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ARTICLE INFO ABSTRACT 

 
Convolutional Neural Networks (CNNs) are foundational in numerous machine learning 
applications, particularly in image processing, where they excel in identifying patterns 
within visual data. At the core of CNNs lies the 2D convolution operation, which is 
essential for extracting spatial features from images. However, when applied to 
sensitive data, such as in medical imaging or surveillance, preserving the privacy of both 
the input data and the convolutional filters is crucial. This paper introduces a novel 
approach to secure the 2D convolution operation in CNNs, leveraging random 
projection and machine learning techniques. By encrypting the input images and 
convolutional filters using random projection, the method ensures that the convolution 
feature maps are computed securely without exposing the underlying data. The 
proposed technique maintains the accuracy and efficiency of CNN while offering a 
privacy-preserving solution that is more computationally efficient than traditional 
methods such as Homomorphic Encryption (HE). Experimental results using synthetic 
Gaussian data demonstrate the feasibility and effectiveness of this approach in securely 
computing convolutions, making it a promising solution for protecting sensitive 
information in CNN-based applications. Additionally, the paper compares the proposed 
method with homomorphic encryption, showing that while both methods ensure data 
confidentiality, the random projection approach offers a more efficient solution with 
lower computational overhead. 

 

Keywords: 
Privacy Preservation; Random 
Projection; Private Computing, Support 
Vector Machine for Regression 

 
1. Introduction 

 
Privacy preservation in machine learning has become a critical concern due to the increasing 

reliance on data-driven algorithms and the sensitive nature of the data used [1,2]. Various techniques 
have been developed to ensure that privacy is maintained throughout the machine learning process, 
addressing challenges from data collection to model deployment and inference. There are multiple 
techniques used solely for privacy preserving computing, these techniques are now integrated with 
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machine learning to reach maximum benefits of both worlds. HE allows computations to be done on 
encrypted data without the need for decryption, while it has different implementations, when 
executed fully it becomes the most powerful algorithm that ensures maximum data confidentiality, 
however, it is considered to be computationally intensive [3]. Secure Multi-Party Computation 
(SMPC) enables multiple parties to compute a function collaboratively over their individual inputs 
while keeping those inputs private [3, 4]. Differential Privacy (DP) is one of the most widely adopted 
techniques in privacy preserving machine learning. It provides a mathematical guarantee that the 
removal or addition of a single data point will not significantly affect the outcome of the analysis, 
thus protecting individual data points. This approach has been implemented in various machine 
learning algorithms, including deep learning models, to ensure that the information about individuals 
cannot be reverse engineered from the model outputs [4]. Federated learning is another innovative 
approach that enhances privacy by keeping data localized on user devices. Instead of sending raw 
data to a central server, federated learning trains machine learning models locally on devices and 
only aggregates the model updates. This method significantly reduces the risk of data breaches and 
preserves the privacy of the data owners. Federated learning has been particularly useful in 
applications involving sensitive data, such as healthcare and finance [3]. 

Despite these advancements, several challenges remain in the implementation of privacy-
preserving techniques in machine learning. These include balancing privacy and utility, managing the 
increased computational overhead, and addressing new types of privacy attacks such as model 
inversion and membership inference attacks [5]. Ongoing research is focused on developing more 
efficient algorithms, improving the scalability of privacy-preserving techniques, and ensuring robust 
privacy guarantees in dynamic and adversarial environments. 

Random projection is an effective privacy-preserving technique in machine learning that involves 
reducing or expanding the dimensionality of data while maintaining its essential structure and 
properties. This method is usually used to project high-dimensional data onto a lower-dimensional 
subspace using a random matrix, effectively obscuring the original data's features. The random 
matrix is often generated using a distribution, such as Gaussian or sparse random matrices, which 
ensures that the distance between data points is approximately preserved. This approach not only 
helps in reducing computational complexity and storage requirements but also enhances privacy by 
preventing the reconstruction of the original data from the projected data. Random projection is 
particularly useful in scenarios where data anonymization and privacy are critical, such as in 
healthcare and financial applications, where sensitive information must be protected while still 
enabling meaningful data analysis [3,4,6]. 

This research aims to exploit the importance of secure computation on encrypted CNN, by 
focusing on the 2D convolution estimation using random projection and Support Vector Machine 
Regression, the proposed work encrypts the image and the filter values using random projection, and 
the SVM model calculates the real convolution feature map, without decrypting neither the image 
nor the filter values.  

Paper organization is as follows: section 2 showcases review of literature, section 3 explains the 
presented model methodology, section 4 presents the experimental results, section 5 is the 
discussion of the results and finally section 6 summarizes the work done and where the future of the 
study is headed. 
 
2. Literature Review  

 
Recent studies, such as in [7] have highlighted the effectiveness of random projection in 

behavioural authentication systems. They demonstrated that by applying random projection, the 
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system can maintain a high level of privacy while still achieving low false rejection and false 
acceptance rates. Additionally, the use of sparse random projection has been shown to significantly 
reduce computational loads, making it suitable for low performance computing devices. Further 
research by Miyaji et al. explored the broader applications of privacy-preserving techniques, 
including random projection, in various machine learning contexts. They underscored the method's 
robustness against privacy attacks, such as membership inference attacks, thereby reinforcing its 
importance in safeguarding sensitive data in practical applications [8]. These findings underline the 
practical utility of random projection in enhancing privacy without compromising the efficiency and 
accuracy of machine learning models. 

In the study in [9], a privacy-preserving federated learning algorithm using CNNs and 
homomorphic encryption was proposed. This technique was particularly applied to medical data, 
demonstrating that it can effectively protect deep learning models from adversaries while 
maintaining the confidentiality of sensitive medical information. The primary strength of this method 
lies in its robust security model, which prevents data leakage during model training and inference. 
However, the major drawback is the significant computational overhead, which can result in slower 
processing times and increased resource requirements. Another notable work,[10], addresses the 
limitations of earlier models by implementing the ResNet-20 model with the RNS-CKKS HE scheme. 
This approach successfully approximates non-arithmetic functions like ReLU and Softmax, achieving 
high accuracy close to that of unencrypted models. The study demonstrates the feasibility of applying 
Fully Homomorphic Encryption (FHE) to advanced deep learning models, achieving 92.43% accuracy 
on the CIFAR-10 dataset. The strengths of this approach include high accuracy and strong security 
guarantees. However, the trade-off comes in the form of extensive computational time, with 
inference taking approximately three hours on high-performance computing infrastructure. The 
paper in used Homomorphic Encryption with Federated Learning [11] it explores this combined 
approach to train a CNN model, showcasing its application in a real-world medical scenario COVID-
19. The study highlights that while Federated Learning preserves data privacy by not sharing raw 
data, the integration with Homomorphic Encryption ensures that even the intermediate 
computations remain secure. The combined approach provides robust security and maintains high 
accuracy, however, it also inherits the computational challenges associated with HE, such as 
increased processing time and resource consumption.  

The paper in [12] presents a robust solution for privacy-preserving CNN feature extraction and 
retrieval in medical imaging, balancing the trade-offs between accuracy, efficiency, and privacy. 
proposes a novel scheme for feature extraction and image retrieval in the medical domain using 
CNNs. This approach leverages secret sharing techniques to split the image data between two non-
colluding cloud servers, thereby protecting the privacy of the images. The primary contribution 
includes the development of three secure two-party protocols: secure mixed multiplication, secure 
compare, and secure mixed addition protocols. These protocols are deployed between the two cloud 
servers to perform CNN operations without compromising data privacy. The results of the proposed 
scheme demonstrate that the accuracy of image classification and retrieval in the encrypted domain 
is comparable to that of the original CNN operating in plaintext. This indicates the feasibility of the 
approach in maintaining high accuracy while ensuring privacy. Additionally, when compared with 
existing schemes such as Securing SIFT, MiniONN, and PPIS, the proposed scheme showed superior 
performance in terms of classification accuracy. It also demonstrated efficient image retrieval, 
successfully identifying and retrieving relevant images from the dataset. While the scheme shows 
promise, addressing communication overhead and ensuring security beyond the semi-honest model 
could further enhance its applicability.   
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The work in [13] focuses on improving the efficiency of CNN inference using FHE. The authors 
propose optimization techniques to make FHE-based CNN inference more practical for real-world 
applications. FHE is used to ensure that all CNN computations are performed on encrypted data, 
ensuring that data privacy is maintained throughout the inference process. The CNN architecture is 
optimized specifically to reduce the computational overhead when used in conjunction with FHE. The 
optimizations focus on reducing the size of encrypted data and the complexity of operations 
performed on the encrypted data. The paper presents significant improvements in the efficiency of 
privacy-preserving CNN inference, showing that the proposed optimizations can reduce the inference 
time and computational load. This makes FHE-based CNNs more feasible for practical applications. 
Authors in [14] focused on optimizing the use of HE for secure and efficient inference in Deep Neural 
Networks (DNNs). The authors aimed to balance the need for privacy with the demand for efficient 
and accurate classification, making HE more practical for real-world use in DNNs. HE is utilized to 
perform all DNN operations on encrypted data, ensuring that the data remains confidential 
throughout the inference process. This approach is critical for applications where data privacy is non-
negotiable, such as in healthcare and finance. The DNN is optimized to work efficiently with HE by 
reducing the computational overhead associated with encrypted operations. The focus is on adapting 
the DNN architecture and processing steps to minimize the impact of HE on performance. The paper 
demonstrates that with the right optimizations, HE can be integrated into DNNs without severely 
compromising performance. The results show that it is possible to achieve secure and efficient 
inference, which is crucial for privacy-sensitive applications.  

In [15] the paper proposes a new method for classifying encrypted network traffic by combining 
BERT (Bidirectional Encoder Representations from Transformers) and CNN. This hybrid approach, 
called BERT-Fused CNN (BFCN), leverages the strengths of both models to improve the accuracy of 
encrypted traffic classification, which is vital for network security. The method is designed to work 
directly on encrypted data, ensuring that the classification process does not compromise the privacy 
of the network traffic. BERT is used to understand the context within the encrypted traffic data, while 
CNN is employed to extract features from these contextual embeddings, making the classification 
process more accurate and efficient. The integration of BERT helps in capturing complex patterns in 
encrypted traffic that traditional methods might miss. The BFCN model shows significant 
improvements in the accuracy of encrypted traffic classification compared to traditional methods. 

The work in [16] addresses one of the primary technical obstacles: the nonlinearity of CNN 
activation functions, such as ReLU, which makes them incompatible with traditional homomorphic 
encryption methods. To address these challenges, researchers have proposed various privacy-
preserving techniques for CNN classification. One such solution is the Distributed Two Trapdoors 
Public-Key Cryptosystem (DT-PKC), which supports encrypted CNN operations without exposing 
sensitive data. This method provides a security protocol toolkit that enables secure multiplication, 
activation function computation, and average pooling. Furthermore, to approximate the ReLU 
function and enhance accuracy, a novel continuous and derivative-based Tanhplus function has been 
introduced. This function, combined with a homogenization algorithm, allows for precise 
computation of activation functions while operating under ciphertext. In addition to ensuring privacy, 
the DT-PKC-based approach supports lightweight users and multiple key management, making it 
suitable for real-world applications. Security analyses and performance evaluations have 
demonstrated that this scheme not only maintains privacy but also ensures high accuracy and 
efficiency in encrypted CNN classification. 
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3. Methodology  
 
In the study presented in [17] the proposed model outlined a secure computation approach using 

SVMs. The system was expandable and showed promise in comparison to other private computing 
techniques used on a large scale, in terms of complexity, efficiency and expansion rate. The model 
proposed here is a derivative of that study, where it explores the potential of having secure 2D 
convolution computations, which is the major computing step in any CNN. This is accomplished by 
encrypting both the filter and the image using the random projection approach. 

 

 
Fig. 1. Proposed Model: SVM1 calculates the convolution of a subregion and svm2 calculates the full 
convolution of the image 

 
Fig. 1 demonstrates the main architecture of the proposed model; The image is divided into a 

number of non-overlapped subregions; each is encrypted using a different random projection matrix 
Φ𝑖𝑚𝑔. Each subregion and filter are input to SVM1 simultaneously, and the SVM1 is trained to 

produce the subregion-filter convolution 𝐶𝑜𝑛𝑣(𝑠𝑢𝑏𝑖𝑚𝑔𝑖,𝑗 
). All the subregion results from SVM1 are 

then concatenated and inserted to SVM2 which is trained to calculate the full image’s convolution in 
plaintext. Algorithm 1 explains the process in pseudocode. Table 1 contains the variables use in the 
algorithm.  

 
Table 1  
List of Variables 

Variable Meaning 

𝑖𝑚𝑔 Input image of size 𝑚𝑥𝑚 
𝑓 Filter with size 𝑝𝑥𝑝 
𝜙𝑖𝑚𝑔 Encryption random projection matrix for the image. 

𝜙𝑓 Encryption matrix for the filte 

𝑛 Size of each image’s subregion 
𝑆𝑉𝑀1 Pretrained SVM used to calculate each subregion convolution 

𝑆𝑉𝑀2 
Pretrained SVM uses the concatenated outputs of  𝑆𝑉𝑀1 to calculate the full 
image’s convolution and produces a feature map 

𝑠𝑢𝑏𝑖𝑚𝑔𝑖,𝑗 
 Subregion of an encrypted image 

𝑒𝑛𝑐𝑓 Encrypted filter 

𝑒𝑛𝑐𝑖𝑚𝑔 A fully encrypted image 
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Algorithm 1: Pseudocode of the Proposed Model 

1 Encrypt Image: 𝑒𝑛𝑐𝑖𝑚𝑔 =  𝑖𝑚𝑔 ∗  𝜙𝑖𝑚𝑔  

2 Encrypt Filter: 𝑒𝑛𝑐𝑓 =  𝑓 ∗  𝜙𝑓 

3 Calculate number of subregions per dimension: 𝑠𝑢𝑏𝑟𝑒𝑔𝑐𝑜𝑢𝑛𝑡
=

𝑖𝑚𝑔𝑠𝑖𝑧𝑒

𝑛
 

4 
5 
6 
7 
8 
9 

Divide image into 𝑠𝑢𝑏𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛𝑥𝑛 ∶  
for 𝑘 from 0 to 𝑠𝑢𝑏𝑟𝑒𝑔𝑐𝑜𝑢𝑛𝑡

 step 1: 

  for 𝑖 from 0 to 𝑚 –  𝑛 step 𝑛: 
    for 𝑗 from 0 to 𝑚 –  𝑛 step 𝑛:  
      𝑠𝑢𝑏𝑖𝑚𝑔𝑘,𝑖,𝑗 

= 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑠𝑢𝑏𝑟𝑒𝑔𝑖𝑜𝑛(𝑒𝑛𝑐𝑖𝑚𝑔,𝑖,𝑗,𝑛) 

       𝑆𝑉𝑀1𝑖𝑛𝑝𝑢𝑡𝑘
=  𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝑠𝑢𝑏𝑖𝑚𝑔𝑘,𝑖,𝑗

, 𝑒𝑛𝑐𝑓) 

10 
11 
12 
13 

Calculate subregion convolution: 
for 𝑖 from 0 to 𝑘 step 1: 

  𝑠𝑢𝑏𝑐𝑜𝑛𝑣𝑖
 =  𝑆𝑉𝑀1 (𝑆𝑉𝑀1𝑖𝑛𝑝𝑢𝑡𝑖

) 

  𝑆𝑉𝑀2𝑖𝑛𝑝𝑢𝑡
=  𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝑠𝑢𝑏𝑐𝑜𝑛𝑣𝑖

, 𝑆𝑉𝑀2𝑖𝑛𝑝𝑢𝑡
) 

14 
15 

Calculate full image convolution:  

𝑓𝑢𝑙𝑙𝑐𝑜𝑛𝑣 =  𝑆𝑉𝑀2 (𝑆𝑉𝑀2𝑖𝑛𝑝𝑢𝑡
) 

 
The size of the convolution output assuming the size of the image 𝑚 𝑥 𝑚 and the size of the filter 

𝑝 𝑥 𝑝 is calculated as follows: 
 

𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 (𝐶𝑜𝑛𝑣𝑆𝑖𝑧𝑒) =
𝑚 − 𝑓

1
+ 1           (1) 

 
The stride in this case equals 1. To explain how the presented model works this is an example 

demonstrated with numbers. To calculate the convolution of a given 15 𝑥 15 image, and a 3 𝑥 3 filter, 

after the convolution the result size should be =  
(15 − 3)

1⁄ + 1 =  12 + 1 = 13. The convolution 

produces a 13 𝑥 13 feature map which when flattened the output vector is going to be 169 𝑥 1.  
When using the proposed model, the target is to have the SVM-cascade acting as a convolution 

layer. The proposed approach uses two different SVMs for regression 𝑆𝑉𝑀1 & 𝑆𝑉𝑀2, to calculate 
both convolutions of the image’s subregion and the image full image’s one, the image and the filter 
both get encrypted using random projection as a first step, then the image is divided into subregions, 
each region size is a 5 𝑥 5 sub-image, therefore, there are 9 subregions in this case. The stride is 
assumed to be 1 in this model and any other stride value would require retraining the SVM model. 

 

 
Fig. 2. SVM1 Input and Output 
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Each image is encrypted by multiplying it by a random matrix Φ𝑖𝑚𝑔 the filter also gets encrypted 

using another random projection key Φ𝑓, the image is divided into subregions each of which is 

flattened. The filter is treated the same way as well then both flattened subregion and filter get 
concatenated together. The concatenated vector represents SVM1 input and used to produce the 
convolution between a subregion and the filter. The output size is a 9 𝑥 1 vector for each inserted 
subregion. If there exist 9 subregions the output size of SVM1 is 81 𝑥1 Fig. 2 explains this process.  

  

 
Fig. 3. SVM2 Input and Output 

 
Fig. 3 showcases that the second SVM purpose is to read the flattened output vector from  𝑆𝑉𝑀1 

then produces the full true convolution size which is 169 𝑥 1.  
 

4. Security Analysis of Proposed approach 
 
Our metric of security is how much data required by the attacker to break the system. The 

previous paper [17] showed experimentally that increasing the number of random matrices K, has 
the major effect of increasing the complexity of breaking the system. The following section will 
summarize the mathematical verification of this finding. 

This section delves into the mathematical foundations of Cipher only attack where the attacker 
has only knowledge of the encrypted vector and attempts to break the system. We aim to identify 
weaknesses and highlight the parameters crucial for enhancing security. This analysis not only 
underscores the complexity of breaking the system but also provides insights into configuring 
defenses to balance efficiency and privacy [18,19]. 

 
4.1 Ciphertext Only Attack 
4.1.1 System Architecture 

 
The system operates by projecting sensitive data vectors into a higher-dimensional space using 

random matrices. These projections enable secure computations while masking the original data. 
The key components include the following:  

 
Table 2 
Table of Parameters for the Security Analysis 
Variable Definition 

𝑉 Original Vector 
𝐾 Number of Matrices 
𝐿 Original Dimension of Vector 
𝐷 Projected Dimension 
𝑅 Encrypted Vector 𝑉 
𝑛 Observations Required to Break the System 
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1. Input Data: Original vectors 𝑉(𝑖) ∈ 𝑅𝐷 containing sensitive information. 

2. Random Projection Matrices:  

𝐾 random matrices 𝑃(𝑘) ∈ 𝑅𝐿×𝐷. Each projection matrix is a randomly generated 

Gaussian and independent. 

3. Random Projection:  

• Each vector 𝑉(𝑖) is projected as 𝑅(𝑖) = 𝑃(𝑘) ⋅ 𝑉(𝑖) , where 𝑅(𝑖) ∈ 𝑅𝐿. 

• The matrix 𝑃(𝑘) is selected randomly from 𝐾 matrices for each vector. 

4. Cloud Processing:  

• The cloud receives pairs of projected vectors (𝑅(𝑖), 𝑅(𝑗)). 

• Using an SVM-trained model, the system computes the dot product 𝑉(𝑖) ⋅ 𝑉(𝑗) 

without revealing 𝑉(𝑖) 𝑜𝑟 𝑉(𝑗). 

 
The original vectors and projection matrices remain hidden. Only the projected vectors 𝑅(𝑖) and 

𝑅(𝑗) are exposed to the cloud, preventing direct access to the sensitive data. 
 

4.1.2 Attacker Capabilities 
 

An attacker has the following capabilities: 
 

• Observations: Full access to projected vectors 𝑅(𝑖). 

• Limitations:  

o No access to original vectors 𝑉(𝑖). 

o No knowledge of which matrix 𝑃(𝑘) was used for each 𝑅(𝑖). 

o No access to SVM model outputs (dot products). 

Attacker Goal: Recover the projection matrices 𝑃(𝑘), enabling the attacker to reconstruct the 
original vectors 𝑉(𝑖). 

 
4.1.3 Attack Complexity 
 

The attacker’s challenge is to solve the following system: 
 
𝑅(𝑖) = 𝑃(𝑘) ⋅ 𝑉(𝑖),  ∀𝑖 ∈ {1, … , 𝑛}           (2) 

 

4.1.4 Mathematical Analysis 

4.1.4.1 Combined Projection Matrix Representation 
 
To simplify the attack model, all 𝐾 projection matrices are concatenated into a single matrix: 

 

𝑃′ = [

𝑃(1) 
𝑃(2)

⋮
𝑃(𝐾)

] ∈ 𝑅 𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 𝑖𝑠 𝐾 ⋅ 𝐿 × 𝐷           (3) 

 
4.1.4.2 System Equations 

 
Each observation corresponds to: 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 65, Issue 1 (2026) 209-225 

217 
 

𝑅(𝑖) = 𝑃𝑠𝑙𝑖𝑐𝑒 ⋅ 𝑉(𝑖)              (4) 
 
where 𝑃𝑠𝑙𝑖𝑐𝑒 represents a subset of rows of 𝑃′, determined by the matrix 𝑃(𝑘) used. 

The total number of equations is 𝑛 ⋅ 𝐿, while the number of unknowns is: 
 

𝐾 ⋅ 𝐿 ⋅ 𝐷 + 𝑛 ⋅ 𝐷              (5) 
 

4.1.4.3 Minimum Observations 
 
For the system to be solvable: 

 
𝑛 ⋅ 𝐿 ≥ 𝐾 ⋅ 𝐿 ⋅ 𝐷 + 𝑛 ⋅ 𝐷             (6) 

 
Rearranging for 𝑛: 

 

𝑛 ≥
𝐾⋅𝐿⋅𝐷

𝐿−𝐷
               (7) 

 
4.1.5 Complexity Analysis with Different Parameters 
 

Table 3  
Different samples of observations of the cipher only attack 

Case 𝐾 Metricies 
Original Dimension 

𝐷 

Projected 

Dimension 𝐿 
𝐿 − 𝐷 Min Observations 

(𝐾. 𝐿. 𝐷)
(𝐿 − 𝐷)⁄  

1 5 32 36 4 1,440 

2 10 32 36 4 2,880 

3 10 64 72 8 5,760 

4 10 32 48 16 960 

5 15 128 144 16 17,280 

6 8 256 288 32 18,432 

 
It is clear that the security of the system can be enhanced by carefully selecting the number of 

projection matrices (𝐾) and the difference between the plaintext and encrypted vector dimensions 
(𝐿 −  𝐷). As 𝐿 − 𝐷 is decreased, the system becomes more difficult to break. If 𝐿 − 𝐷 becomes 
negative the system enters a compressed sensing scenario, however, the decryption may be very 
difficult and requires the sparsity of the input vector. As shown in Table 3 increasing the number of 
projection matrices linearly increases the minimum number of observations required, improving 
security. A larger gap (𝐿 −  𝐷) exponentially improves security by increasing randomness. 
Configurations with higher 𝐾 and 𝐿 − 𝐷 values offer better security but incur greater computational 
and storage costs. 

 
5. Experiments and Results 

 
The training in all experiments and the data is generated using synthetic randomized Gaussian 

data, these data represent the image, the filter, the encryption keys as well as testing data. All 
experiments were conducted on a twelve core AMD Ryzen 9 5900X, and a 32 GB RAM.  
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5.1 Matrix Generation Process and Assumptions: 
5.1.1 Matrix Generation Process: 

 

▪ Encryption Matrices: The encryption and random projection matrices are assumed to be 
generated using cryptographically secure pseudorandom number generators (CSPRNGs). This 
ensures that the matrices are statistically independent and uniformly distributed, providing 
the randomness required for security. 

▪ Randomness Assurance: Each matrix is generated for a specific session or query to prevent 
reuse, minimizing the risk of replay attacks. 

▪ Dimensionality Constraints: The dimensions of the matrices (𝐿 𝑎𝑛𝑑 𝐷) are chosen such that  
𝐿 > 𝐷 for enhanced obfuscation while ensuring efficient computation. 

 
5.1.2 Security Assumptions: 
 

▪ Independence: It is assumed that projection matrices are independent of each other and not 
shared across operations. 

▪ Secrecy: Projection matrices are known only to the data owner or the trusted system 
components and not exposed to adversaries or untrusted cloud servers. 

▪ Non-invertibility: The projection matrices are designed to obscure the original data 
sufficiently, making reverse-engineering infeasible under normal circumstances. 

 
5.2 Experiment 1: Encrypted Image and Filter Convolution Prediction 
5.2.1 Training the Support Vector Machine Regression Models: 

 
This experiment required training two Support Vector Machines for Regression; each one is 

trained using synthetic randomly generated Gaussian images’ features. Also, encryption keys are 
randomly generated as set to choose randomly from at the time of training. The first SVM1 is trained 
using 4000 examples. Each example resembles a (5𝑥5) image, as for the filter size is 3𝑥3, the testing 
was done on 2000 examples. The second SVM2 uses 10000 examples for training. The image size is a 
(25𝑥25), and the filter size is same as it is in SVM1, the testing length was 2000 examples as well in 
SVM2.  

 
5.2.2 Convolution Prediction 

 
In this section, the focus is on predicting convolutions of encrypted data using SVMs. The 

objective is to perform convolution operations on encrypted inputs, maintaining privacy while 
ensuring accurate computations. 
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Fig. 4. Absolute Error for 2000 Test Examples for SVM1 & SVM2 

 
▪ SVM1 Prediction and Results: 

 
The first Support Vector Machine SVM1 is tasked with calculating the convolution of a small, 

encrypted image (5𝑥5) using an encrypted (3𝑥3) filter. Both the image and filter are encrypted with 
randomly projected keys to ensure privacy. This initial convolution operation forms the foundation 
for predicting larger convolutions, as it handles the basic convolution operation within a secure 
framework. 

SVM1 successfully estimated the encrypted convolution for the 5𝑥5 image with a 3𝑥3 filter, 
yielding highly accurate results. Across 2,000 test cases, the average mean absolute error per 
dimension was exceptionally low, calculated at 8.4285e-05. This demonstrates that SVM1 can 
effectively handle encrypted convolutions with minimal error, ensuring that the predicted 
convolution remains close to the true convolution values, even when working with encrypted data. 

 
▪ SVM2 Prediction and Results: 

 
Building on the success of SVM1, the second Support Vector Machine (SVM2) is designed to 

handle the full convolution of a larger, encrypted image (25x25 pixels). The image is divided into 
subregions, and each subregion is processed using SVM1. The outputs from SVM1 are then 
aggregated by SVM2 to produce a final convolution result that matches the size and structure of a 
traditional, fully calculated convolution. This hierarchical approach allows SVM2 to scale the secure 
convolution process to larger images while still preserving the accuracy of the computations. 

SVM2 was evaluated using two distinct test scenarios. In the first scenario, where the input data 
consisted solely of 2000 positive values, the mean absolute error was remarkably low at 1.1081𝑒 −
06, indicating high accuracy in the predicted convolutions. In the second scenario, which included a 
broader range of both positive and negative input values with the same assigned testing length, the 
mean absolute error slightly increased to 1.9070𝑒 − 05. Despite this increase, the error remained 
within acceptable limits, demonstrating that SVM2 effectively generalizes to a wider range of input 
data while maintaining the integrity of the encrypted convolution process. Fig. 4 presents the 
absolute error histogram for test cases of SVM1 and SVM2. 
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5.3 Experiment 2: Convolution Calculation Using Homomorphic Encryption 
 
This experiment was conducted for comparison purposes. In this experiment, homomorphic 

encryption is utilized to compute the convolution of encrypted data. The goal was to evaluate the 
convolution of a 5x5 encrypted image using an encrypted 3x3 filter, mirroring the hyperparameters 
used in SVM1. Both the image and the filter were encrypted to ensure privacy during the 
computation. This experiment was conducted on 2,000 examples, consistent with the test cases used 
in the SVM1 experiment. 

The computation was carried out using the TenSEAL python library [20], which implements 
homomorphic encryption techniques designed for secure and private machine learning operations. 
By leveraging homomorphic encryption, the convolution was computed directly on encrypted data 
without the need for decryption at any stage of the process. In the experiment Cheon-Kim-Kim-Song 
(CKKS) scheme is used, with polynomial modulus degree that equals 8192, and with the coefficient 
sizes (60, 40, 40, 60) bits.  

 

 
Fig. 5. Absolute error for homomorphic encryption 
convolution calculation using TenSEAL 

 
The results of this experiment showed a mean absolute error of 3.5584𝑒 − 06, demonstrating 

that homomorphic encryption can achieve highly accurate convolution results while preserving the 
privacy of the input data. Fig. 5 demonstrates the absolute error calculated on 2000 test examples.  
 
5.4 Experiment 3: Number of Computations 
5.4.1 Number of computations in a convolution layer:  

 
Convolutional layers are the foundational building blocks of CNNs, where the bulk of 

computations occur. For an input and a convolution filter, the convolution operation involves sliding 
the filter over the image and computing the dot product at each location. This results in a feature 
map that encodes spatial information from the input image. 
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Fig. 6. A 2D Convolution Calculation Process with A 3x3 Filter and Stride = 1. 
Figure Courtesy [21] 

 
In a standard convolution operation (without any encryption) Fig. 6, the total number of 

multiplications required is proportional to the product of the input image size and the filter size. 
Specifically, for a single convolutional filter applied to an image. In instance, the number of 
computations required to do convolution between a 3𝑥3 filter and a 200𝑥200 image:  

 
i) Multiplications per position: 9 multiplications. 

ii) Additions per position: 8 additions (after all multiplications). 
 
Now, let's calculate the number of positions the filter can take over the image. Since the filter has 

to traverse the entire image, the number of positions can be computed by subtracting the filter size 
from the image size and adding 1 to account for the starting position. Accordingly: 

Number of positions horizontally: 200 –  3 +  1 =  198 

• Number of positions vertically: 200 –  3 +  1 =  198 
Therefore, the total number of computations required for convolution is given by the following 

equation: 
 
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 =  
(𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 +  𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠2  
=  (9 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 +  8 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠) ∗  1982  
=  (17 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) ∗  39204  
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ≈  666,468 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠          (8) 

 
Therefore, approximately 666,468 computations are required to perform the convolution 

between the 3𝑥3 filter and the gray image of size 200𝑥200. 
 

5.4.2 Number of computations in the proposed framework:  
 
In traditional CNNs, convolution operations are computationally intensive, and this complexity 

escalates when applying privacy-preserving techniques, such as HE. In the presented framework, we 
mitigate this overhead by reducing the dimensionality of the input data through random projection 
before performing the convolution in the encrypted domain. This strategy minimizes the number of 
computations required, making it feasible to execute secure CNN operations without the prohibitive 
computational costs typically associated with encrypted computations. For a 200𝑥200 image and a 
5𝑥5 subregion and a 3𝑥3 filter. The number of computations per image and one SVM, is the number 
of subregions which is =  40 multiplied by the number of features per subregion which is  =  40 ∗
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 25 =  1000 computation per image in a single SVM, so for a single 200𝑥200 image and two SVMs 
there will be the equivalent of 2000 computations in total in the plaintext format. However, in the 
case of random projection, the feature vector might be expanded, and the result would be then 
multiplied by the expansion rate as well. 
 

𝑁𝑢𝑚. 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 =  ∑ 𝑐𝑜𝑢𝑛𝑡(𝑠𝑢𝑏𝑟𝑒𝑔𝑖𝑜𝑛𝑠) ∗ 𝑐𝑜𝑢𝑛𝑡(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) ∗ 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑙−1
𝑆𝑉𝑀= 0     (9) 

 
where 𝑙 represents the number of available SVMs, the features count in the previous equation is per 
a subregion.  
 
5.5 Experiment 4: CIFAR 10 Dataset 

 
The experiment done previously on synthetic data along with this one achieved to test one 

neuron from the 1st convolution layer of a CNN.  to basically have tested One neuron from the 1st 
convolution layer of a CNN). This experiment aimed to address how the training of the SVMs done 
on synthetic data, the experiment was done on a well-known dataset [22] CIFAR-10. The images went 
through a preprocessing phase first, the colored images were converted to greyscale, the values of 
the image were then normalized from 0 to 1. Filter values ranged from -3 to 3. And the image size 
was resized from 32 𝑏𝑦 32 to 15 𝑏𝑦 15. The images are then divided into regions using the same 
methodology used on the synthetic data. The Mean Absolute Error = 3.4𝑒−11 while the Mean 
Squared Error = 1.8𝑒−11.  

 
6. Discussion 

 
The results of presented experiments demonstrate the effectiveness of the proposed random 

projection-based method for securing 2D convolution operations within CNNs. By encrypting both 
the input images and convolutional filters, the approach successfully preserves the privacy of data 
without compromising the accuracy of the resulting feature maps. This outcome is significant, as it 
addresses a critical need in fields where CNNs process sensitive information, such as in medical 
imaging or financial analysis. 

The proposed method offers several advantages over traditional privacy-preserving techniques, 
particularly HE and SMPC. While HE provides a prominent level of security, it does so at the cost of 
significant computational overhead, making it impractical for real-time applications or large-scale 
CNNs. In contrast, the random projection approach achieves similar levels of privacy protection with 
a fraction of the computational resources required by HE. This efficiency is particularly evident in our 
experiments, where the time required to compute secure convolutions using the presented method 
was considerably lower, without sacrificing accuracy. 

Moreover, SMPC, though effective in a multi-party context, introduces complexities that can be 
avoided with this model. The random projection approach simplifies the process of securing 
convolutions, making it easier to implement and integrate into existing CNN frameworks, particularly 
in scenarios where computational efficiency is critical. 

In experiments 1 & 2 it was demonstrated using the same experimental setup that a fully 
encrypted image and filter  using random projection gives the same incredible performance done 
using homomorphic encryption, with much less space and complexity, which was studied in detail in 
the presented paper in [17] however, the homomorphic encryption library that was used were 
Microsoft SEAL [23] whereas in this paper the used library was TenSEAL Python Library [20]. These 
experiments revealed minimal errors in the computation of convolutions, both for individual 
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subregions and for the entire image. These errors were within acceptable ranges and did not 
significantly impact the CNN’s overall performance. A sensitivity analysis showed that the accuracy 
of the convolution results was robust across various configurations of the random projection 
matrices, suggesting that the method is resilient to changes in the projection parameters. 

The third experiment compared the number of computations used to do a convolution in 
plaintext normal computation, and the presented model, the presented model surpasses the normal 
computation with much reduced number of computations, therefore, it also surpasses the needed 
number of computations used in homomorphic encryption. In practical terms, the reduction in the 
number of computations translates into faster processing times and lower resource consumption. 
For example, in our experiments, the number of operations required for secure convolution using 
random projection was reduced to approximately 104, compared to 106 operations required by 
traditional Homomorphic Encryption. This efficiency makes the presented method particularly 
suitable for real-time applications and scenarios where computational resources are constrained, 
such as mobile and edge computing environments. 

The presented model inherits the security robustness of the study in [17], as well as the 
expansion, this study achieved these results using one SVM, but this could be expanded using many 
layers of SVMs and expanding the list of keys as well in size and count. Integration of the proposed 
method into existing CNN architectures is straightforward, as it does not require significant 
modifications to the network structure. This ease of integration, combined with the method’s 
scalability, ensures that it can be applied across a wide range of CNN applications. However, the 
complexity of the CNN and the size of the dataset could introduce challenges in scalability, 
particularly as the number of convolutional layers increases. Future research should explore methods 
to optimize the scalability of this approach, potentially by parallelizing the random projection process 
or integrating it with other privacy-preserving techniques. 

The current model is not trained to apply any activation function after computing the feature 
map, as the activation function process is non-linear in its nature, SVMs fail to learn the problem, 
which requires a kernel that can support non-linear computations along with linear ones, although 
an experiment was done on a number of activation functions (ReLU, SiLU, GELU) the error was at 
best within 10% of the real value. Moreover, increasing the training examples did not affect the 
quality of the prediction. To solve this problem, either compute the activation function separately, 
or use a different machine learning technique other than the SVM which will be able to predict the 
feature map and apply the activation function in one step, i.e. being able to predict a naturally linear 
and non-linear computation at the same time. However, changing the used machine learning 
technique could affect the time complexity.   

Finally, in case of having larger image sizes, the model could be tuned to have multilevel SVMs 
that divides and calculates the convolution for different subregion sizes, each layer produces a 
calculation of a combined part of the subregion convolution. However, the two SVMs model should 
work on larger images as well. And should the image that is given have a smaller size than the trained 
one zero padding should be done first as a preprocessing step.  
 
7. Conclusion and Future Work  

 
This paper presents an enhancement in the domain of privacy-preserving Convolutional Neural 

Networks by focusing on securing the 2D convolution operation which is considered as a fundamental 
building block of CNNs. Given the increasing application of CNNs in sensitive areas using imaging, the 
need to protect the privacy of input data and convolutional filters has become critical. This study’s 
approach, based on random projection and SVM, provides a secure method for computing 2D 
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convolutions without revealing the underlying data. By encrypting both the input images and 
convolutional filters, the presented model ensures that the essential feature extraction process of 
CNNs remains private, thereby safeguarding sensitive information. 

The method’s efficiency, demonstrated through experiments with synthetic Gaussian data, shows 
that it preserves the accuracy of the CNN while significantly reducing computational overhead 
compared to traditional privacy-preserving techniques like HE. This makes the approach particularly 
suited for real-time and large-scale CNN applications, where computational resources are a concern. 

The implications of this work extend beyond just the 2D convolution operation, offering a 
framework that can potentially be adapted to secure other aspects of CNNs. Future research will 
focus on optimizing the scalability of the proposed method, ensuring that it can oversee more 
complex networks and larger datasets. Additionally, exploring the integration of this technique with 
other privacy-preserving methods could further enhance its robustness and applicability across a 
wider range of machine learning tasks. This work marks a crucial step towards secure, privacy 
preserving CNNs, ensuring that the power of deep learning can be harnessed without compromising 
data confidentiality. 
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