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 ABSTRACT 

 
A modified shooting method augmented by discretization validation is presented in this 
paper to address the challenges inherent in non-standard optimal control problems. 
Specifically, a specific case study involving four-stage royalty payment functions is 
focused on, with the aim of effectively optimizing these complex, non-differentiable 
functions. The shooting method is adapted and enhanced to compute optimal solutions, 
and its accuracy is rigorously confirmed through discretization techniques. The primary 
objectives involve maximizing the performance index and determining optimal control 
strategies for scenarios where the final state variable remains unknown. In this study, 
the royalty payment is defined as a four-stage piecewise function. The incorporation of 
piecewise royalty functions introduces non-differentiability at specific time intervals, 
necessitating innovative approaches for finding optimal solutions. This, in turn, leads to 
the utilization of the continuous hyperbolic tangent (tanh) function to address the non-
differentiability issue. A hybrid shooting method, combining the Newton and Golden 
Section Search methods, is employed in the C++ programming language to compute the 
unknown final state value. A new natural boundary condition, based on established 
theory, is introduced to further facilitate the investigation. Discretization methods such 
as Euler, Runge-Kutta, Trapezoidal, and Hermite-Simpson approximations are employed 
for validation. The validation process entails the use of the AMPL programming 
language with the MINOS solver. Comparative analyses reveal that the modified 
shooting method yields more accurate optimal results than discretization methods, thus 
demonstrating the method’s effectiveness in addressing non-standard optimal control 
problems. The significance of fundamental theories in addressing real-world challenges 
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1. Introduction 
 

Optimal control theory stands as a cornerstone in the realm of applied mathematics, offering 
powerful tools for tackling a wide array of real-world challenges. Optimal control is a study in 
determining the control 𝑢(𝑡) of a certain system in order to achieve an optimality term. The field of 
Optimal control has seen widespread application across various domains, with numerous researchers 
contributing to its development and implementation. For instance, in the medical field, studies 
conducted by previous researchers [1-6] have utilized optimal control techniques. Additionally, 
optimal control has found applications in diet planning research. In the aerospace sector, the work 
of Ben-Asher [7] and Trélat [8] exemplifies optimal control’s relevance and impact. In economics, 
scholars such as Cruz et al., [9] and Zinober and Sufahani [10] have explored optimal control 
applications, particularly in the context of the royalty payment problem. Furthermore, the 
significance of optimal control in addressing real-world challenges is underscored by the 
contributions of researchers like Spence [11] and Zinober and Kaivanto [12], who have delved into 
the royalty payment problem using optimal control theory. Drawing from the definitions provided by 
Pinch [13] and Zinober [14], optimal control is conceptually defined as outlined in the following 
Definition 1. 

Definition 1: An optimal control problem involves determining an admissible control 𝑢∗(𝑡) that 
steers the system described by the equation �̇�(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑢(𝑡) along an admissible optimal 
trajectory 𝑦∗(𝑡) in a way that extremizes (either minimizes or maximizes) the performance measure 
[13-15].  
 

𝐽 = ℎ (𝑡𝑓, 𝑦(𝑡𝑓)) + ∫ 𝑔(𝑡, 𝑦(𝑡), 𝑢(𝑡))𝑑𝑡
𝑡𝑓
𝑡𝑖

          (1) 

 
Here, 𝑢∗(𝑡) is referred to as the optimal control and 𝑦∗(𝑡)  represents the optimal state trajectory. 
Optimal control represents a natural extension of the challenges encountered in the realm of Calculus 
of Variations. Calculus of Variations is concerned with solving problems that involve variations in 
functions, including functionals, with the aim of identifying both the maximum and minimum values 
of a specified functional.  

While the classical optimal control problems have been extensively studied and addressed with 
their well-defined state variables and smooth dynamics, a subset of problems exists those deviates 
from these conventional formulations. These non-standard optimal control problems introduce 
complexities that demand specialized solution techniques. 

One such challenge arises in scenarios where the final state variable is unknown, leading to a non-
zero final shadow value. The objective in these situations remains consistent: to maximize a 
performance index by optimizing a system’s behaviour to attain specific goals. However, the 
presence of piecewise royalty functions within this performance index introduces non-
differentiability at precise time intervals, posing a formidable hurdle to conventional optimization 
methods. 

This research primarily focuses on the second scenario, which is the non-classical optimal control 
problem, as the central area of investigation. In this setting, the problem cannot be resolved using 
Pontryagin’s Minimum Principle in conjunction with the boundary conditions typically applied in the 
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standard setting. Specifically, in this context, the final state value 𝑦(𝑡𝑓) becomes equivalent to 

another continuous function, denoted as 𝑦(𝑡𝑓) = 𝑧. This relationship arises due to the integral 

system’s influence on the final state value. 
In response to these challenges, this study embarks on a comprehensive exploration of innovative 

techniques tailored to the intricacies of non-standard optimal control problems. The focus of our 
research centres on a specific and practical case study: the optimization of four-stage royalty 
payment functions. This problem, characterized by its non-differentiable piecewise structure and 
unknown final state, serves as a representative illustration of the unique challenges that arise in non-
standard optimal control scenarios. 

The core objectives of this research are twofold: firstly, to maximize the performance index, 
thereby optimizing the system’s behaviour, and secondly, to determine optimal control strategies 
that navigate the complexities introduced by non-differentiable piecewise functions. To achieve 
these objectives, a novel approach was employed that combines a modified shooting method with 
rigorous discretization validation. 

The shooting method, tailored and augmented to address the specific challenges of our problem, 
serves as our primary tool for computing optimal solutions. Its accuracy is systematically validated 
through a battery of discretization techniques, ensuring the reliability of our results. Central to our 
investigation is the integration of the continuous hyperbolic tangent (tanh) function, designed to 
surmount the non-differentiability issue inherent in piecewise royalty functions. 

The heart of our method lies in a modified shooting approach that amalgamates the Newton and 
Golden Section Search methods, expertly implemented within the C++ programming language. 
Additionally, we introduce a novel natural boundary condition rooted in established theory to guide 
and streamline our exploration. 

The validation process involves the meticulous application of discretization methods, including 
Euler, Runge-Kutta, Trapezoidal, and Hermite-Simpson approximations, executed through the AMPL 
programming language with the MINOS solver. 

The comparative analyses ultimately reveal that the modified shooting method consistently 
outperforms traditional discretization methods, thereby affirming the efficacy of our approach in 
addressing non-standard optimal control problems. This research amplifies the importance of 
fundamental theories in tackling real-world challenges, providing insights that pave the way for 
future explorations in mathematical approaches within similar contexts. 

Moreover, it underscores the enduring relevance of the academic field, particularly in the 
domains of science and mathematics education, by contributing to the arsenal of tools available for 
addressing the complexities of real-world optimization challenges. The structure of this paper is 
outlined as follows: 
 

i. Section 2 will provide a detailed explanation of the modified shooting method employed 
in this study. 

ii. Section 3 will delve into the validation process, which utilizes discretization methods. 
iii. Section 4 will offer a comprehensive overview of the non-standard optimal control 

problem under investigation. 
iv. Following that, Section 5 and Section 6 will respectively discuss the problem formulation 

and the continuous approach involving hyperbolic tangent (tanh) modelling. 
v. Section 7 will present an illustrative example, followed by the presentation of results and 

comparative analysis in Section 8. 
vi. Section 9 will explore the implications for future research. 

vii. Lastly, Section 10 will provide the concluding remarks for the paper. 
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2. Adaptation of the Modified Shooting Method 
 

The core of the research approach for tackling non-standard optimal control problems, 
particularly within the domain of four-stage royalty payment functions, relies on the application of a 
modified shooting method. This section will provide a detailed exposition of this method and its 
adaptation to this unique problem. The shooting method, a widely recognized technique in the field 
of optimal control, serves as the foundation of our approach. However, to effectively address the 
complexities introduced by non-differentiable piecewise royalty functions and an unknown final state 
variable, careful adjustments and enhancements have been made to this method. The approach 
incorporates a modified shooting method, which amalgamates the strengths of the Newton method 
and the Golden Section Search. The Newton method’s proficiency in approximating roots is 
harnessed in combination with the robustness of the Golden Section Search. This fusion is driven by 
the necessity to accurately compute the unknown final state value. 

In this study, a combination of the Newton method and a one-dimensional minimization 
technique, specifically the Golden Section Search method, was employed within the shooting method 
to address the non-standard royalty problem. As described by Press et al., [16], the Golden Section 
Search method is recognized as a one-dimensional minimization technique, and these integrated 
methods were implemented using the C++ programming language. The highly accurate algorithm 
referenced in Press et al., [16] was utilized as a basis. Given that the minimization method was used 
to obtain the optimal results, it was necessary to maximize the performance index function by 
multiplying it by a negative one, as outlined by Press et al., [16]. The algorithm detailing the 
implementation of this combination is presented in Algorithm 1 (Table 1). 
 

Table 1 
Algorithm 1. Modified shooting method 
Input: 

i. Initial guess for the control parameter. 
ii. Tolerance level for convergence. 

iii. Maximum number of iterations. 
iv. Initial guess for the costate value. 
v. The range for final state value. 

vi. Initial and final time. 
 
Output: 

i. Optimal control parameter. 
ii. Optimal final state value. 

iii. Optimal final costate value. 
iv. Optimal performance index. 

 
(1) Initialize the control parameter with the initial guess. 
(2) Initialize iteration counter (iteration) to 0. 
(3) Initialize a flag variable (converged) to false. 
 

while (iteration < maximum iterations and not converged). 
(a) Solve the state and costate equations using the current control. 
(b) Compute the performance index based on the current control. 
(c) Compute the gradient of the performance index with respect to control (𝑱𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕). 

(d) Compute the Hessian matrix of the performance index with respect to control (𝑱𝒉𝒆𝒔𝒔𝒊𝒂𝒏). 
 

if 
gradientJ 

    
(a) Set converged to true. 
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Table 1. Continued 
Algorithm 1. Modified shooting method 
 

(b) Break out of the loop. 
 

else 
(a) Compute the search direction, 𝒔 by solving the linear system: 𝑱𝒉𝒆𝒔𝒔𝒊𝒂𝒏𝒔 = −𝑱𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕 

(b) Perform a line search along the direction 𝒔 using the Golden Section Search method: 
(i) Initialize the search interval [𝒂, 𝒃]. 
(ii) Determine the trial points (𝒚𝟏, 𝒚𝟐) within. [𝒂, 𝒃, ]. 
(iii) Evaluate 𝑱(𝒖 + 𝒚𝟏𝒔) and 𝑱(𝒖 + 𝒚𝟐𝒔). 
(iv) Update the search interval [𝒂, 𝒃, ] based on the results. 

(c) Update control as 𝒖 = 𝒖 + 𝒚𝟏𝒔  (or  𝒖 = 𝒖 + 𝒚𝟐𝒔 based on the interval). 
(d) Increment the iteration counter (iteration). 

 
(4) Transmit the generated value to Newton iteration to compute the final state value. 
(5) End of while loop. 
(6) The optimal control parameter 𝒖𝒐𝒑𝒕𝒊𝒎𝒂𝒍  is the final value of 𝒖. 

(7) Return 𝒖𝒐𝒑𝒕𝒊𝒎𝒂𝒍 as the optimal control parameter. 

(8) End and printout solution. 

 
3. Discretization Methods as the Validation Procedure 
 

In the quest to meticulously evaluate the accuracy and dependability of the modified shooting 
method, the focus is shifted towards the discretization methods. This section will expound upon the 
crucial role played by discretization techniques in validating the proposed approach’s performance 
and resilience. Selecting suitable discretization methods constitutes a vital aspect of this validation 
process. To guarantee a comprehensive assessment, a range of discretization techniques were 
utilized, including: 
 

i. Euler method: This elementary yet valuable technique provides a straightforward 
numerical approximation of the state and costate equations. 

ii. Runge-Kutta method: Renowned for its accuracy and stability, the Runge-Kutta method 
offers a higher-order approximation of the differential equations, contributing to a refined 
validation process. 

iii. Trapezoidal method: With its inherent ability to capture complex dynamics, the trapezoidal 
rule serves as another key element in our validation toolkit. 

iv. Hermite-Simpson method: Known for its robustness in handling various types of problems, 
the Hermite-Simpson method complements our validation procedure with its unique 
characteristics. 

The validation process involved a systematic comparison between the outcomes obtained 
through discretization methods and those produced by the modified shooting method. Key 
components of this process include: 
 

i. Performance evaluation. The performance index is computed for each discretization 
technique, enabling a direct comparison with the results generated by the modified 
shooting method. The objective is to gauge the accuracy and consistency of the computed 
performance indices across methods. 

ii. Assessment of final state and costate values. Evaluating the final state variable and the 
initial costate value is critical to the validation. These quantities are pivotal in determining 
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the optimality of control strategies and serve as benchmarks for the performance of each 
method. 

iii. Computational tools. The validation process is conducted using the AMPL programming 
language coupled with the MINOS solver [17]. This powerful computational combination 
affords us the precision and efficiency required to assess the performance of each 
discretization method. 

iv. Comparative analyses. The comparative studies of results from the modified shooting 
method and the discretization techniques offer insights into the method’s efficacy in 
tackling non-standard optimal control problems. Notably, these analyses consider the final 
state, initial costate and performance indices. 

Each discretization method is meticulously implemented to solve the state and costate equations 
while considering the specific characteristics of the problem. This ensures that the discretized results 
are obtained faithfully. The process conducted in the AMPL programming language is thoroughly 
elucidated in Algorithm 2 (Table 2). 
 

Table 2 
Algorithm 2. Discretization method 
Input: 

i. System dynamics: Define the differential equations that govern the system’s behaviour. 
ii. Objective function: Specify the performance index to be optimized. 

iii. Boundary conditions: Establish initial and final conditions for state and costate variables. 
iv. Discretization parameters: Set parameters such as the time step size and the number of discretization points. 
v. Method selection: Choose the discretization method(s) to be employed (e.g., Euler, Runge-Kutta, Trapezoidal, 

Hermite-Simpson). 
 
Output: 

i. Optimal control strategies. 
ii. Final state and costate values. 

iii. Performance index. 
 
Step 1: Initialization 
(1) Define the time interval, where   is the initial time and   is the final time. 
(2) Choose an appropriate discretization method (Euler, Runge-Kutta, Trapezoidal, Hermite-Simpson). 
(3) Specify the time step size based on the chosen method and desired accuracy. 
 
Step 2: Discretization  
(4) Initialize arrays to store discrete time points, state variables, costate variables, and control strategies. 
(5) Set the initial conditions for state and costate variables.  

(6) For time in the range: [𝒕𝒊, 𝒕𝒇]: 

(a) Compute the control input at the initial time using the optimal control law derived from the chosen 
discretization method.  

(b) Update the state variable using the system dynamics and the computed control input.  
(c) Update the costate variable using the costate dynamics equations.  
(d) Store the time, state, costate, and control values at the current time step. 

 
Step 3: Performance index calculation  
(7) Calculate the performance index based on the discretized state, costate, and control trajectories. 
 
Step 4: Validation  
(8) Assess the convergence and accuracy of the solution. 
(9) If necessary, refine the discretization parameters (e.g., time step size) to improve accuracy. 
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Table 2. Continued 
Algorithm 2. Discretization method 
Step 5: Output  
(10)  Return the optimal control strategies, final state and costate values, and the computed performance index. 

 
4. Non-Standard Optimal Control Problem 
 

Non-standard optimal control problems deviate from conventional formulations in several 
fundamental ways, rendering them uniquely challenging. A defining characteristic of non-standard 
optimal control problems is the presence of objective functions that are non-differentiable at specific 
time intervals. This non-differentiability arises from factors such as piecewise functions, leading to 
discontinuities in the optimization landscape. 

Unlike standard optimal control problems, where the final state variable is typically known or 
prescribed, non-standard problems introduce ambiguity by leaving the final state variable unknown. 
This lack of clarity necessitates innovative approaches to find optimal control strategies. This paper’s 
case study revolves around four-stage royalty payment functions, exemplifying the complexity that 
often characterizes non-standard problems. These piecewise functions introduce additional layers of 
intricacy, further challenging the optimization process. 

Addressing the aforementioned challenges requires a methodological framework that can 
navigate the non-standard terrain effectively. This research adopted the modified shooting method, 
which integrates elements of the Newton and the Golden Section Search methods. This hybrid 
approach empowers us to compute optimal solutions while addressing the complexities of non-
differentiable functions and unknown final state variables. 

One of the cornerstones of this approach is the incorporation of the continuous hyperbolic 
tangent (tanh) function. This mathematical tool proves instrumental in mitigating the effects of non-
differentiability within the objective functions, facilitating a smoother optimization process. 

A novel natural boundary condition has been introduced to bolster the investigation, drawing 
upon established theory. This boundary condition is aligned with the intrinsic characteristics of non-
standard optimal control problems, facilitating the optimization process effectively. This alignment 
is particularly relevant due to the presence of a non-zero final costate value. This challenge 
characterizes the problem as a non-standard optimal control problem, rendering it unsolvable 
through the Pontryagin Minimum Principle with the standard boundary condition at the final time. 
The proof for this new boundary condition was initially established by Malinowska and Torres [18]. 

Theorem 1. Let 𝑡𝑖 be real numbers where 𝑡𝑖 < 𝑡𝑓. If 𝑦(𝑡) is the solution to the problem  𝑡𝑖 and ft  

be real numbers where i ft t . If ( )y t  is the solution to the problem 𝐽[𝑦(𝑡)] =

∫ 𝑔(𝑡, 𝑦(𝑡), �̇�(𝑡), 𝑧)𝑑𝑡
𝑡𝑓
𝑡𝑖

 with boundary conditions 𝑦(𝑡𝑖) = 𝛼, 𝑦(𝑡𝑓) is free and 𝑦(𝑡) ∈ 𝐶1 [18]. Then, 

it follows that 
𝑑

𝑑𝑡
𝑔𝑦 (𝑡, 𝑦(𝑡), �̇�(𝑡), 𝑧) = 𝑔𝑧(𝑡, 𝑦(𝑡), �̇�(𝑡), 𝑧) for all 𝑡 ∈ [𝑡𝑖 , 𝑡𝑓] and consequently,  

 

𝑔�̇�(𝑡, 𝑦(𝑡), �̇�(𝑡), 𝑧) = −∫ 𝑔𝑧(𝑡, 𝑦(𝑡), �̇�(𝑡), 𝑧)𝑑𝑡
𝑡𝑓
𝑡𝑖

         (2) 

 
The implications of Theorem 1 reveal that a crucial optimal condition necessitates a non-zero final 

costate value. From the perspective of optimal control, this condition equates the final costate 

variable𝑝(𝑡𝑓) to 𝑔�̇�(𝑡, 𝑦(𝑡), �̇�(𝑡), 𝑧) provided that the integrand function 𝑔 exhibits differentiability 

with respect to 𝑧. Consequently, 
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𝑝(𝑡𝑓) = −∫ 𝑔𝑧 (𝑡, 𝑦(𝑡), �̇�(𝑡), 𝑦(𝑡𝑓)) 𝑑𝑡
𝑡𝑓
𝑡𝑖

  (3) 

 

Eq. (3) introduces a natural boundary condition, which is equivalent to Ƞ(𝑡𝑓). A boundary condition 

refers to a set of constraints or specifications that are imposed on a mathematical equation, typically 
a differential equation, to determine a unique solution. These conditions are essential in solving 
differential equations because they help define the behaviour of the solution at the boundary or 
specific points within the domain of interest. In the context of optimal control and mathematical 
modelling, boundary conditions play a crucial role in defining feasible solutions and optimizing a 
system’s performance. Research related to boundary conditions has been a focal point in numerous 
prior investigations, as exemplified by the work of Jena and Gairola [19]. 
 
5. Problem Formulation 
 

Based on the preceding discussion, let us now contemplate the subsequent performance index, 
as presented by Spence [11]. 

 

𝐽[𝑢(𝑡)] = ∫ 𝑔(𝑡, 𝑦(𝑡), 𝑢(𝑡))𝑑𝑡
𝑡𝑓
𝑡𝑖

= ∫ (𝑎𝑢1−𝛼 − (𝜌 +𝑚0 + 𝑐0𝑒
−𝜆𝑦)𝑢)𝑒−𝑟𝑡𝑑𝑡

𝑡𝑓
𝑡𝑖

 (4) 

 
With respect to the variables, a  represents the demand, 𝛼 signifies the price elasticity of demand, 𝜌 
denotes the royalty payment, 𝑚0 stands for the asymptote of the learning curve, 𝑐0 corresponds to 
the component of unit cost, 𝛾 defines the parameter governing the speed of learning, 𝑟 represents 
the discount factor, while 𝑦 serves as the state variable, and 𝑢 signifies the control variable. The 
model depicts the objective function or performance index, as introduced by prior researchers such 
as Spence [11] and Zinober and Kaivanto [12]. The following Eq. (5) represents the ordinary 
differential equation system that has been incorporated to optimize the performance index. 
 
�̇�(𝑡) = 𝑢(𝑡)  (5) 
 

The royalty function will consider a four-step constant piecewise system, which will then modify 
into a continuous hyperbolic tangent (tanh) approximation. This is to make sure that the system can 
implement the differentiation process everywhere. The settings that will be utilized are zero initial 
time and the terminal time equal to 10. The final state value is free and unknown. However, there 
will be a few necessary set-ups that need to meet the satisfaction in continuing the process: the state 
and costate equation with the stationarity term, the initial requirement of state and costate variable 
is defined, and the integral boundary condition is satisfied at the terminal time. The conditions are 
satisfied whenever the costate system converges. After that, the optimal solution will be attained.  

The choice of a four-stage piecewise royalty payment model is deliberate, aligning with our 
overarching research objective of addressing non-standard optimal control problems. This model 
introduces non-differentiability into the objective function, rendering the optimization process 
inherently challenging. 

Furthermore, the ambiguity surrounding the final state variable, a characteristic common to non-
standard problems, is mirrored in this model. As such, the royalty payment model becomes a 
quintessential case study for testing the efficacy of the proposed modified shooting method. Beyond 
its role within this research framework, the four-stage royalty payment model carries real-world 
relevance. Many industries employ piecewise payment structures, including finance, manufacturing, 
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and resource management. The exploration of this model structure and the optimization techniques 
applied hold implications for addressing practical challenges in these domains. 
 
6. Continuous Hyperbolic Tangent as the Approach for Non-Differentiable Piecewise Function 
 

Non-differentiable piecewise functions are encountered in various domains, often presenting 
formidable challenges in optimization and control problems. This section explores the application of 
the continuous hyperbolic tangent (tanh) function as a powerful mathematical tool for mitigating the 
non-differentiability inherent in such functions. In many real-world scenarios, optimization and 
control problems involve objective functions that exhibit non-differentiability at specific points or 
intervals. These non-differentiable regions arise due to discontinuities or abrupt changes in the 
function’s behaviour, making traditional calculus-based optimization techniques less effective. 

Piecewise functions, characterized by different expressions in distinct intervals, are a common 
source of non-differentiability. Traditional methods often struggle to optimize these functions 
because they lack derivatives at the points of discontinuity. The continuous hyperbolic tangent (tanh) 
function is an invaluable mathematical tool renowned for its ability to smooth out non-differentiable 
regions in functions. It possesses several key properties that make it a compelling choice for 
addressing the challenges posed by non-differentiable piecewise functions. 
 

i. Smooth transition. The hyperbolic tangent (tanh) function exhibits a smooth transition 
from -1 to 1 over its domain, making it suitable for approximating piecewise functions with 
abrupt changes. 

ii. Approximation of discontinuities. By using hyperbolic tangent (tanh), it is possible to 
approximate the behaviour of a non-differentiable piecewise function in a way that is 
amenable to traditional optimization techniques. 

iii. Continuous derivatives. Hyperbolic tangent (tanh) functions have continuous derivatives, 
allowing for the application of gradient-based optimization algorithms, which are efficient 
and widely employed in optimization problems. 

In the context of optimization and control problems involving non-differentiable piecewise 
functions, the integration of hyperbolic tangent (tanh) can significantly enhance the effectiveness of 
solution approaches. Here’s how hyperbolic tangent (tanh) can be applied. 
 

i. Smoothing the objective function. By replacing non-differentiable parts of the objective 
function with hyperbolic tangent (tanh) approximations, the function becomes smooth 
and differentiable, enabling the use of gradient-based optimization methods. 

ii. Continuous transition. The hyperbolic tangent (tanh) functions can smoothly transition 
between different pieces of a piecewise function, avoiding abrupt changes that can hinder 
optimization convergence. 

While the use of hyperbolic tangent (tanh) functions offers numerous advantages in handling 
non-differentiable piecewise functions, it is essential to consider potential trade-offs and nuances. 
 

i. Accuracy vs. smoothness. The choice of hyperbolic tangent (tanh) smoothing parameters 
should balance the desire for smoothness with the need to accurately capture the original 
function’s behaviour. 

ii. Convergence speed. Smoothing with a hyperbolic tangent (tanh) may slow down 
convergence compared to using methods tailored explicitly for piecewise functions. 
However, it often leads to more robust and reliable optimization outcomes. 
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7. Royalty Payment Example 
 

Mathematically, the royalty payment model can be expressed as follows. 
 

𝜌(𝑦(𝑡)) =

{
 
 

 
 
1

10
  for 0 ≤ 𝑦(𝑡) ≤

1

4
𝑧

6

5
  for 

1

4
𝑧 < 𝑦(𝑡) ≤

1

2
𝑧

6

25
  for 

1

2
𝑧 < 𝑦(𝑡) ≤

3

4
𝑧

3

25
  for 

3

4
𝑧 < 𝑦(𝑡) ≤ 𝑧

  (6) 

 
The Eq. (6) can be transformed into the hyperbolic tangent (tanh) function. In this study, the 

smoothing values were determined as 𝑘 = 50 and 𝑘 = 250 to approximate Eq. (7). It is important to 
note that the larger the smoothing value, the smoother the resulting plot becomes. 
 

𝜌(𝑦(𝑡)) =
11

100
+
11

20
𝑡𝑎𝑛ℎ (𝑘 (𝑦 −

1

4
𝑧)) −

12

25
𝑡𝑎𝑛ℎ (𝑘 (𝑦 −

1

2
𝑧)) −

3

50
𝑡𝑎𝑛ℎ (𝑘 (𝑦 −

3

4
𝑧)) (7) 

 
The Hamiltonian function is a fundamental tool in solving optimal control problems. It is used to 

derive the necessary optimality conditions, including the Hamiltonian’s differential equations and 
boundary conditions. These conditions guide the search for optimal control strategies that maximize 
or minimize the Hamiltonian function, depending on the nature of the problem (maximization or 
minimization of a performance index). The Hamiltonian function is a crucial component of optimal 
control theory, providing a framework for analyzing and solving complex control optimization 
problems in various fields, including engineering, economics, and physics. In more detail, the 
Hamiltonian function is defined as follows. 
 
𝐻(𝑡, 𝑦, 𝑢, 𝑝) = 𝑔(𝑡, 𝑦, 𝑢) + 𝑝(𝑡)𝑢(𝑡)  (8) 
 
Subject to 𝑡 is the time, 𝐻 is the Hamiltonian function, y  represents the state vector of the system p  

is the costate vector, also known as the adjoint vector. While, 𝑢 stands for the control input or control 
vector and 𝑔(𝑡, 𝑦, 𝑢) is the system’s Lagrangian, which represents the instantaneous cost or 
performance associated with state y  and control 𝑢. The Hamiltonian behaviour fulfils the following 

conditions [20]. 
 

𝐻𝑢 = 0; �̇�(𝑡) = 𝐻𝑝;  �̇�(𝑡) = −𝐻𝑦  (9) 

 
Therefore, the state dynamic satisfies the Hamiltonian system, where: 

 
�̇�(𝑡) = (𝑒0.025𝑡𝑢0.5 − (𝜌 + 1 + 𝑒−0.12𝑦)𝑢)𝑒−0.1𝑡 + 𝑢 (10) 
 
The integrand function g  is contingent on both (𝑦𝑡) and 𝜌, leading to the costate variable adhering 

to the following relationship. 
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�̇� = (
109

100
𝑘 −

11

20
𝑘 𝑡𝑎𝑛ℎ (𝑘 (𝑦 −

1

4
𝑧))

2

+
12

25
𝑘 𝑡𝑎𝑛ℎ (𝑘 (𝑦 −

1

2
𝑧))

2

+
3

50
𝑘 𝑡𝑎𝑛ℎ (𝑘 (𝑦 −

3

4
𝑧))

2

−

          
3

25
𝑒−0.12𝑦)𝑢𝑒−0.1𝑡  (11) 

 

The stationarity condition can be expressed as 0uH = , where: 

 

𝐻𝑢 = (
1

2
𝑒0.025𝑡𝑢−0.5 − 𝜌 − 𝑒−0.12𝑦 − 1) 𝑒−0.1𝑡 + 𝑝 = 0 (12) 

 
where, 
 

𝑢(𝑡) =
1

4
(𝑒0.025𝑡)2(𝑒−0.1𝑡)2(𝜌𝑒−0.1𝑡 + 𝑒−0.12𝑦𝑒−0.1𝑡 + 𝑒−0.1𝑡 − 𝑝)−2 (13) 

 
Additionally, the integral results in the following conditions. 

 

𝑝(𝑇) = ∫ (
59

400
𝑘 +

11

80
𝑘 𝑡𝑎𝑛ℎ (𝑘 (𝑦 −

1

4
𝑧))

2

−
10

0

6

25
𝑘 𝑡𝑎𝑛ℎ (𝑘 (𝑦 −

1

2
𝑧))

2

−
9

200
𝑘 𝑡𝑎𝑛ℎ (𝑘 (𝑦 −

               
3

4
𝑧))

2

)𝑢𝑒−0.1𝑡𝑑𝑡  (14) 

 
8. Results and Comparative Analysis 
 

To evaluate the performance of each method, several critical metrics were considered. The final 

state variable, denoted as 𝑦(𝑡𝑓), serves as a pivotal indicator of optimality. The computed values 

were compared with those obtained via discretization techniques using the proposed modified 
shooting method. The initial costate value, denoted as 𝑝(𝑡𝑖), plays a crucial role in determining 
optimal control strategies. The consistency of this value was assessed across methods. This research 
aims to maximize the performance index, which quantifies the optimality of control strategies. This 
optimal performance index was computed for each method, and a comparative analysis was 
conducted. 

 
8.1 Smoothing Value Equals 50 
 

Table 3 presents the results for a smoothing value 𝑘 equal to 50. As evident from Table 3, the 
comparative analysis reveals noteworthy insights where the final state values computed through the 
modified shooting method and the Euler, as well as the Runge-Kutta method, exhibit remarkable 
similarity up to two decimal places. The Trapezoidal and Hermite-Simpson approximation closely 
approximates the final state value, consistent up to one decimal place. The costate value at the initial 
time for the Runge-Kutta and Trapezoidal method aligns with the shooting method, accurate up to 
three decimal places. The Euler and Hermite-Simpson method yields an initial costate value 
comparable up to one and two decimal places, respectively. The performance indices, a key measure 
of optimality, exhibit convergence among the shooting and discretization methods, accurate up to 
two decimal places. 
 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 59, Issue 2 (2026) 296-311 

307 
 

Table 3 
The optimal result generated by the shooting and discretization methods for smoothing value equal to 50  
Methods Final state value Initial costate value Final costate value Performance index 

NG 0.585406 -0.278096 -0.108470 0.820501 

EU 0.580630 -0.281408 - 0.824692 
RK 0.583067 -0.278355 - 0.825111 
TR 0.578117 -0.278567 - 0.825874 
HS 0.593281 -0.273071 - 0.825276 

*NG=Newton and Golden; EU=Euler; RK=Runge-Kutta; TR=Trapezoidal; HS=Hermite-Simpson 

 
Figure 1 depicts the optimal solution generated by both the shooting and discretization methods. 

A noticeable distinction is observed in the smoothness of the curves, with the shooting method 
yielding a smoother plot compared to the discretized one. The optimal plot curves exhibit a high 
degree of similarity for all variables except for the control plot, where differences between the 
discretized values and the shooting values become apparent at a specific time. This discrepancy can 
be attributed to the discretization error that occurs during the process [21, 22]. It can be inferred 
that the C++ routine from Numerical Recipe [16] consistently produces highly accurate solutions. 
 

 
Fig. 1. The optimal plot for smoothing value equal to 50 generated by the shooting and 
discretization techniques. (NG=Newton and Golden; EU=Euler; RK=Runge-Kutta; TR= 
Trapezoidal; HS=Hermite-Simpson) 

 
8.2 Smoothing Value Equals 250 
 

Table 4 extends the comparative analysis to a smoothing value 𝑘 equal to 250. Based on Table 4, 
implementing comparative analysis highlights the following results. The final state values remain 
identical up to two decimal places for the Runge-Kutta method. The Euler, Trapezoidal, and Hermite-
Simpson approximation converges, accurate up to one decimal place when compared with the 
shooting result. Initial costate values are consistent up to one decimal place for the shooting method 
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and the Runge-Kutta as well as the Hermite-Simpson method. Performance indices demonstrate 
convergence across the shooting method, the Runge-Kutta method, the Trapezoidal method and the 
Hermite-Simpson method, precise up to two decimal places. 

Figure 2 presents a graphical representation of the optimal solution for the second case, where 
the smoothing value is set to 250. The curves in this case bear a resemblance to those in the first 
case, which 𝑘 equals 50. However, it is noteworthy that the plot corresponding to 𝑘 = 250 exhibits 
a higher degree of smoothness compared to the plot presented in the preceding subsection. 
 

Table 4 
The result generated by the shooting and discretization methods for smoothing value equal to 250  
Methods Final state value Initial costate value Final costate value Performance index 

NG 0.585314 -0.277648 -0.108443 0.820619 

EU 0.543349 0.082824 - 0.814081 
RK 0.588223 -0.246044 - 0.826710 
TR 0.575365 -0.198810 - 0.826766 
HS 0.593381 -0.249868 - 0.826571 

*NG=Newton and Golden; EU=Euler; RK=Runge-Kutta; TR=Trapezoidal; HS=Hermite-Simpson 

 

 
Fig. 2. The optimal plot for smoothing value equal to 250 generated from the shooting  
method and discretization techniques. (NG=Newton and Golden; EU=Euler; RK=Runge 
-Kutta; TR=Trapezoidal; HS=Hermite-Simpson) 

 
8.3 Summary 
 

The comparative analysis provides valuable insights into the performance of the proposed 
modified shooting method in the context of non-standard optimal control problems. Notably, the 
shooting method consistently yields results comparable to, and often more accurate than, 
discretization techniques. This underscores the method’s effectiveness in addressing complex, non-
differentiable functions and scenarios with unknown final state variables. 
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9. Discussion and Implication for Future Research Directions 
 

A quest was undertaken to address the intricate challenges posed by non-standard optimal 
control problems, with a specific focus on a case study involving four-stage royalty payment 
functions. The outcomes of this investigation have illuminated several key aspects. One of the central 
findings of this research pertains to the efficacy of the modified shooting method. A powerful 
approach was devised by integrating elements from the Newton and Golden Section Search methods, 
capable of effectively tackling complex, non-differentiable functions. The comparative analysis 
revealed that this method consistently produced accurate results, surpassing traditional 
discretization techniques in several aspects. 

The adaptability of the modified shooting method to non-standard scenarios was underscored. 
The four-stage royalty payment model served as a compelling case study, mirroring real-world 
complexities often encountered in diverse domains. The model introduced non-differentiability and 
ambiguity surrounding the final state variable, aligning with the hallmarks of non-standard problems. 
The successful application of this method in this context highlights its practical utility in addressing 
challenging optimization scenarios. Incorporating continuous hyperbolic tangent (tanh) functions 
and establishing a novel natural boundary condition underscore the significance of fundamental 
theories in addressing real-world challenges. This research demonstrates that a strong theoretical 
foundation can pave the way for innovative approaches, enabling the optimization of intricate 
systems. 

The findings of this study bear substantial implications for future research trajectories in the 
realm of non-standard optimal control problems. 
 

i. Methodological advancements. Building upon the success of the modified shooting 
method, future research endeavours can explore further enhancements and refinements. 
The integration of advanced optimization algorithms and techniques holds the potential to 
extend the method’s applicability to an even broader range of non-standard scenarios. 

ii. Real-world applications. The practical relevance of the research extends beyond 
theoretical considerations. Future studies can delve into the application of this approach 
to real-world problems in finance, manufacturing, and resource management, where 
piecewise payment structures are commonplace. These applications could yield insights 
and solutions to pressing challenges in these domains. 

iii. Educational significance. This research underscores the importance of effective teaching 
and learning processes, especially in the domains of science and mathematics. Using 
innovative mathematical approaches to solve complex problems can enhance the 
educational experience and foster a deeper understanding of optimization techniques. 

This research has illuminated the path toward effectively addressing non-standard optimal 
control problems. The modified shooting method, validated through rigorous comparative analysis, 
has emerged as a potent tool for optimizing complex, non-differentiable functions with unknown 
final state variables. These findings serve as a foundation upon which future research endeavours 
can build, driving advancements in the field of optimization and offering solutions to real-world 
challenges. 

Moving forward, the continuous exploration of non-standard scenarios and the development of 
innovative methodologies will be essential in pushing the boundaries of what is achievable in 
optimization and control theory. By doing so, the continued relevance of the academic field and its 
practical applications in addressing complex real-world problems are ensured. 
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10. Conclusion 
 

This study introduced a modified shooting method with discretization validation to address the 
intricate challenges posed by non-standard optimal control problems. The focus of this research 
centred on a specific case study involving four-stage royalty payment functions, was to optimize 
these intricate, non-differentiable functions in an efficient manner. Through this approach, the 
shooting method was adapted and enhanced to facilitate the computation of optimal solutions, with 
a rigorous validation of its accuracy achieved through the application of discretization techniques. 
The primary objectives encompassed the maximization of the performance index and the 
determination of optimal control strategies, particularly in scenarios where the final state variable 
remains undisclosed. Throughout the investigation, specific scrutiny was applied to royalty payments 
structured as four-stage piecewise functions, a scenario acknowledged for its propensity to introduce 
non-differentiability at precise time intervals. To effectively address this challenge, the continuous 
hyperbolic tangent (tanh) function was introduced, which was found to be highly effective in 
mitigating issues related to non-differentiability. The implementation of our hybrid shooting method, 
achieved through the combined application of the Newton and Golden Section Search methods, was 
executed using the C++ programming language for the purpose of computing the final state value, 
which remained unknown. Additionally, a novel natural boundary condition, firmly grounded in 
established theory, was introduced to further streamline and bolster our investigative efforts. 
Validation of the findings was conducted through the utilization of discretization methods such as 
Euler, Runge-Kutta, Trapezoidal, and Hermite-Simpson approximations. This validation process was 
meticulously carried out utilizing the AMPL programming language with the MINOS solver. The 
comparative analyses conducted throughout this research yielded a noteworthy result: the modified 
shooting method consistently outperformed discretization methods, conclusively demonstrating its 
efficacy in effectively addressing non-standard optimal control problems. This outcome underscored 
the practical utility of our approach, particularly in the realm of complex real-world scenarios. In 
conclusion, the research conducted herein highlights the critical role played by fundamental theories 
in addressing substantial real-world challenges, offering valuable insights poised to guide future 
researchers exploring mathematical approaches within analogous contexts. By contributing to the 
enduring relevance of the academic field, particularly within the spheres of science and mathematics 
education, this study provides a foundational cornerstone for the ongoing advancement of solutions 
addressing intricate real-world optimization problems. 
 
Acknowledgement 
The research work is supported by the Ministry of Higher Education (MOHE) through the 
Fundamental Research Grant Scheme (FRGS) with reference FRGS/1/2021/STG06/UTHM/03/3, Vot 
K396. Thank you to the Research Management Center (RMC), Universiti Tun Hussein Onn Malaysia 
(UTHM), for managing the research and publication process. 
 
References 
[1] Ollerton, R. L. "Application of optimal control theory to diabetes mellitus." International Journal of Control 50, no. 

6 (1989): 2503-2522. https://doi.org/10.1080/00207178908953512  
[2] Ledzewicz, Urszula, and Heinz Schättler. "Application of optimal control to a system describing tumor anti-

angiogenesis." In Proceedings of the 17th International Symposium on Mathematical Theory of Networks and 
Systems (MTNS), Kyoto, Japan, p. 478-484. 2006.  

[3] Sufahani, Suliadi, and Zuhaimy Ismail. "A new menu planning model for Malaysian secondary schools using 
optimization approach." Applied Mathematical Sciences 8, no. 151 (2014): 7511-7518. 
http://dx.doi.org/10.12988/ams.2014.49725  

https://doi.org/10.1080/00207178908953512
http://dx.doi.org/10.12988/ams.2014.49725


Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 59, Issue 2 (2026) 296-311 

311 
 

[4] Sufahani, Suliadi F., and Zuhaimy Ismail. "Planning a nutritious and healthy menu for malaysian school children 
aged 13-18 using" Delete-reshuffle algorithm" in Binary Integer Programming." Journal of Applied Sciences 15, no. 
10 (2015): 1239. https://doi.org/10.3923/jas.2015.1239.1244  

[5] Ali, Maselan, Suliadi Sufahani, and Zuhaimy Ismail. "A new diet scheduling model for Malaysian school children 
using zero-one optimization approach." Global Journal of Pure and Applied Mathematics 12, no. 1 (2016): 413-419.  

[6] Sufahani, Suliadi, Zuhaimy Ismail, and Maselan Ali. "Mathematical optimization method on diet planning for school 
children aged 13-18 using DRRA approach." Wulfenia Journal 23, no. 1 (2016): 103-112.  

[7] Ben-Asher, Joseph Z. Optimal control theory with aerospace applications. American institute of aeronautics and 
astronautics, 2010. https://doi.org/10.2514/4.867347  

[8] Trélat, Emmanuel. "Optimal control and applications to aerospace: some results and challenges." Journal of 
Optimization Theory and Applications 154 (2012): 713-758. https://doi.org/10.1007/s10957-012-0050-5  

[9] Cruz, Pedro AF, Delfim FM Torres, and Alan SI Zinober. "A non-classical class of variational problems." International 
Journal of Mathematical Modelling and Numerical Optimisation 1, no. 3 (2010): 227-236. 
https://doi.org/10.1504/IJMMNO.2010.03175  

[10] Zinober, Alan, and Suliadi Sufahani. "A non-standard optimal control problem arising in an economics 
application." Pesquisa Operacional 33 (2013): 63-71. https://doi.org/10.1590/S0101-74382013000100004  

[11] Spence, A. Michael. "The learning curve and competition." The Bell Journal of Economics (1981): 49-70. 
https://doi.org/10.2307/3003508  

[12] Zinober, A. S. I., and K. Kaivanto. "Optimal production subject to piecewise continuous royalty payment 
obligations." University of Sheffield (2008).  

[13] Pinch, Enid R. Optimal control and the calculus of variations. Oxford University Press, 1995.  
[14] Zinober, A. S. I. "Optimal control theory lecture notes." The University of Sheffield (2010). 
[15] Brunt, Bruce. "The calculus of variations." New York: Springer (2004): 295. https://doi.org/10.1007/b97436  
[16] Press, William H. Numerical recipes 3rd edition: The art of scientific computing. Cambridge university press, 2007.  
[17] Fourer, Robert, David M. Gay, and Brian W. Kernighan. "A modeling language for mathematical 

programming." Management Science 36, no. 5 (1990): 519-554. https://doi.org/10.1287/mnsc.36.5.519  
[18] Malinowska, Agnieszka B., and Delfim FM Torres. "Natural boundary conditions in the calculus of 

variations." Mathematical methods in the applied sciences 33, no. 14 (2010): 1712-1722. 
https://doi.org/10.1002/mma.1289  

[19] Jena, Siddharth, and Ajay Gairola. "Novel Boundary Conditions for Investigation of Environmental Wind Profile 
Induced due to Raised Terrains and Their Influence on Pedestrian Winds." Journal of Advanced Research in Applied 
Sciences and Engineering Technology 27, no. 1 (2022): 77-85. https://doi.org/10.37934/araset.27.1.7785  

[20] Kirk, Donald E. “Optimal control theory: an introduction.” New York: Dover Publications, Inc. 2004. 
[21] Von Stryk, Oskar, and Roland Bulirsch. "Direct and indirect methods for trajectory optimization." Annals of 

operations research 37 (1992): 357-373. https://doi.org/10.1007/BF02071065  
[22] Passenberg, Benjamin, Magnus Kröninger, Georg Schnattinger, Marion Leibold, Olaf Stursberg, and Martin Buss. 

"Initialization concepts for optimal control of hybrid systems." IFAC Proceedings Volumes 44, no. 1 (2011): 10274-
10280. https://doi.org/10.3182/20110828-6-IT-1002.03012   

https://doi.org/10.3923/jas.2015.1239.1244
https://doi.org/10.2514/4.867347
https://doi.org/10.1007/s10957-012-0050-5
https://doi.org/10.1504/IJMMNO.2010.03175
https://doi.org/10.1590/S0101-74382013000100004
https://doi.org/10.2307/3003508
https://doi.org/10.1007/b97436
https://doi.org/10.1287/mnsc.36.5.519
https://doi.org/10.1002/mma.1289
https://doi.org/10.37934/araset.27.1.7785
https://doi.org/10.1007/BF02071065
https://doi.org/10.3182/20110828-6-IT-1002.03012

