. The chained windows 
cross-validation was adopted from the NeuralForecast library and previous work[50] [51].  

Each window was the final 25% from each training set for the validation set and 20% for testing 
to evaluate each model's performance. The outcome of the chained windows cross-validation is the 
forecasting value within each window. Using evaluation metrics, we use this forecasting value to 
assess the overall model performance. The most common metrics error scores in BG prediction are 
the RMSE and MAE[5] and the MAPE, a percentage metric that offers insights into relative prediction 
errors[26].  
 
2.3 Stage 3: Performance Evaluation 
 

Stage 3 delineates the approach for assessing the model performance based on BG forecasting 
values obtained from the cross-validation process that conducted training while simultaneously 
displaying forecasting results to compare with actual BG values using evaluation metrics. We 
assessed the model performance based on the three datasets. We evaluated the deep learning model 
performance using the test data for each dataset source, employing MAE, MAPE, and RMSE to 
calculate based on equations (1), (2), and (3), respectively. 
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	𝑛  
 
(3) 

In this study, the variables are defined as follows: 𝑛 represents the amount of data in the variables 
𝑎!  (actual value) and  𝑏!  (predicted value). Here, 𝑎!  denotes the actual data value at the 𝑖-th 
observation and 𝑏!  indicates the predicted data value at the 𝑖 -th observation. The index 𝑖 is the 
value index of each observation. 

 
3. Results and discussion  

 
This section bases its content on the BG time series forecasting conducted with the proposed 

TFT model trained and tested with univariate input of the CGM readings only and with multivariate 
inputs of the CGM readings, carbohydrate, and insulin takes from the ShanghaiT1D, D1NAMO, and 
OhioT1DM datasets. These models forecasted BG values based on 30 and 60-minute PHs. The 
forecasting results from the proposed TFT model were also compared with baseline models (N-HiTS 
and LSTM). However, due to space limitations, the comparative graphs presented in this paper are 
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only from the Shanghai dataset with a T1D individual in the ShanghaiT1DM dataset. Figure 2 and 
Figure 3, respectively show the comparison graphs of the BG time-series data between the actual 
(measurement) data from the test data and its prediction data from the univariate input and 
multivariate input models. There are three zones of blood glucose levels: hypoglycemia, euglycemia, 
and hyperglycemia. Hypoglycemia occurs when blood glucose levels drop below 70 mg/dL. 
Euglycemia refers to normal blood glucose levels ranging from 70 to 100 mg/dL when fasting and 
remaining below 140 mg/dL after eating. Meanwhile, hyperglycemia occurs when blood glucose 
levels are above normal, with fasting levels exceeding 126 mg/dL and postprandial levels above 180 
mg/dL[53][54]. 

Due to the limited space, the comparison graphs in this paper are only from the ShanghaiT1DM 
dataset with record numbers of 11A with univariate and multivariate input models, respectively. 
Upon observing the graphs and comparing the actual and forecasted data, the proposed TFT model 
demonstrated relative superiority to N-HiTS and LSTM. Furthermore, within the proposed TFT model, 
at the 30-minute PHs, the graphs indicate that actual BG values and forecasted values are closer than 
at the 60-minute PHs. 

 

 
(a) 

 
(b) 

Fig. 2. A T1D individual in the ShanghaiT1DM dataset on univariate input models  
(a) PH=30 minutes) (b) PH=60 minutes 
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(a) 

 
(b) 

Fig. 3. A T1D individual in the ShanghaiT1DM dataset on multivariate input models  
(a) PH=30 minutes) (b) PH=60 minutes 

 
The performance assessment outcomes of the three models, the TFT, N-HiTS, and LSTM, both 

univariate and multivariate input models, are detailed in Table 2 using performance metrics of MAE, 
MAPE, and RMSE. These metrics illustrate the outcomes derived from the average error scores across 
the three testing datasets, with the bold values indicating the best score among the three models in 
each performance metric.  

The results further suggest that the proposed TFT model significantly outperformed the LSTM 
baseline model and the N-HiTS baseline model, with a relatively higher difference between the 
proposed TFT model and each baseline model. Notably, the baseline model error scores exhibit 
considerably larger average error scores compared to the proposed model. 
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  Table 2 
  Average Error Scores for time-series univariate and multivariate input models from the three T1D datasets  

Univariate input model 
  
Models 

PH = 30 min PH = 60 min 
MAE (mg/dl) MAPE (%) RMSE (mg/dl) MAE (mg/dl) MAPE (%) RMSE (mg/dl) 

TFT 8.20 +1.23 11.47 +1.56 10.08 +0.31 12.49 +1.65 22.53 +2.64 12.34+0.62 
N-HiTS 9.28 +3.53 12.10 +1.68 11.18 +1.21 13.49 +2.68 23.89 +3.56 15.13 +1.86 
LSTM 13.54 +1.41 11.92 +1.5 18.42 +1.16 16.59 +3.68 15.42 +1.98 21.12 +1.14 

Multivariate input model 
  
Models 

PH = 30 min PH = 60 min 
MAE (mg/dl) MAPE (%) RMSE (mg/dl) MAE (mg/dl) MAPE (%) RMSE (mg/dl) 

TFT 6.50 +2.64 8.04 +3.63 9.18 +1.21 10.87 +0.53 13.31 +2.5 14.33 +0.52 
N-HiTS 10.84 +2.35 10.17 +1.34 11.14 +1.12 12.21 +1.24 15.13 +1.16 16.26 +2.36 
LSTM 12.24 +1.64 14.38 +2.51 15.05 +1.32 14.53 +1.32 18.40 +2.8 18.23 +1.14 

 
In comparing forecasting results between univariate and multivariate input models, observations 

from Table 2 indicate that the error scores of the multivariate input model are better than those of 
the univariate input model. This performance improvement is attributed to including carbohydrate 
and insulin information as additional features in the multivariate input model, providing valuable 
insights throughout the training process. Additionally, when considering the forecasting outcomes 
between the 30-minute and 60-minute PHs values, the errors associated with the 30-minute PHs are 
comparatively smaller than those associated with the 60-minute PHs. 

The more significant error score in the 60-minute PHs might stem from the dynamic nature of 
the BG time-series data, making the BG values more intricate to forecast over longer PHs. 
Additionally, there exists a trade-off between computational time and the performance of the 
forecasting system when determining the length of PHs, as lower PHs demand less computational 
time. 

 
4. Conclusion 
 

The TFT model, a novel high-performance forecasting model, is introduced in this study as the 
proposed model. Two baseline models, namely N-HiTS and LSTM, were also employed. Specifically, 
we applied the same auto-tuning approach for hyperparameters and cross-validation using chained 
windows to the proposed TFT and baseline models during the model training process. Employing 
three clinical dataset sources with T1D subjects, namely the ShanghaiT1DM (16 subjects), D1NAMO 
(9 subjects), and OhioT1DM (6 subjects) datasets, the TFT model, utilizing the provided approach, 
demonstrated a better average root mean square error (RMSE) from the three dataset sources 
compared to the baseline models. The TFT model outperformed the baseline models with values of 
10.08 +0.31 mg/dL and 12.34 +0.62 mg/dL, compared to the baseline N-HiTS model values of 12.18 
+1.21	mg/dL and 15.13 +1.86	mg/dL and LSTM values of 18.42 +1.16	mg/dL and 21.12 +1.14	mg/dL 
for the univariate input model. TFT increasing performance 9.18 +1.21 mg/dL and 14.33 +0.52	mg/dL, 
compared to the baseline N-HiTS model values of 11.14 +1.12	mg/dL and 16.26 +2.36	mg/dL and 
LSTM values of 15.05 +1.32	 mg/dL and 18.23 +1.14	 mg/dL for the multivariate input model 
forecasting periods of PHs 30 and 60 minutes, respectively. The proposed model showcased better 
performance than the baseline models, especially on the multivariate input model, validating the 
effectiveness of the approach employed to derive optimal hyperparameter values and the cross-
validation function as a training method for the model. The TFT model was effective for multi-horizon 
blood glucose value forecasting and could be deployed on edge devices to improve real-time clinical 
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management of BG levels in T1D patients. For future research, the best model will be implemented 
on a high-performance edge device, such as a mini-computer with advanced GPU capabilities, to 
enhance computation speed and explore wearable device possibilities. 
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