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 ABSTRACT 

 
This paper presents a Gradient-based Mutation Manta ray foraging optimization (GM-
MRFO) that is designed to solve real-world optimization problems with constraints. GM-
MRFO combines the basic strategy of MRFO with the Gradient-based Mutation (GM) 
strategy, which is a feasibility-and-solution repair strategy adopted from the ϵ-Matrix-
Adaptation Evolution Strategy (𝜖MAgES). MRFO algorithm is not immune to the 
common problems confronted by constrained optimization algorithms where 
constraints in the optimization problem are incompatible, and a solution that satisfies 
all constraints does not exist. In such cases, the MRFO algorithm may not be able to find 
a feasible solution. Another challenge is the optimization algorithm converges to a 
solution that is not globally optimal. By introducing the GM strategy and using Jacobian 
approximation in finite differences, GM-MRFO can improve the feasibility of solutions 
throughout the search process, which enables it to handle constraints more effectively 
than its predecessor. The proposed algorithm's performance is evaluated by assessing 
the accuracy of the best solution produced, the feasibility rate, mean of violation, 
success rate, and the ranking based on a ranking scheme in the Congress on 
Evolutionary Computation 2020 (CEC2020). Specifically, GM-MRFO achieved a 
feasibility rate of 100% on 47 out of 57 CEC2020 real-world problems and improved 
adequately best-known solutions.  
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1. Introduction 
 

Optimization algorithms are gaining popularity in the current modern world. This is due to their 
reliability in providing an optimal solution for many complex real-world problems. The study 
conducted by Shatnawi et al., [1] shows that optimization algorithms are widely used in machine 
learning to optimize artificial intelligence (AI) model. Moreover, with the availability of huge data, 
the application of such algorithm is inevitable. This is also true due to the fact that AI can solve a 
more complex system and handling uncertainty better than other models as stated in the study [2]. 
In literature, Noor et al., [3] applied a linear integer programming to solve bus scheduling problem in 
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deciding an optimal number of the bus trips in a certain period of time. Roslan et al., [4] applied a 
linear regression optimization technique to evaluate an ideal spectral wavelength in detecting a 
buried archaeological proxy. 

Optimization problems can be categorized into non-constraint and constraint. Non-constraint 
problem is normally adopted to test a newly develop optimization algorithm as reported in the study 
by Musa et al., [5]. Real-world examples of such problems are presented by Mohanprakash et al., [6] 
and Oleolo et al., [7]. The search for an optimal solution for the problems is not restrained by too 
many constraints. On the other hand, the search for an optimal solution to an objective function in 
all constrained real-world problems is restricted by specific constraints on the components of the 
parameter vector. In optimization problems, constraints may arise due to factors such as limited 
resources or multiple sources [8], trade-offs specific to the problem [9], or physical boundaries [10]. 
These constraints make the problem more complex and require the development of specialized 
algorithms to solve them. 

Generally, a constraint optimization problem can be expressed mathematically as shown in Eq. 
(1). 

 
𝑚𝑖𝑛 𝑓 (𝑥),   𝑥 = (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝐷) ∈ 𝛺          (1) 
 
subject to 
 
𝑔𝑖(𝑥) ≤ 0,   𝑖 = 1,2,3, . . . , 𝑝 
 
ℎ𝑗(𝑥) = 0,   𝑗 = 𝑝 + 1, 𝑝 + 2, 𝑝 + 3, . . . , 𝑚 

 
𝑥 ≤ 𝑥 ≤ 𝑥         

 

Additionally, 𝑔𝑖  (𝑥) represents the 𝑖𝑡ℎ inequality constraint, while ℎ𝑗  (𝑥) represents 𝑡ℎ𝑒 𝑗𝑡ℎ equality 

constraint, which can be either a linear or non-linear constraint. Usually, equality constraints are 
transformed into inequality constraints as shown in Eq. (2). 

 

|ℎ𝑗(𝑥)| − 𝜀 = 0,   for 𝑗 = 𝑝 + 1, 𝑝 + 2, 𝑝 + 3, . . . , 𝑚              (2) 

 
Recently, there has been increased attention on solving constraint problems, as reflected in the 

introduction of competitions to evaluate and compare state-of-the-art algorithms. While artificial 
test problems are commonly used to test optimization algorithms, they do not fully capture the 
complexity of real-world problems with constraints. Therefore, benchmark collections as in Congress 
on Evolutionary Computation 2020 (CEC2020) [11] that incorporated real-world constraints are used. 
A recent proposed algorithm called Manta ray foraging optimization (MRFO) offers a promising 
solution due to its unique approach. The MRFO as introduced by Zhao et al., [12] is an optimization 
algorithm that mimics the foraging behavior of the manta ray, a cartilaginous fish species found in 
warm oceans around the world. Ma et al., [13] investigated that Manta rays have a flat body with 
cephalic lobes on their mouth, which they use to channel and filter plankton, their main food source. 
They forage individually or in schools, forming a chain-like formation to scoop up plankton. When 
they encounter a location with abundant plankton, they use a cyclone foraging movement to 
concentrate the plankton and ease feeding. Finally, they perform somersault foraging, circling and 
moving backwards to draw more plankton towards them. The MRFO algorithm models all of these 
behaviors mathematically to guide agents towards the best solution in an optimization problem. The 
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fittest agent corresponds to the most forward manta ray in the chain, and the chain, cyclone, and 
somersault foraging behaviors guide the agents' movements towards the best solution. 

The MRFO algorithm has exhibited encouraging outcomes in resolving several artificial 
benchmark issues and practical applications that possess varying types of fitness landscapes as 
indicated in the literature [14]. Its success is due to its powerful randomness strategy [15], 
combination of linear and spiral model equations [16], and elitism [17] in all foraging mechanisms. 
Despite its advantages, the MRFO algorithm is not immune to the common problems faced by 
constrained optimization algorithms. One of the major problems is infeasibility, which occurs when 
the constraints in the optimization problem are incompatible, and there is no solution that satisfies 
all the constraints. In such cases, the MRFO algorithm may fail to find a feasible solution, leading to 
suboptimal or even invalid results. Another problem is local optima, where the optimization 
algorithm converges to a solution that is not globally optimal but only locally optimal. When the 
optimization process gets stuck in a local optimum, it may fail to explore the entire solution space 
and find the global optimum. 

To address the limitations of the MRFO algorithm, a constraint handling technique known as 
Gradient-based mutation (GM) has been incorporated into the MRFO procedure. In literatures, GM 
has been applied in evolutionary multi-objective algorithm utilizing a local search [18] and stochastic 
mutation [19]. It also has been applied in differential evolutionary (DE) algorithm [20], archive-DE 
[21], elite-DE [22] and crossover-mutation DE [23]. This approach improves the algorithm's ability to 
handle constraints by incorporating gradient information into the search process. The GM technique 
modifies the search direction and step size based on the gradient of the objective function and the 
constraints, allowing the algorithm to better navigate the solution space and find feasible solutions 
that satisfy all constraints. 

The aforementioned literatures have shown the limitation of the MRFO in dealing with constraint 
optimization problems. On top of that, there is limited literature is found on evaluating MRFO in 
solving such problems which indicates a potential gap of the algorithm. In this paper, GM is combined 
with MRFO to solve problems with constraints. This combination is called Gradient-based Mutation 
Manta Ray Foraging Optimization (GM-MRFO). The GM-MRFO method employs a deterministic and 
gradient-based searching method to improve both the fitness and feasibility of the solution. 
Additionally, it adopts an adjustment technique for the threshold of constraint violation value. The 
GM technique is also modified to match and blend with MRFO, resulting in an improved algorithm 
for solving constrained optimization problems. Subsequently, in order to assess the efficacy of the 
suggested algorithm, a set of 57 real-world constrained problems from different fields with varying 
numbers of decision variables and constraints listed in CEC2020 are employed. The paper is organized 
in several sections covering the background as in Section 2, the proposed technique as in Section 3, 
experimental setup as in Section 4, and summary as in Section 5. 

 
2. Background and Related Work 
2.1 Manta Ray Foraging Optimization (MRFO)  
 

The algorithm MRFO is inspired by three foraging behaviors of manta rays, namely chain, cyclone, 
and somersault foraging. The first strategy utilized in MRFO is chain foraging. In real-life, a location 
consisting of plankton can be detected by manta rays, which they will swim towards. The richness of 
the location is determined by the concentration of the plankton. During movement, manta rays line 
up by linking their head to the tail of the manta ray in front of them, creating a chain-like formation. 
In MRFO, the best location is considered as the location with the highest concentration of plankton, 
and it is the location that the agent moves towards throughout the searching process. All individuals 
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except the first-ranked agent, which is considered as the best location, move towards the best 
location as well as move with respect to the best solution. The best solution, which is updated for 
each iteration, guides the movement, and the movement with respect to the front individuals is the 
strategy to avoid premature convergence. Chain foraging can be modeled mathematically as shown 
in Eq. (3) and Eq. (4). 
 

𝑥𝑖
𝑑(𝑘 + 1) = {

𝑥𝑖
𝑑(𝑘) + 𝑟. (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑘) − 𝑥𝑖
𝑑(𝑘)) + 𝛼. (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑘) − 𝑥𝑖
𝑑(𝑘)),   𝑖 = 1

𝑥𝑖
𝑑(𝑘) + 𝑟. (𝑥𝑖−1

𝑑 (𝑘) − 𝑥𝑖
𝑑(𝑘)) + 𝛼. (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑘) − 𝑥𝑖
𝑑(𝑘)),   𝑖 = 2,3,4, . . . , 𝑁

           (3) 

 

𝛼 = 2𝑟√|𝑙𝑜𝑔 𝑟|                                  (4) 
 

The Eq. (5) and Eq. (6) defines the next position of the ith individual in the Dth dimension, denoted 

as 𝑥𝑖
𝑑(𝑘 + 1), where 𝑥𝑖

𝑑(𝑘), represents the current position of the same individual. The variable r 
represents a random vector within the range of [0,1], α is a weight coefficient of the chain foraging, 

and 𝑥𝑏𝑒𝑠𝑡
𝐷  denotes the current best solution found so far. The ith individual's position update is based 

on the (i-1)th  individual's position and the best solution 𝑥𝑏𝑒𝑠𝑡
𝑑 . Moving on to the next step in MRFO, 

the agents are moved in a spirally path. The manta rays, while remaining in chain formation, 
simultaneously swim towards the plankton in a spiral move once they detect the best location of 
food. This motion of agents can be expressed mathematically in a multi-dimensional space using Eq. 
(5). 
 

𝑥𝑖
𝑑(𝑘 + 1) = {

𝑥𝑖
𝑑(𝑘) + 𝑟. (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑘) − 𝑥𝑖
𝑑(𝑘)) + 𝛼. (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑘) − 𝑥𝑖
𝑑(𝑘)),   𝑖 = 1

𝑥𝑖
𝑑(𝑘) + 𝑟. (𝑥𝑖−1

𝑑 (𝑘) − 𝑥𝑖
𝑑(𝑘)) + 𝛼. (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑘) − 𝑥𝑖
𝑑(𝑘)),   𝑖 = 2,3,4, . . . , 𝑁

          (5) 

 

𝛽 = 2𝑒𝑟1
𝐾−𝑘+1

𝐾 . 𝑠𝑖𝑛 2 𝜋𝑟1                                (6) 
 

Eq. (7) and Eq. (8) represent the mathematical expressions of the random-cyclone foraging 
strategy in MRFO. This strategy, characterized by the weight coefficient β, aims to improve the 
exploration ability of the agents in the feasible region by inducing random movements in new 
directions. By doing so, the agents are forced to conduct a more comprehensive global search, thus 
enhancing the overall effectiveness of the MRFO algorithm. The maximum number of iterations is 
represented by K, while r1 stands for the random vector with a range of [0,1]. 
 

𝑥𝑟𝑎𝑛𝑑
𝑑 (𝑘) = 𝑥𝑑 + 𝑟𝑎𝑛𝑑 (𝑥𝑑 − 𝑥𝑑)           (7)  

 

𝑥𝑖
𝑑(𝑘 + 1) = {

𝑥𝑟𝑎𝑛𝑑
𝑑 (𝑘) + 𝑟. (𝑥𝑟𝑎𝑛𝑑

𝑑 (𝑘) − 𝑥𝑖
𝑑(𝑘)) + 𝛽. (𝑥𝑟𝑎𝑛𝑑

𝑑 (𝑘) − 𝑥𝑖
𝑑(𝑘)),   𝑖 = 1

𝑥𝑟𝑎𝑛𝑑
𝑑 (𝑘) + 𝑟. (𝑥𝑖−1

𝑑 (𝑘) − 𝑥𝑖
𝑑(𝑘)) + 𝛽. (𝑥𝑟𝑎𝑛𝑑

𝑑 (𝑘) − 𝑥𝑖
𝑑(𝑘)),   𝑖 = 2,3,4, . . . , 𝑁

    (8) 

 

The equation includes 𝑥𝑟𝑎𝑛𝑑
𝑑 (𝑘), a randomly generated position within the feasible region, 𝑥𝑑̅̅̅̅  

and 𝑥𝑑 , which are the upper and lower boundaries of the dth dimension respectively. MRFO employs 

the somersault foraging strategy to enhance the exploitation of the best solution. In nature, 
somersault refers to the movement of a manta ray around a food location in a to-and-fro manner, 
appearing as a pivot. In a similar way, the searching agents in MRFO move in a circular motion around 
the best agent in the random search domain. This helps to improve the solution without being 
trapped in local optima. The mathematical representation of the somersault foraging strategy is 
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shown in Eq. (9). It includes the weight coefficient, S, and two random numbers, r2 and r3, within the 
range of [0,1]. 

 

𝑥𝑖
𝑑(𝑘 + 1) = 𝑥𝑖

𝑑(𝑘) + 𝑆. (𝑟2. 𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑘) − 𝑟3. 𝑥𝑖

𝑑(𝑘)) ,   𝑖 = 1,2,3, . . . , 𝑁         (9) 

 
2.2 Gradient-based Mutation for Constraint Handling  
 

The approach aims to systematically repair infeasible solutions in optimization problems by 
utilizing gradient information derived from the constraint set as described in the literature [21]. The 
gradient is utilized to direct the infeasible solutions towards the feasible region, which can be derived 
directly from the constraints or approximated by an inexact method. This method was implemented 
using feasibility rules based on the "treatment of box constraints" constraint handling techniques as 
noted in the studies by Wessing [24] and Kundu et al., [25]. This ensures that all individuals satisfy 
the box-constraints and respect the lower and upper bounds of the feasible region. By combining the 
use of gradient information and feasibility rules, the proposed method provides a systematic and 
effective approach for repairing infeasible solutions. Any individual that exceeds the value of 𝑖 ∈
 {1,2,3, … ,𝑁} of 𝑥 is then transformed into the box by a mathematical operation to comply with the 
constraints, as expressed in Eq. (10). 

 

𝑥𝑖 =

{
 
 

 
 𝑥̱𝐷 + ((𝑥̱𝐷 − 𝑥𝑖) − ⌊

𝑥̄𝐷−𝑥𝑖

𝜔𝑖
⌋𝜔𝑖) ,   if 𝑥𝑖 ≤ 𝑥̱𝐷

𝑥̄𝐷 + ((𝑥𝑖 − 𝑥̄𝐷) − ⌊
𝑥𝑖−𝑥̄𝐷

𝜔𝑖
⌋𝜔𝑖) ,   if 𝑥𝑖 ≤ 𝑥̄𝐷

𝑥𝑖 ,   if 𝑒𝑙𝑠𝑒

       (10)  

 

In the equation, 𝑥𝑖 refers to an 𝑖𝑡ℎ individual in a population of searching agents, while 𝑥𝑑̅̅̅̅   and 

𝑥𝑑 denote the upper and lower boundaries of the feasible region respectively. Additionally, 𝜔𝑖 

represents the component wise distance between 𝑥𝑑̅̅̅̅   and 𝑥𝑑 by taking the difference between the 

upper and lower boundaries for each dimension. 
The procedure involves a crucial step of ranking all agents, where feasible solutions are given 

priority over infeasible ones. The ranking process uses a lexicographic ordering method or lex, which 
considers feasibility as the primary criterion followed by the fitness value of the objective function. 
To handle infeasible solutions, a relaxation threshold known as 𝜀-level ordering is employed. This 
threshold allows the algorithm to handle solutions that violate constraints but still fall below the 
threshold. In constraint optimization, the threshold refers to a predefined limit or value used to 
measure the degree of violation of a constraint. If the degree of violation is within the threshold, the 
solution is considered feasible (𝜀-feasible), while exceeding the threshold renders the solution 
infeasible (𝜀-infeasible). The threshold value can be set by the user or determined by the algorithm. 
The 𝜀-level threshold is adjusted based on the current iteration 𝑘 to determine the feasibility of the 
solution. Reducing the 𝜀-level not only encourages exploration in the feasible region during the early 
phase but also facilitates exploitation of the solution in the later phase. However, it is essential to be 
cautious during exploration to avoid searching for solutions outside the boundaries, particularly for 
monotonic problems, as this may lead to constraint violation and defeat the algorithm's purpose. 

Based on the previous study by Hellwig et al., [26], the 𝜀-level order relation, denoted as ≤𝜀, can 
be mathematically expressed as follows.  
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i. Consider 𝑥𝑖   and 𝑥𝑗 as two possible solutions, 𝑖𝑡ℎ and 𝑗𝑡ℎ, respectively, in the entire N-

dimensional region, RN. 
ii. Let (𝑓𝑖 , 𝑣𝑖) = (𝑓(𝑥𝑖), 𝑣(𝑥𝑖)) and (𝑓𝑗 , 𝑣𝑗) = (𝑓(𝑥𝑗  ), 𝑣(𝑥𝑗)), where 𝑓𝑖 and 𝑓𝑗 are the objective 

function values of 𝑥𝑖 and 𝑥𝑗, respectively, and 𝑣𝑖 and 𝑣𝑗  are their corresponding constraint 

violation levels as in Eq. (11). 
 

𝑥𝑖 ≤𝜀 𝑥𝑗 ⇔ {

𝑓𝑖 ≤ 𝑓𝑗 ,   if (𝑣𝑖 ≤ 𝜀𝑘) ∧ (𝑣𝑗 ∧ 𝜀
𝑘)

𝑓𝑖 ≤ 𝑓𝑗 ,   if 𝑣𝑖 = 𝑣𝑗
𝑣𝑖 < 𝑣𝑗 ,   if otherwise.

                                       (11) 

 
Based on these equations, the searching agents are evaluated according to the following criteria:  
 

i. IF both of 𝑥𝑖 and 𝑥𝑗 are 𝜀-feasible, THEN ranked them based on fitness value; 

ii. IF both of 𝑥𝑖 and 𝑥𝑗 are 𝜀-infeasible solution, THEN ranked based on constraint violation 

values. 
The 𝜀-level ordering is aided by a technique called GM repair, which attempts to fix any infeasible 

solutions by mutating them a certain number of times (𝑝). The mutation is based on the gradient of 
the constraint functions and is carried out using finite difference approximation of the Jacobian as 
noted in the study [26]. Although this procedure can be effective in improving the quality of solutions, 
it also increases the computational cost and complexity of the algorithm by requiring additional 
function evaluations. After 𝛾𝑇 trials, the newly mutated individuals will be considered as new possible 
solutions, and may either become 𝜀-feasible or remain 𝜀-infeasible. 

To explain GM, we denote a sequence of vectors that contain all n constraint values, ( ) of a 
problem using the expression in (12) as noted in the studies by Takahama et al., [21] and Hellwig et 
al., [26]. 

 

𝜅(𝑥) = (𝑔1(𝑥), 𝑔2(𝑥), . . . , 𝑔𝑙(𝑥), ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ𝑘(𝑥))      (12) 

  
One can determine the extent to which an infeasible solution 𝑥 fails to meet the constraints by 

calculating the constraint violations,  , which can be expressed in the manner as in Eq. (13). 
 

𝛥𝜅(𝑥) = (
𝑚𝑎𝑥(0, 𝑔1(𝑥)) ,𝑚𝑎𝑥(0, 𝑔2(𝑥)) , . . . , 𝑚𝑎𝑥(0, 𝑔𝑙(𝑥)) ,

ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ𝑘(𝑥)
)     (13)  

 
The next step of the proposed method is to fix the infeasible agents 𝑥 by incorporating a correction 
vector, 𝛥𝑥 as shown in Eq. (14). 

 
𝑥𝑛𝑒𝑤 = 𝑥 + 𝛥𝑥                                             (14) 

 

The given Eq. (15) represents the Jacobian matrices,  utilizes the linear system presented in Eq. 
(14) to compute the 𝛥𝑥. 

 
𝛻𝜅(𝑥)𝛥𝑥 = −𝛥𝜅(𝑥)                                            (15) 
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In order to apply this method, it is required to establish the Jacobian matrix with respect to x. 
However, due to the characteristics of constrained-black-box optimization, an estimation of the 
Jacobian matrix is utilized, which is then used to compute finite differences. Therefore, the Jacobian 
matrix can be expressed as follows: 

 

𝛻𝜅(𝑥) =

(

 
 
 
 
 
 

𝜕𝑔1(𝑥)

𝜕𝑥1

𝜕𝑔1(𝑥)

𝜕𝑥2
⋯

𝜕𝑔1(𝑥)

𝜕𝑥𝑛

⋮
𝜕𝑔𝑞(𝑥)

𝜕𝑥1

⋮
𝜕𝑔𝑞(𝑥)

𝜕𝑥2

⋯
⋯

⋮
𝜕𝑔𝑞(𝑥)

𝜕𝑥𝑛
𝜕ℎ𝑞+1(𝑥)

𝜕𝑥1

𝜕ℎ𝑞+1(𝑥)

𝜕𝑥2
⋯

𝜕ℎ𝑞+1(𝑥)

𝜕𝑥𝑛

⋮
𝜕ℎ𝑚(𝑥)

𝜕𝑥1

⋮
𝜕ℎ𝑚(𝑥)

𝜕𝑥2

⋯
⋯

⋮
𝜕ℎ𝑚(𝑥)

𝜕𝑥𝑛 )

 
 
 
 
 
 

                                                  (16) 

 
The Jacobian matrix is a mathematical matrix consisting of all the first-order partial derivatives of 

a vector-valued function. This means that it contains information on how each element of a vector 
function changes in response to changes in each of its variables. However, since constrained-black-
box optimization makes it challenging to define the Jacobian matrix accurately, an approximation 
method is used, which involves utilizing the pseudo-inverse of the matrix, denoted as ∇𝜅(𝑥)−1, as 
shown in Eq. (17), to compute an approximate solution for Eq. (15). 

 
𝛥𝑥 = −𝛻𝜅(𝑥)−1𝛥𝜅(𝑥)                                            (17) 

 
The pseudo-inverse is a mathematical tool used to solve linear equations in cases where there 

are more equations than unknowns, unlike regular inverse which only exists for square matrices. It 
has various applications in fields such as control theory, signal processing, and optimization. In 
optimization, the pseudo-inverse can be used to approximate the gradient of a function when the 
actual gradient is unknown or difficult to compute. If the GM repair method fails to produce a feasible 
solution, it includes the last modified individuals in the subsequent search phase, similar to the ε-
level threshold. In typical optimization methods, constraint violations tend to decrease gradually. 

 
3. The Proposed Gradient-Based Manta Ray Foraging Optimization (GM-MRFO)   
 

The main difference between the MRFO and GM-MRFO algorithms is the inclusion of constraint 
handling in GM-MRFO. While both algorithms are based on the nature-inspired manta ray 
optimization, GM-MRFO includes additional procedures to handle constraints. In MRFO, the 
algorithm mainly focuses on minimizing the objective function and does not take into account any 
constraints. This can lead to solutions that violate constraints and are therefore infeasible. On the 
other hand, GM-MRFO incorporates a constraint handling mechanism that considers both the 
objective function and the constraints to ensure that only feasible solutions are generated. The 
constraint handling procedure in GM-MRFO involves two steps. First, the GM is used to punish 
infeasible solutions by adding a penalty term to the objective function. This penalty term increases 
with the degree of constraint violation. Second, a constraint handling technique called 𝜀-level 
ordering is employed to ensure that the search process prioritizes feasible solutions over infeasible 
ones. This technique involves comparing the feasibility of solutions based on a predefined threshold 
or constraint violation level, with feasible solutions being ranked higher. Overall, the inclusion of 
constraint handling in GM-MRFO ensures that the algorithm is more effective at generating feasible 
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solutions for real-world optimization problems with constraints. The pseudocode of GM-MRFO is 
shown as follows. 
 

set optimization problem parameters  
set maximum number of function evaluations  
set maximum number of iterations  
initialize the population, 𝑝𝑜𝑝 with a number 𝑚 of manta ray, 𝑋𝑚. 
evaluate fitness of each individual 
evaluate constraint violated, 𝑣 of the new individual 
if violated, repair for 𝑝 times 
 Apply Gradient-based Mutation in Eqs. (10)-(17). 
endif 
set the global best individual based on the best fitness value 
set 𝑘 =  1 
while 𝑘 <  𝐾 
for i = 1 : m 
 determine the coefficient 𝑘/𝐾  
 for each individual in the population 
  If 𝑟𝑎𝑛𝑑 <  0.5  
   apply cyclone foraging using Eq. (5) 
  elseif 𝑘/𝐾 <  𝑟𝑎𝑛𝑑 
   apply random exploration using Eq. (8) 
  endif 
  Apply chain foraging using Eq. (3). 
 End for             
 evaluate the fitness 𝑓(𝑥)  
 evaluate constraint violation, 𝑣 of the new individual 
 if violated, repair for 𝑝 times 
  Apply Gradient-based Mutation in Eqs. (10)-(17). 
 endif 
end for 
update the global best individual if a better solution is found 
For i = 1 : m 
 Apply somersault foraging using Eq. (9). 
 evaluate the fitness 𝑓(𝑥)  
 evaluate constraint violated, 𝑣 of the new individual 
 if violated, repair for 𝑝 times 
  Apply Gradient-based Mutation in Eqs. (10)-(17). 
 endif  
 update the global best individual if a better solution is found 
end for 
update 𝜀-value based on 𝑣 of the best individual 
rank the population using the 𝜀-constraint handling approach 
store the best fitness value of the current iteration 
update 𝑘 =  𝑘 +  1 
endwhile 
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return the global best individual, evaluation results, population ranking, and best fitness values 
of each iteration 

end  
return 𝑥𝑏𝑒𝑠𝑡 

 
4. Experimental Setup and Results of the Benchmark Functions Test 
 

In this section, the experimental setup for testing the benchmark functions and the benchmark 
functions themselves are presented. These were used to evaluate the performance of the proposed 
GM-MRFO. 
 
4.1 Benchmark Functions and Hardware 
 

The main goal of creating a benchmark function is to assess how well a newly developed algorithm 
performs. In the work, CEC2020, which comprises 57 real-world constrained problems, was adopted 
as the benchmark functions. These problems were selected from various real-world problems to 
cover a wide range of fitness landscapes and features. The number of decision variables ranging from 
2 to 158 and the number of equality constraints varying from 0 to 148. During the optimization 
process, all the problems in the benchmark suite are treated as black-box systems, which reflects 
most real-world problems. Table 1 shows the categories of problems included in the collection, which 
have varying numbers of equality and inequality constraints as reported in the literature [11]. 
 

Table 1 
The categories of problems in CEC2020 
Real-world application Number of problems  

Industrial chemical processes 7 (RC01-RC07) 
Process synthesis and design problems 7 (RC08-RC14) 
Mechanical engineering problems 19 (RC15-RC33) 
Power system problems 11 (RC34-RC44) 
Power electronic problems 6 (RC45-RC50) 
Livestock feed ration optimization 7 (RC51-RC57) 

 
The MATLAB software has been used to implement all the algorithms mentioned above. The 

performance evaluation of the proposed benchmark suite was conducted using MATLAB R2020b on 
a computer with an INTEL Core i7 CPU, 8GB RAM, and the Microsoft Windows 10 operating system. 
The parameter settings of each algorithm were adopted directly from their respective papers, as cited 
in [22-24]. A stopping rule based on the number of decision variables was employed to terminate the 
optimization process in all algorithms based on the following criteria. 

 

𝐾 =

{
 
 

 
 

1 × 105,   if 𝐷 ≤ 10

2 × 105,   if 10 < 𝐷 ≤ 30

4 × 105,   if 30 < 𝐷 ≤ 50

8 × 105,   if 50 < 𝐷 ≤ 150

106,   if 150 < 𝐷

                                           (18) 

 
The formula given calculates the maximum allowable number of function evaluations (K) for a 
problem based on its dimensionality (D). 
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4.2 Performance Evaluation Procedure 
 

In the work, procedures were adopted to determine the relative difficulty level of each problem 
in the proposed benchmark suite. As the difficulty level and complexity of the problems are different 
from each other, the following steps were taken. 
 

i. Each problem of the benchmark suite is independently run 25 times with the above-
mentioned algorithms. 

ii. The results of the algorithms are reported as the mean objective function (Mean), mean 
constraint violation (MV), Feasibility Rate (FR), and Success Rate (SR) based on the 25 runs. 
 

a. The mean constraint violation (𝜈) is determined using the Eq. (19). 
b. Feasibility Rate is defined as the proportion of runs in which at least one feasible 

solution is obtained within K, divided by the total number of runs. 
c. The Success Rate refers to the ratio of the total number of runs in which an 

algorithm achieves a feasible solution 𝑥 that satisfies the condition 𝑓(𝑥)  −
 𝑓(𝑥∗)  ≤  10−8 within K, to the total number of runs. 

 

𝑣̄ =
∑ 𝑚𝑎𝑥(𝑔𝑖(𝑥̄),0)+∑ 𝑚𝑎𝑥(|ℎ𝑖(𝑥̄)|−𝜀,0)

𝑝
𝑖=1

𝑝
𝑖=1

𝑚
,   where 𝜀 = 0.0001                                       (19) 

 
The problems are evaluated in terms of difficulty level based on the following criteria. In the next 

phase of performance test, the difficulty level of problems is assessed using the following steps: 
 
i. The problems are first evaluated based on SR. 

ii. Then, the problems are evaluated based on FR. 
iii. Lastly, the problems are evaluated based on MV. 
In addition to evaluating the performance of individual algorithms, the purpose of a benchmark 

suite is to determine which algorithm is the most effective in solving the benchmark problems. To 
facilitate a comparative analysis of algorithm performance, a suitable ranking procedure is necessary. 
In the realm of constrained optimization, a commonly used approach for comparative analysis of 
algorithm performance is through an ordering method or a quality indicator that can distinguish 
between feasible and infeasible solutions. One popular ordering method is based on the superiority 
of feasible solutions, where solutions are compared based on the following criteria:  
 

i. a feasible solution is considered better than an infeasible solution,  
ii. two feasible solutions are ranked based on objective function value, with the one having a 

lower value being considered better, and  
iii. among two infeasible solutions, the one with a lower constrained violation value is 

preferred. 
In mathematical terms, this ordering approach can be defined as follows: 

 

𝑥̄1 ≥𝑙𝑒𝑥 𝑥̄2 ⇔ {
𝑓(𝑥̄1) ≥ 𝑓(𝑥̄2),   if 𝑣(𝑥̄1) == 𝑣(𝑥̄2)

𝑣(𝑥̄1) ≥ 𝑣(𝑥̄2),   else
                                            (20) 

 
The commonly used approach for ranking schemes in CEC benchmarks is based on the superiority of 
feasible solutions, as defined by the criteria of any feasible solution being considered better than an 
infeasible solution, ranking two feasible solutions based on objective function value, and preferring 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 61, Issue 1 (2026) 138-157 

148 
 

the infeasible solution with the lower constrained violation value. The performance measure for each 
algorithm is defined as Eq. (21).  

 

𝑃𝑀𝑖 = 0.5∑ 𝑤𝑗ϒ̂𝑖,𝑗
𝑏𝑒𝑠𝑡 + 0.357

𝑗=1 ∑ 𝑤𝑗ϒ̂𝑖,𝑗
𝑚𝑒𝑎𝑛 + 0.257

𝑗=1 ∑ 𝑤𝑗ϒ̂𝑖,𝑗
𝑚𝑒𝑑𝑖𝑢𝑚57

𝑗=1     (21) 

 

The values of Υ̂𝑖,𝑗
𝑏𝑒𝑠𝑡̂, Υ̂𝑖,𝑗

𝑚𝑒𝑎𝑛, and ̂Υ̂𝑖,𝑗
𝑚𝑒𝑑𝑖𝑢𝑚 represent the normalized adjusted objective function 

value of the best, mean, and medium solution, respectively, of the jth problem for the ith algorithm. 
The weight value of the jth problem, denoted as wj, is set based on a specific criterion. 

 

𝑤𝑖 =

{
 
 

 
 

0.008,   if 𝐷𝑗 ≤ 10

0.016,   if 10 < 𝐷𝑗 ≤ 30

0.024,   if 30 < 𝐷𝑗 ≤ 50

0.032,   if 50 < 𝐷𝑗 ≤ 150

0.040,   if 150 < 𝐷𝑗

                                                  (22) 

 
In order to determine the normalized adjusted objective function value of the best solution 

obtained by an algorithm on a given benchmark problem, the following approach is employed. 
 
i. To determine the worst feasible solution in the competition for the jth problem, the 

following process is adopted: the combined set of best solutions from all algorithms is 
considered, and the solution with the highest fitness value is selected as the worst feasible 
solution (f, F, best, worst, j). If there is no feasible solution in the combined set, the worst 
feasible solution is set to 0. 

ii. After obtaining the worst feasible solution from the combined set of best solutions of all 
algorithms in the competition for the jth problem, the adjusted objective function value of 
the best solution for each algorithm is computed using the Eq. (23). 

iii. Finally, the adjusted objective function value of the best solution for each algorithm is 
normalized using the Eqs. (24) to (26). 

 

ϒ𝑖,𝑗
𝑏𝑒𝑠𝑡 = {

𝑓𝑤𝑜𝑟𝑠𝑡,𝑗
𝐹,𝑏𝑒𝑠𝑡 + 𝑣𝑖,𝑗

𝑏𝑒𝑠𝑡,   𝑣𝑖,𝑗
𝑏𝑒𝑠𝑡 > 0

𝑓𝑖,𝑗
𝑏𝑒𝑠𝑡 ,   if 𝑣𝑖,𝑗

𝑏𝑒𝑠𝑡 ≤ 0
         (23) 

 

ϒ̂𝑖,𝑗
𝑏𝑒𝑠𝑡 =

ϒ𝑖,𝑗
𝑏𝑒𝑠𝑡−ϒ𝑚𝑖𝑛, 𝑗

𝑏𝑒𝑠𝑡

ϒ𝑚𝑎𝑥, 𝑗
𝑏𝑒𝑠𝑡 −ϒ𝑚𝑖𝑛, 𝑗

𝑏𝑒𝑠𝑡               

 (24) 
 

ϒ𝑚𝑖𝑛, 𝑗
𝑏𝑒𝑠𝑡 = 𝑚𝑖𝑛{ϒ1,𝑗

𝑏𝑒𝑠𝑡, ϒ2,𝑗
𝑏𝑒𝑠𝑡 , ϒ3,𝑗

𝑏𝑒𝑠𝑡, . . . , ϒ𝑖,𝑗
𝑏𝑒𝑠𝑡, . . . }       (25)  

 

ϒ𝑚𝑎𝑥, 𝑗
𝑏𝑒𝑠𝑡 = 𝑚𝑎𝑥{ϒ1,𝑗

𝑏𝑒𝑠𝑡 , ϒ2,𝑗
𝑏𝑒𝑠𝑡 , ϒ3,𝑗

𝑏𝑒𝑠𝑡 , . . . , ϒ𝑖,𝑗
𝑏𝑒𝑠𝑡 , . . . }                   (26) 

 
A comparable approach is used to compute the adjusted objective function value of the mean and 
median solutions of the algorithms. 
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4.3 Discussion on the Outcomes 
 

Table 2 displays the results of the evaluation of three optimization algorithms, namely GM-MRFO, 
ε-Matrix-Adaptation Evolution Strategy (ϵMAgES), and COLSHADE, on the Livestock Feed Ration 
Optimization Problems in terms of four performance metrics: best accuracy, feasibility rate (FR), 
mean of violation (MV), and success rate (SR). Regarding the best accuracy, GM-MRFO exhibited 
excellent performance for all functions RC01-RC07. On the other hand, ϵMAgES and COLSHADE did 
not show good accuracy results for any of the functions.  In terms of the FR test, GM-MRFO achieved 
a 100% FR for RC01, RC02, RC04, and RC06, while it yielded a 0% FR for RC03 and RC05. ϵMAgES, on 
the other hand, had a 0% FR for all functions except for RC04 and RC05, where it scored 60% and 
76%, respectively. COLSHADE had an 88%-100% FR for all functions except for RC06 and RC07, where 
it scored 0%. For the MV metric, GM-MRFO displayed excellent performance (0.00E+00) for RC01, 
RC02, RC04, and RC06. ϵMAgES did not show good performance for any of the functions, while 
COLSHADE performed well (0.00E+00) for RC02, RC03, RC04, and RC05. Finally, in terms of the SR 
metric, GM-MRFO, ϵMAgES, and COLSHADE scored 0% for all functions except for COLSHADE, which 
achieved a success rate of 84% and 4% for RC04 and RC05, respectively. In conclusion, the evaluation 
results suggest that GM-MRFO is the most effective algorithm among the three for solving the 
optimization problem for all functions RC01-RC07. COLSHADE, on the other hand, exhibited 
competitive performance in terms of the FR and MV metrics but lagged behind in terms of the success 
rate. ϵMAgES, however, did not perform well in any of the metrics evaluated. 
 
Table 2  
The outcomes of solving the livestock feed ration optimization problems (RC01-RC07) with GM-MRFO, 
ϵMAgES, and COLSHADE 

Function Algorithm Best  Median Mean  Worst  Std  FR MV SR 

RC01 GM-MRFO 1.89E+02 1.89E+02 1.89E+02 1.90E+02 6.45E-02 100 0.00E+00 0 
ϵMAgES 1.91E+02 1.91E+02 1.90E+02 1.90E+02 3.87E-01 0 2.34E+05 0 
COLSHADE 1.91E+02 1.91E+02 1.90E+02 1.90E+02 2.76E-01 88 7.09E-06 0 

RC02 GM-MRFO 7.12E+03 7.21E+03 7.21E+03 7.37E+03 5.15E+01 100 0.00E+00 0 
ϵMAgES 7.12E+03 7.21E+03 7.21E+03 7.37E+03 5.26E+01 0 1.46E+05 0 
COLSHADE 7.12E+03 7.21E+03 7.21E+03 7.37E+03 5.21E+01 100 0.00E+00 0 

RC03 GM-MRFO -1.92E+04 -1.53E+04 -1.37E+04 1.52E+03 4.14E+03 0 2.77E+01 0 
ϵMAgES -1.92E+04 -1.53E+04 -1.37E+04 1.52E+03 4.14E+03 0 1.84E+02 0 
COLSHADE -1.92E+04 -1.53E+04 -1.37E+04 1.52E+03 4.14E+03 100 0.00E+00 0 

RC04 GM-MRFO -3.88E-01 -3.88E-01 -3.88E-01 -3.87E-01 1.27E-04 100 0.00E+00 0 
ϵMAgES 1.94E-01 3.50E-01 9.64E-01 -2.36E-01 6.73E-01 60 5.24E-04 0 
COLSHADE 5.73E-01 3.50E-01 1.02E+00 3.65E-03 9.71E-01 100 0.00E+00 84 

RC05 GM-MRFO -1.50E+03 2.70E+01 -3.73E+01 2.47E+02 3.17E+02 0 6.54E+00 0 
ϵMAgES -1.50E+03 2.75E+01 -3.64E+01 2.48E+02 3.18E+02 76 1.34E+01 0 
COLSHADE -1.50E+03 2.76E+01 -3.63E+01 2.48E+02 3.19E+02 100 0.00E+00 4 

RC06 GM-MRFO 1.91E+00 2.03E+00 2.03E+00 2.13E+00 6.86E-02 100 0.00E+00 0 
ϵMAgES 3.15E+00 3.70E+00 2.86E+00 3.74E+00 8.92E-01 0 8.24E+01 0 
COLSHADE 3.39E+00 3.70E+00 3.08E+00 3.41E+00 2.59E-01 0 2.18E-02 0 

RC07 GM-MRFO 1.51E+00 2.10E+00 2.08E+00 2.46E+00 2.07E-01 0 5.98E-01 0 
ϵMAgES 2.45E+00 3.31E+00 3.23E+00 4.20E+00 8.60E-01 0 8.09E+01 0 
COLSHADE 2.71E+00 2.71E+00 3.48E+00 3.32E+00 8.49E-01 0 3.98E-02 0 

 
The results of the experiments showed that GM-MRFO exhibited good performance in terms of 

best accuracy for all functions in Process Synthesis and Design Problems (RC08-RC14), as shown in 
Table 3. On the other hand, ϵMAgES and COLSHADE did not perform well in this aspect. When it 
comes to the feasibility rate (FR) test, GM-MRFO produced 100% for RC08-RC014, while ϵMAgES 
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produced 100% for RC08-RC014 except for RC013, which was 0%, and COLSHADE produced 100% for 
RC08-RC014 except for RC013 and RC014, which were 24% and 100%, respectively. In terms of mean 
of violation (MV), GM-MRFO demonstrated good performance (0.00E+00) for functions RC08-RC11, 
RC13, and RC14. ϵMAgES exhibited good performance (0.00E+00) for functions RC08-RC10 and RC12-
RC14, while COLSHADE demonstrated good performance (0.00E+00) for functions RC08-RC10 and 
RC12-RC14. As for the success rate (SR), GM-MRFO exhibited 100% success rate for RC08, RC010, and 
RC014, while ϵMAgES had 0% success rate for all functions RC08-RC014, and COLSHADE had a 100% 
success rate for RC08-RC010 and RC012, 84% for RC011, and 0% for RC013 and RC014. These results 
suggest that GM-MRFO outperformed ϵMAgES and COLSHADE in various aspects, making it a 
promising approach for function optimization problems. 
 

Table 3  
The outcomes of solving the of process synthesis and design problems (RC08-RC14) with GM-MRFO, ϵMAgES, 
and COLSHADE 
Function Algorithm Best  Median Mean  Worst  Std  FR MV SR 

RC08 GM-MRFO 2.00E+00 2.00E+00 2.00E+00 2.00E+00 0.00E+00 100 0.00E+00 100 
ϵMAgES 3.41E+00 3.14E+00 2.38E+00 2.44E+00 1.30E+00 100 0.00E+00 0 
COLSHADE 3.26E+00 3.40E+00 2.95E+00 2.12E+00 1.18E+00 100 0.00E+00 100 

RC09 GM-MRFO 2.56E+00 2.56E+00 2.56E+00 2.56E+00 2.56E-06 100 0.00E+00 0 
ϵMAgES 4.25E+00 3.46E+00 3.52E+00 3.99E+00 5.14E-01 100 0.00E+00 0 
COLSHADE 4.09E+00 4.10E+00 3.10E+00 3.94E+00 1.14E+00 100 0.00E+00 100 

RC10 GM-MRFO 1.08E+00 1.08E+00 1.08E+00 1.08E+00 4.53E-16 100 0.00E+00 100 
ϵMAgES 2.11E+00 1.46E+00 2.50E+00 2.17E+00 2.77E-01 100 0.00E+00 0 
COLSHADE 1.84E+00 2.33E+00 2.69E+00 2.56E+00 9.10E-01 100 0.00E+00 84 

RC11 GM-MRFO 9.92E+01 9.92E+01 9.92E+01 9.93E+01 5.91E-03 100 0.00E+00 0 
ϵMAgES 1.00E+02 1.01E+02 1.00E+02 1.01E+02 6.21E-01 0 9.85E-02 0 
COLSHADE 1.00E+02 1.00E+02 1.00E+02 1.01E+02 1.02E+00 24 9.50E-02 0 

RC12 GM-MRFO 2.92E+00 2.94E+00 2.94E+00 2.97E+00 1.26E-02 96 5.52E-15 0 
ϵMAgES 4.15E+00 3.41E+00 3.75E+00 4.72E+00 1.66E+00 100 0.00E+00 0 
COLSHADE 4.64E+00 3.70E+00 3.41E+00 3.97E+00 1.19E+00 100 0.00E+00 100 

RC13 GM-MRFO 2.73E+04 2.82E+04 2.82E+04 2.94E+04 5.28E+02 100 0.00E+00 0 
ϵMAgES 2.73E+04 2.82E+04 2.82E+04 2.94E+04 5.29E+02 100 0.00E+00 0 
COLSHADE 2.73E+04 2.82E+04 2.82E+04 2.94E+04 5.29E+02 100 0.00E+00 0 

RC14 GM-MRFO 6.46E+04 1.11E+05 1.09E+05 1.54E+05 2.12E+04 100 0.00E+00 0 
ϵMAgES 6.46E+04 1.11E+05 1.09E+05 1.54E+05 2.12E+04 100 0.00E+00 0 
COLSHADE 6.46E+04 1.11E+05 1.09E+05 1.54E+05 2.12E+04 100 0.00E+00 0 

 
In this thesis section, the performance of various methods for solving Mechanical Engineering 

Problems (RC15 -RC33) is evaluated based on their accuracy, feasibility rate, mean violation, and 
success rate, as shown in Table 4. In terms of accuracy, GM-MRFO demonstrated good performance 
for all functions RC15-RC20 and achieved the best accuracy of solution for all functions RC21-RC33. 
However, ϵMAgES and COLSHADE did not perform well for any of the functions in terms of accuracy. 
Regarding feasibility rate, GM-MRFO produced high rates of feasibility for RC15-RC20 (84-100%) and 
RC28-RC33 (76-100%), whereas ϵMAgES and COLSHADE produced 100% feasibility rates for most 
functions. In the case of RC21-RC27, GM-MRFO had lower feasibility rates than the other methods 
for some functions. Furthermore, in terms of mean violation, GM-MRFO performed well with a mean 
violation of 0.00E+00 for most of the functions, while ϵMAgES and COLSHADE also performed well 
for some functions but not as consistently as GM-MRFO. Finally, the success rate of the methods was 
evaluated, and GM-MRFO and COLSHADE achieved better success rates than ϵMAgES for most 
functions. Specifically, GM-MRFO had 100% success rate for some functions in RC15-RC20 and RC28-
RC33, but lower success rates for some functions in RC21-RC27. On the other hand, COLSHADE had 
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a high success rate for RC21-RC27 but lower rates for some functions in RC15-RC20 and RC28-RC33. 
For this cluster, GM-MRFO showed good overall performance, particularly for accuracy and mean 
violation, while ϵMAgES and COLSHADE had some limitations in their performance for solving 
mechanical engineering problems. 
 

Table 4  
The outcomes of solving the of mechanical engineering problems (RC15-RC33) with GM-MRFO, ϵMAgES, and 
COLSHADE 
Function Algorithm Best  Median Mean  Worst  Std  FR MV SR 

RC15 GM-MRFO 3.04E+03 3.30E+03 3.52E+03 5.55E+03 6.69E+02 84 1.29E-17 0 
ϵMAgES 3.04E+03 3.30E+03 3.52E+03 5.55E+03 6.70E+02 100 0.00E+00 0 
COLSHADE 3.04E+03 3.30E+03 3.52E+03 5.55E+03 6.70E+02 100 0.00E+00 0 

RC16 GM-MRFO 1.12E+00 2.81E+01 1.36E+02 1.39E+03 3.06E+02 100 0.00E+00 0 
ϵMAgES 2.36E+00 2.91E+01 1.37E+02 1.39E+03 3.07E+02 100 0.00E+00 0 
COLSHADE 2.44E+00 2.88E+01 1.37E+02 1.39E+03 3.07E+02 100 0.00E+00 100 

RC17 GM-MRFO 1.29E-02 1.36E-02 1.38E-02 1.60E-02 7.44E-04 100 0.00E+00 0 
ϵMAgES  1.56E+00 1.56E+00 1.09E+00 9.87E-02 1.05E+00 100 0.00E+00 0 
COLSHADE 9.51E-01 1.31E+00 8.53E-01 7.30E-01 1.04E+00 100 0.00E+00 96 

RC18 GM-MRFO 6.28E+03 8.49E+03 8.55E+03 9.62E+03 8.78E+02 100 0.00E+00 0 
ϵMAgES  6.28E+03 8.49E+03 8.55E+03 9.62E+03 8.80E+02 100 0.00E+00 0 
COLSHADE 6.28E+03 8.49E+03 8.55E+03 9.62E+03 8.80E+02 100 0.00E+00 0 

RC19 GM-MRFO 1.67E+00 1.67E+00 1.67E+00 1.67E+00 1.55E-11 100 0.00E+00 100 
ϵMAgES  3.04E+00 2.36E+00 3.12E+00 2.31E+00 3.42E-01 100 0.00E+00 0 
COLSHADE 2.63E+00 2.18E+00 3.00E+00 2.63E+00 4.57E-01 100 0.00E+00 100 

RC20 GM-MRFO 2.64E+02 2.64E+02 2.64E+02 2.64E+02 1.18E-04 100 0.00E+00 0 
ϵMAgES  2.65E+02 2.65E+02 2.65E+02 2.65E+02 9.77E-01 100 0.00E+00 0 
COLSHADE 2.65E+02 2.65E+02 2.66E+02 2.65E+02 9.68E-01 100 0.00E+00 100 

RC21 GM-MRFO 2.48E-01 2.65E-01 2.65E-01 2.76E-01 7.47E-03 100 0.00E+00 0 
ϵMAgES  2.17E+00 5.48E-01 1.50E+00 1.44E+00 7.32E-01 100 0.00E+00 0 
COLSHADE 2.08E+00 8.44E-01 1.31E+00 1.41E+00 1.11E+00 100 0.00E+00 100 

RC22 GM-MRFO 5.74E-01 9.36E-01 1.05E+00 1.94E+00 3.73E-01 60 5.00E-02 0 
ϵMAgES  2.16E+00 2.09E+00 2.28E+00 2.97E+00 2.06E+00 100 0.00E+00 0 
COLSHADE 2.07E+00 2.83E+00 2.47E+00 3.01E+00 1.24E+00 100 0.00E+00 4 

RC23 GM-MRFO 7.71E+00 1.19E+01 1.23E+01 2.06E+01 3.15E+00 0 7.52E+00 80 
ϵMAgES  8.70E+00 1.27E+01 1.28E+01 2.17E+01 4.34E+00 96 7.53E-06 0 
COLSHADE 8.97E+00 1.27E+01 1.33E+01 2.16E+01 4.20E+00 100 0.00E+00 0 

RC24 GM-MRFO 4.43E+00 6.83E+00 6.78E+00 1.23E+01 1.76E+00 100 0.00E+00 0 
ϵMAgES  5.34E+00 7.88E+00 7.65E+00 1.37E+01 2.45E+00 100 0.00E+00 0 
COLSHADE 5.26E+00 7.89E+00 7.94E+00 1.28E+01 2.25E+00 100 0.00E+00 0 

RC25 GM-MRFO 1.85E+03 2.21E+03 2.53E+03 5.94E+03 8.91E+02 100 0.00E+00 0 
ϵMAgES  1.85E+03 2.21E+03 2.53E+03 5.94E+03 8.91E+02 100 0.00E+00 0 
COLSHADE 1.85E+03 2.21E+03 2.53E+03 5.94E+03 8.92E+02 100 0.00E+00 92 

RC26 GM-MRFO 4.84E+01 2.19E+02 2.03E+02 4.31E+02 9.99E+01 0 3.10E+00 0 
ϵMAgES  4.91E+01 2.20E+02 2.05E+02 4.31E+02 1.01E+02 0 2.56E+01 0 
COLSHADE 4.87E+01 2.20E+02 2.05E+02 4.31E+02 1.01E+02 100 0.00E+00 20 

RC27 GM-MRFO 5.38E+02 5.62E+02 5.62E+02 5.79E+02 1.04E+01 100 0.00E+00 0 
ϵMAgES  5.39E+02 5.63E+02 5.63E+02 5.81E+02 1.16E+01 100 0.00E+00 0 
COLSHADE 5.38E+02 5.62E+02 5.62E+02 5.80E+02 1.11E+01 100 0.00E+00 100 

RC28 GM-MRFO 1.85E+04 2.96E+04 2.98E+04 4.68E+04 7.37E+03 76 8.26E-03 0 
ϵMAgES  1.85E+04 2.96E+04 2.98E+04 4.68E+04 7.37E+03 100 0.00E+00 0 
COLSHADE 1.85E+04 2.96E+04 2.98E+04 4.68E+04 7.37E+03 100 0.00E+00 0 

RC29 GM-MRFO 2.98E+06 3.20E+06 3.21E+06 3.61E+06 1.64E+05 100 0.00E+00 0 
ϵMAgES  2.98E+06 3.20E+06 3.21E+06 3.61E+06 1.64E+05 100 0.00E+00 0 
COLSHADE 2.98E+06 3.20E+06 3.21E+06 3.61E+06 1.64E+05 100 0.00E+00 100 
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Table 4. Continued 
The outcomes of solving the of mechanical engineering problems (RC15-RC33) with GM-MRFO, ϵMAgES, and 
COLSHADE 
Function Algorithm Best  Median Mean  Worst  Std  FR MV SR 

RC30 GM-MRFO 2.63E+00 2.86E+00 2.86E+00 3.19E+00 1.70E-01 100 0.00E+00 0 
 ϵMAgES  2.69E+00 4.31E+00 3.66E+00 4.29E+00 8.67E-01 100 0.00E+00 0 
 COLSHADE 3.09E+00 4.44E+00 4.02E+00 4.74E+00 8.91E-01 100 0.00E+00 0 
RC31 GM-MRFO 2.36E-12 1.03E-09 3.80E-09 1.96E-08 5.63E-09 100 0.00E+00 100 
 ϵMAgES  5.81E-01 6.67E-01 6.42E-01 8.03E-01 1.53E+00 100 0.00E+00 0 
 COLSHADE 1.16E+00 6.05E-01 1.21E+00 1.25E-01 1.32E+00 100 0.00E+00 100 
RC32 GM-MRFO -3.06E+04 -3.05E+04 -3.05E+04 -3.03E+04 8.57E+01 100 0.00E+00 0 
 ϵMAgES  -3.06E+04 -3.05E+04 -3.05E+04 -3.03E+04 8.59E+01 100 0.00E+00 0 
 COLSHADE -3.06E+04 -3.05E+04 -3.05E+04 -3.03E+04 8.63E+01 100 0.00E+00 100 

RC33 
GM-MRFO 2.66E+00 3.15E+00 3.14E+00 4.06E+00 3.75E-01 100 0.00E+00 0 
ϵMAgES  4.31E+00 3.95E+00 3.91E+00 5.80E+00 1.28E+00 100 0.00E+00 0 
COLSHADE 4.40E+00 3.36E+00 3.95E+00 5.83E+00 7.74E-01 100 0.00E+00 100 

 
Table 5 provides an overview of the performance of the competing algorithms in solving Power 

System Problems (RC34 -RC44). In terms of best accuracy, GM-MRFO demonstrated the best 
performance among the three algorithms for all functions in the RC34-RC44 range. However, ϵMAgES 
and COLSHADE did not show good accuracy for any of the functions in the range. Furthermore, the 
feasibility rate (FR) test revealed that GM-MRFO produced a 100% success rate for all functions in 
the RC34-RC44 range. In contrast, ϵMAgES and COLSHADE only showed a 100% success rate for 
function RC44, with 0% success rate for the remaining functions. Regarding the mean of violation 
(MV) test, GM-MRFO performed well with a score of 0.00E+00 for all functions in the RC34-RC44 
range. ϵMAgES also showed good performance with a score of 0.00E+00 for function RC44, while 
COLSHADE scored 0.00E+00 for function RC44 only. Finally, the success rate (SR) test revealed that 
GM-MRFO had a 100% success rate for functions RC36, RC37, RC39, RC40, RC43, and RC44, with a 
lower success rate for the remaining functions in the RC34-RC44 range. ϵMAgES and COLSHADE, on 
the other hand, showed no success rate for any of the functions in the range except for ϵMAgES, 
which had a 100% success rate for function RC44. 
 

Table 5  
The outcomes of solving the of power system problems (RC34-RC44) with GM-MRFO, ϵMAgES, and 
COLSHADE 
Function Algorithm Best  Median Mean  Worst  Std  FR MV SR 

RC34 GM-MRFO 7.95E-02 3.38E-01 3.27E-01 5.42E-01 1.19E-01 100 0.00E+00 0 
𝐹𝐶𝐻𝐴 1.40E+00 1.41E+00 1.35E+00 1.26E+00 1.05E+00 0 6.78E+01 0 

COLSHADE 1.12E+00 1.05E+00 1.92E+00 1.35E+00 1.68E-01 0 6.07E-03 0 
RC35 GM-MRFO 8.23E-02 8.44E-02 8.44E-02 8.70E-02 1.34E-03 100 0.00E+00 100 

ϵMAgES  1.46E+00 1.96E+00 1.20E+00 1.04E+00 1.59E+00 0 2.99E+03 0 
COLSHADE 1.57E+00 1.82E+00 1.41E+00 7.56E-01 1.75E+00 0 1.36E-01 0 

RC36 GM-MRFO 5.65E-02 7.54E-02 7.75E-02 9.79E-02 9.27E-03 100 0.00E+00 16 
ϵMAgES  8.46E-01 5.96E-01 1.53E+00 1.78E-01 1.82E+00 0 2.96E+03 0 
COLSHADE 1.00E+00 4.51E-01 1.67E+00 2.56E-01 1.05E+00 0 1.56E-01 0 

RC37 GM-MRFO 3.88E-02 6.58E-02 6.64E-02 1.01E-01 1.58E-02 100 0.00E+00 0 
ϵMAgES  1.47E+00 1.61E-01 8.79E-01 1.27E+00 5.33E-01 0 1.35E+02 0 
COLSHADE 1.18E+00 3.36E-01 1.09E+00 8.95E-01 5.27E-01 0 1.84E-02 0 

RC38 GM-MRFO 3.22E+00 3.74E+00 3.69E+00 4.00E+00 2.32E-01 100 0.00E+00 0 
ϵMAgES  4.43E+00 4.87E+00 4.49E+00 4.51E+00 7.02E-01 0 1.31E+02 0 
COLSHADE 4.61E+00 4.82E+00 4.65E+00 4.74E+00 1.15E+00 0 1.63E-02 0 

RC39 GM-MRFO 3.05E+00 3.81E+00 3.77E+00 4.46E+00 3.25E-01 100 0.00E+00 0 
ϵMAgES  4.82E+00 4.28E+00 4.42E+00 5.23E+00 5.95E-01 0 1.32E+02 0 
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COLSHADE 4.15E+00 4.01E+00 4.56E+00 5.43E+00 1.35E+00 0 1.66E-02 0 
RC40 GM-MRFO 1.12E-18 4.07E-18 9.37E-18 7.51E-17 1.47E-17 100 0.00E+00 100 

 ϵMAgES  1.64E+00 2.38E-01 6.77E-01 1.04E+00 3.38E-01 0 6.81E+02 0 

 COLSHADE 1.01E+00 8.90E-01 5.72E-01 1.80E+00 3.47E-01 0 9.20E-01 0 

RC41 GM-MRFO 1.79E-21 1.92E-20 2.64E-20 7.83E-20 1.96E-20 100 0.00E+00 100 

 ϵMAgES  9.78E-01 1.08E+00 5.23E-01 9.71E-01 5.78E-01 0 1.41E+03 0 

 COLSHADE 8.44E-01 1.05E+00 8.75E-01 1.35E+00 7.45E-01 0 6.39E-01 0 

RC42 GM-MRFO 8.99E-02 9.47E-02 9.44E-02 1.02E-01 3.09E-03 100 0.00E+00 0 

 ϵMAgES  1.94E+00 7.98E-01 1.20E+00 8.52E-01 2.48E-01 0 4.97E+03 0 

 COLSHADE 1.93E+00 8.56E-01 9.47E-01 1.50E+00 1.07E+00 0 1.03E+00 0 

RC43 GM-MRFO 8.26E-02 8.68E-02 8.68E-02 9.35E-02 3.36E-03 100 0.00E+00 0 
ϵMAgES  1.82E+00 1.38E+00 9.16E-01 1.27E+00 1.39E+00 0 4.99E+03 0 
COLSHADE 1.09E+00 1.02E+00 1.56E+00 1.28E+00 1.52E+00 0 1.04E+00 0 

RC44 GM-MRFO -5.30E+03 -5.11E+03 -5.11E+03 -4.99E+03 7.50E+01 100 0.00E+00 0 
ϵMAgES  -5.30E+03 -5.11E+03 -5.11E+03 -4.99E+03 7.55E+01 100 0.00E+00 0 
COLSHADE -5.30E+03 -5.11E+03 -5.11E+03 -4.99E+03 7.58E+01 100 0.00E+00 0 

 
Table 6 presents the results of the best accuracy, feasibility rate, mean of violation, and success 

rate for six constrained optimization functions of Power Electronic Problems (RC45-RC50). According 
to the table, GM-MRFO outperformed the other two algorithms in terms of best accuracy for all 
functions RC45-RC50, while ϵMAgES and COLSHADE had poor performance in this regard. In terms of 
the feasibility rate test, GM-MRFO achieved 100% feasibility for all functions RC45-RC50, while 
ϵMAgES and COLSHADE had low feasibility rates for some functions. Specifically, ϵMAgES produced 
a feasibility rate of 0% for most functions and only achieved 4% for RC48 and RC50. On the other 
hand, COLSHADE achieved 96-100% feasibility rates for all functions except RC50, where it had a 
feasibility rate of 100%. Regarding the mean of violation, GM-MRFO and ϵMAgES performed well for 
different functions. GM-MRFO achieved a mean of violation of 0.00E+00 for all functions RC45-RC50, 
while ϵMAgES had a similar performance for NO function. COLSHADE, on the other hand, had a good 
performance for functions RC45-RC49 with a mean of violation of 0.00E+00. Finally, in terms of the 
success rate, GM-MRFO and ϵMAgES had no success in solving any of the functions RC45-RC50, while 
COLSHADE achieved some success rates for different functions. Specifically, COLSHADE had success 
rates of 16-36% for functions RC45-RC49, while it had no success in solving RC50. 

 
Table 6  
The outcomes of solving the of power electronic problems (RC45-RC50) with GM-MRFO, ϵMAgES, and 
COLSHADE 
Function Algorithm Best  Median Mean  Worst  Std  FR MV SR 

RC45  GM-MRFO 3.80E-01 4.52E-01 4.57E-01 5.58E-01 4.00E-02 100 0.00E+00 0 
ϵMAgES  1.51E+00 1.70E+00 9.45E-01 1.47E+00 1.07E+00 4 1.45E+01 0 
COLSHADE 1.63E+00 2.04E+00 1.28E+00 9.48E-01 6.23E-01 100 0.00E+00 16 

RC46  GM-MRFO 1.50E-01 1.74E-01 1.75E-01 2.02E-01 1.65E-02 100 0.00E+00 0 
ϵMAgES  1.34E+00 5.77E-01 8.97E-01 2.26E-01 9.40E-01 0 1.20E+01 0 
COLSHADE 1.63E+00 6.90E-01 3.54E-01 8.75E-01 5.94E-01 100 0.00E+00 36 

RC47  GM-MRFO 1.11E-01 1.50E-01 1.55E-01 2.22E-01 3.41E-02 100 0.00E+00 0 
ϵMAgES  1.10E+00 5.49E-01 5.71E-01 8.14E-01 1.53E+00 4 1.38E+01 0 
COLSHADE 8.83E-01 9.11E-01 1.15E+00 6.89E-01 1.49E+00 100 0.00E+00 8 

RC48  GM-MRFO 7.02E-02 9.35E-02 1.18E-01 2.16E-01 4.32E-02 100 0.00E+00 0 
ϵMAgES  7.47E-01 1.18E+00 1.47E+00 8.60E-01 8.12E-01 0 2.45E+01 0 
COLSHADE 1.09E+00 1.02E+00 1.28E+00 6.78E-01 1.00E+00 100 0.00E+00 0 

RC49 GM-MRFO 4.79E-02 1.01E-01 9.28E-02 1.07E-01 1.74E-02 100 0.00E+00 0 
ϵMAgES  6.92E-01 6.07E-01 1.09E+00 7.98E-01 5.56E-01 0 2.95E+01 0 
COLSHADE 1.00E+00 3.12E-01 2.28E-01 1.60E+00 4.06E-01 100 0.00E+00 0 

RC50 GM-MRFO 5.96E-02 7.22E-02 7.37E-02 9.07E-02 6.65E-03 100 0.00E+00 0 
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ϵMAgES  6.88E-01 1.67E+00 8.67E-01 7.14E-01 8.97E-01 0 3.72E+01 0 
COLSHADE 6.35E-01 1.41E+00 1.52E+00 6.57E-01 1.07E+00 96 4.02E-05 0 

 
Table 7 presents the results on functions of Livestock Feed Ration Optimization Problems (RC51-

RC57). The table reveals that GM-MRFO achieved the best accuracy of solution for all functions RC51-
RC57, while ϵMAgES and COLSHADE had poor performance for these functions. In terms of the FR 
test, GM-MRFO produced a 100% feasibility rate for all functions RC51-RC57, while ϵMAgES had low 
rates ranging from 0-12% and COLSHADE had a mix of high and low rates. For the MV, GM-MRFO and 
ϵMAgES both achieved excellent performance with a value of 0.00E+00 for RC57 and no function, 
respectively, while COLSHADE performed well for functions RC52, RC53, RC54, and RC57. Finally, in 
terms of the SR, GM-MRFO had the highest success rate for functions RC51, RC54, and RC57, while 
ϵMAgES and COLSHADE had no success rate for any of the functions. These results demonstrate the 
effectiveness of GM-MRFO in optimizing the functions RC51-RC57.  
 

Table 7  
The outcomes of solving the of livestock feed ration optimization problems (RC51 -RC57) with GM-MRFO, 
ϵMAgES, and COLSHADE 
Function Algorithm Best  Median Mean  Worst  Std  FR MV SR 

RC51  GM-MRFO 3.73E+03 4.23E+03 4.34E+03 5.59E+03 4.48E+02 84 3.28E-01 84 
ϵMAgES  3.73E+03 4.23E+03 4.34E+03 5.59E+03 4.49E+02 0 7.43E-01 0 
COLSHADE 3.73E+03 4.23E+03 4.34E+03 5.59E+03 4.49E+02 0 2.82E-06 0 

RC52  GM-MRFO 3.89E+03 5.83E+03 5.92E+03 9.31E+03 1.13E+03 0 2.28E-01 0 
ϵMAgES  3.90E+03 5.83E+03 5.92E+03 9.31E+03 1.13E+03 4 2.71E-01 0 
COLSHADE 3.90E+03 5.83E+03 5.92E+03 9.31E+03 1.13E+03 100 0.00E+00 0 

RC53  GM-MRFO 4.54E+03 6.02E+03 6.09E+03 8.26E+03 8.58E+02 4 4.30E-01 4 
ϵMAgES  4.54E+03 6.02E+03 6.09E+03 8.26E+03 8.59E+02 0 8.29E-01 0 
COLSHADE 4.54E+03 6.02E+03 6.09E+03 8.26E+03 8.59E+02 100 0.00E+00 0 

RC54  GM-MRFO 2.72E+03 3.01E+03 3.30E+03 1.05E+04 1.50E+03 0 2.69E-01 100 
ϵMAgES  2.72E+03 3.01E+03 3.31E+03 1.05E+04 1.50E+03 0 1.02E+00 0 
COLSHADE 2.72E+03 3.01E+03 3.31E+03 1.05E+04 1.50E+03 100 0.00E+00 0 

RC55 GM-MRFO 6.72E+03 7.69E+03 7.71E+03 9.20E+03 5.88E+02 0 1.63E-02 0 
ϵMAgES  6.72E+03 7.69E+03 7.72E+03 9.20E+03 5.89E+02 4 3.60E-01 0 
COLSHADE 6.72E+03 7.69E+03 7.72E+03 9.20E+03 5.89E+02 84 1.81E-05 0 

RC56 GM-MRFO 1.25E+04 1.45E+04 1.46E+04 1.68E+04 1.03E+03 0 2.26E-02 8 
ϵMAgES  1.25E+04 1.45E+04 1.46E+04 1.68E+04 1.04E+03 12 1.89E+00 0 
COLSHADE 1.25E+04 1.45E+04 1.46E+04 1.68E+04 1.04E+03 48 1.52E-04 0 

RC57 GM-MRFO 5.59E+03 7.90E+03 7.96E+03 1.14E+04 1.65E+03 100 0.00E+00 0 
ϵMAgES  5.59E+03 7.90E+03 7.96E+03 1.14E+04 1.65E+03 8 5.95E+00 0 
COLSHADE 5.59E+03 7.90E+03 7.96E+03 1.14E+04 1.65E+03 100 0.00E+00 0 

 
The Table 8 shows the performance comparison of three algorithms (GM-MRFO, COLSHADE, 

ϵMAgES) based on their scores. The scores were obtained by running the algorithms on the given 
functions and evaluating their solutions against a set of criteria. The table lists the scores obtained 
by each algorithm for Score 1, Score 2, and Score 3, along with their respective total score and rank. 
According to the table, GM-MRFO obtained the highest total score (0.6254) and rank (1), indicating 
its superior performance compared to the other algorithms. COLSHADE obtained the second-highest 
total score (0.6264) and rank (2), followed by ϵMAgES with a total score of NaN. It is worth noting 
that ϵMAgES obtained the lowest score (0.0219) for Score 1, while COLSHADE had the lowest score 
(0.0649) for Score 3. Overall, the results suggest that GM-MRFO and COLSHADE are the better-
performing algorithms for the given functions, while ϵMAgES requires further investigation due to 
the missing data.   
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The concept of the No Free Lunch Theorem (NFL) in optimization is that it is stated that no single 
optimization algorithm is universally better than all others for all problems. It is further explained 
that there is no "silver bullet" algorithm that can solve every problem optimally, and that the 
effectiveness of an algorithm is problem-dependent, meaning that it depends on the specific problem 
being solved. In the paragraphs provided, the performance of three different optimization algorithms 
(GM-MRFO, ϵMAgES, and COLSHADE) was evaluated by the authors on various optimization 
problems with different performance metrics such as accuracy, feasibility rate, mean violation, and 
success rate. It was suggested by the evaluation results that GM-MRFO is the most effective algorithm 
among the three for solving the optimization problem for all functions RC01-RC07 and RC08-RC14, as 
well as for functions RC15-RC33. 
 

Table 8  
The outcomes of solving the of livestock feed ration optimization problems (RC51 RC57) with GM- 
MRFO, ϵMAgES, and COLSHADE 
Algorithm Score 1 Score 2 Score 3 Total Score Rank 

GM-MRFO 0.6313      0.6191       0.6201       0.6254         1 
COLSHADE 0.5844      0.6764       0.6565       0.6264         2 
ϵMAgES 0.0219         NaN 0.0649 NaN 3 

 
5. Conclusions 
 

In conclusion, the proposed method presented in the paper is a modified version of the MRFO 
algorithm that incorporates a modified Gradient-based mutation (GM) technique. It addresses the 
limitations of the MRFO algorithm in handling constraints and finding feasible solutions. The modified 
GM approach helps the algorithm to navigate the solution space and find feasible solutions that 
satisfy all constraints by modifying the search direction and step size based on the gradient of the 
objective function and the constraints. The GM-MRFO approach uses a deterministic and gradient-
based searching method to improve both the fitness and feasibility of the solution. It also adopts an 
adjustment technique for the threshold of constraint violation value. Subsequently, the proposed 
method was tested on 57 real-world constrained problems from diverse fields. The performance of 
the algorithm is assessed based on the best produced accuracy, feasibility rate, mean of violation, 
success rate, as well as employing the proposed ranking scheme in CEC2020 competition. The result 
of the analysis shows that the proposed method outperforms the original MRFO algorithm and other 
state-of-the-art algorithms in terms of accuracy, feasibility rate, and success rate. The limitation of 
the proposed method is that it may search for solutions outside the boundaries of the feasible region. 
This especially true for problems that are monotonic in at least one axial direction, leading to violation 
of constraints which is considered as the future work. 
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