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 ABSTRACT 

 

 

 

In the realm of unsupervised machine learning, clustering stands as a pivotal method 
in data analysis. However, it grapples with challenges arising from diverse datasets, 
leading to certain algorithms displaying reduced effectiveness or prolonged execution 
times on specific data types. The performance of each clustering algorithms depends 
on both the dataset's sample size and its specific characteristics. Among these 
algorithms, K-means clustering stands out as a popular choice. It is essential to evaluate 
its accuracy levels and execution times across various datasets with different sample 
sizes and features. This paper assesses the precision and efficiency of the K-means 
clustering algorithm on three distinct datasets, namely seed data, iris data and well log 
data sourced from GitHub, each characterized by variations in both size and features. 
The Seed dataset represents three different varieties of wheat seeds, Iris dataset 
represents measurements of three different iris flowers species and Well log dataset 
represents Sonic log and Gamma ray data respectively. The aim is to analyse how 
accurate and efficient K-means algorithm performs across these data sets. The results 
show that K-means algorithm produces high accuracy and lower computational time to 
the Well log dataset.  
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1. Introduction 
 

Clustering analysis belongs to the realm of unsupervised learning technique. The goal of 
clustering analysis is to categorize unlabelled data objects into groups where those within the same 
groups share high similarity, while those in different groups show low similarity [1,2]. Among the 
available clustering algorithms [3], k-means clustering stands out as one of the most utilized 
techniques, largely because of its simplicity, efficiency and effectiveness. Identifying inherent 
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patterns within a given dataset through clustering is a widely favoured approach utilized across 
diverse fields such as psychology [4], biology, pattern recognition [5,6], image processing [7], 
computer security [8] and different types of drugs [9-12]. After a clustering algorithm has analysed a 
dataset and generated partitions, a significant question arises: Does this partition adequately address 
the dataset's underlying problem? Understanding the rationale behind this question holds 
considerable importance across numerous contexts. Additionally, there isn't a universally optimal 
clustering algorithm [13]. As a result, different algorithms or even variations of a single algorithm 
produces alternative divisions that may not universally be considered optimal in all scenarios [14]. 
Therefore, to create effective clusters, it's crucial to assess various partition segments and select the 
one that best fits the data. Additionally, many clustering algorithms cannot autonomously determine 
the number of inherent clusters in the dataset, requiring the specification of the k parameter. 
Typically, the approach involves running the algorithm multiple times with different k-values. Each 
resulting partition is then evaluated to determine the most suitable fit for the provided data. 
Clustering accuracy refers to how closely the generated clusters align with the true structure or 
ground truth present in the dataset [15]. Assessing the coherence of data points within clusters is 
crucial, often measured using metrics like the adjusted rand index and silhouette score. However, 
validating unsupervised results poses challenges due to the absence of labelled ground truth for 
gauging cluster accuracy. Ambiguity arises from differing cluster shapes, sizes and densities, making 
it challenging to determine the quality of clusters accurately. Furthermore, accurately evaluating 
clusters are complicated by sensitivity to algorithm parameters and the choice of evaluation metrics 
[16]. K-Means, is an extensively studied clustering method, focuses on reducing the overall variance 
within clusters [17]. Its popularity in diverse fields is attributed to its simplicity and efficiency in 
clustering tasks. However, a notable limitation of the widely employed K-means algorithm is its 
requirement for a predetermined number of clusters, K [18].  

In prior studies, there is a deficiency in comparisons addressing both the accuracy and execution 
time of the K-means clustering algorithm across a range of datasets. Hence, this paper focuses on a 
detailed examination and comparison of the accuracy and execution time of the K-means clustering 
algorithm, utilizing three different datasets. In the examination of this paper, it is observed that K-
means clustering lacks universal applicability across all datasets and its utilization has been restricted 
when applied to various datasets. However, this paper aims to utilize the K-means clustering 
algorithm across three distinct datasets that possess varying features and different numbers of 
observations.  

This paper primarily focuses on enhancing accuracy while minimizing the time required for 
execution. 

 
i. The accuracy of the k-means clustering algorithm tends to enhance with an increase in 

the sample size. 
ii. The k-means clustering algorithm reveals a negative correlation between  number of 

features and execution time. 
 

   This article is structured as follows:  
 

i. Section 2 provides a literature review, focusing on clustering, especially K-means 
clustering. 

ii. Section 3, the methodology explores the intricacies of K-means clustering, including a 
flowchart, equations and a step-by-step process.  
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iii. Section 4 presents the results and discussion, highlighting the accuracy and execution 
time performances obtained by applying diverse datasets to clustering methods.  

iv. Section 5 encompasses concluding remarks of the paper. 
 

2. Literature Review 
 
This section examines pertinent studies related to clustering algorithms, with a specific emphasis 

on the K-means clustering algorithm. The objective of this article is to conduct a thorough analysis of 
studies, methodologies and advancements associated with K-means clustering, investigating its 
applications across diverse domains. This comprehensive review will shed light on the strengths, 
limitations and potential improvements associated with the K-means algorithm in the context of 
clustering analysis. Studied a new GPU based K−means; ASB-K−means is introduced which is faster 
than current GPU based k-means algorithms [19,20]. A Centroids-Guided Deep Multi-View K-means 
method linking DL with MVC is proposed by the paper. This centres on cluster centroids to help it 
with deep representation learning giving the K-means friendly representations. Its effectiveness in 
multi-view task is evaluated by showing that this approach leads to improved clustering and closer-
to-cluster-semantic matching of representations across datasets [21]. This study evaluated the 
Kernelized Rank Order Distance (KROD) method for converting non-spherical data into spherical form 
using various datasets. By combining a rank order distance (ROD) equation with a Gaussian kernel, 
KROD calculated distances and assigned weights to data points for spherical transformation. Pairwise 
similarities were weighted using the Gaussian kernel, while actual distances were computed with 
ROD, capturing both global and local structures. Numerical results showed that increasing the sample 
size improved KROD's effectiveness in accurately transforming non-spherical data into spherical form 
[22]. The paper explored big data's importance in case clustering, proposing an improved 
Mahalanobis Distance-based K-Means scheme with enhanced precision for clustering similar data 
[23]. The ratio-cut polytope, crucial in K-means and spectral clustering, analysed algorithmic 
therefore a new linear programming relaxation for K-means consistently outperformed prior 
guarantees, demonstrating superior cluster recovery in experiments [24]. The examination of the 
paper revealed that Hierarchical++ exhibited better performance when compared to conventional 
hierarchical methods (such as single-link, complete-link, etc.), as well as K-means and K-means++ 
[25]. The document overviewed hierarchical clustering in astronomy, tracing its origins, discussing its 
applications across astronomical scales and explaining its role in revealing celestial hierarchies while 
classifying objects. It elaborated on algorithm functionalities, limitations and contributions to reliable 
astronomical discoveries [26]. The paper introduced HMC (Hierarchical Means Clustering), a novel 
technique using nested partitions and least squares to minimize within-cluster deviance across n 
partitions, resulting in a cascade of (n-1) divisions. Six case studies compared HMC to established 
hierarchical clustering algorithms like k-means, Ward's method and Bisecting k-means [27]. The 
article proposed a novel hierarchical clustering method to address small file issues in Hadoop 
Distributed File Systems (HDFS). Using Dendrogram analysis, it recommended efficient consolidation 
strategies, successfully identifying and merging seven specific files in a simulation of 100 CSV files. 
This demonstrated its effectiveness in enhancing file management efficiency [28]. The paper 
introduced HY-DBSCAN, a parallel DBSCAN algorithm incorporating a modified KD-tree, grid-based 
spatial indexing and a distributed merging scheme. It outperformed existing solutions up to 2048 
cores, leveraging process and thread parallelization for implementing DBSCAN on scientific datasets 
[29]. The paper improved DBSCAN for efficient clustering in polygonal-shaped databases by reducing 
computation costs through targeted sampling. It demonstrated superior speed compared to recent 
approaches, with only a slight accuracy reduction from traditional DBSCAN [30]. The paper 
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introduced STRP-DBSCAN, a parallel method for clustering spatial-temporal trajectory data, reducing 
clustering time by up to 96.2%. It also presented PER-SAC, a deep reinforcement learning-based 
technique for tuning DBSCAN parameters, achieving 8.8% better accuracy than other strategies [31]. 
The paper introduced a modified DBSCAN algorithm for detecting anomalies in seasonally correlated 
time-series data, outperforming conventional DBSCAN by 2.16% in identifying abnormalities. The 
refined method efficiently detected both inter-annual and within-year anomalies, showcasing higher 
efficiency in detecting local anomalies in seasonal data [32]. Previous research saw a surge in high-
dimensional datasets due to increased data volumes. Bisecting K-Means struggled as dimensions 
grew. To fix this, we combined stability-based measures and MSE in CHB-K-Means. Experiments, 
altering outlier detection, showed a 75% average clustering accuracy and decreased computation 
time with more outliers detected [33,34]. The paper proposed a modified DBSCAN for detecting 
anomalies in seasonally correlated time-series data, outperforming conventional DBSCAN by 2.16%. 
The refined method efficiently detected inter-annual and within-year anomalies, demonstrating 
higher efficiency in detecting local anomalies in seasonal data [35]. The study enhanced K-means++ 
by integrating variance from probability and statistics. Initial centres were selected based on 
minimum variance among high-density samples and subsequent centres used a weighted D2 method. 
Experimental results demonstrated increased accuracy and improved stability [36,37]. The paper 
analysed the issue of soil clustering and the spatial representation of results obtained from in-situ 
measurements of soil's physical and chemical traits. It adapted the K-means and fuzzy K-means 
algorithms for soil data clustering, utilizing a database of soil samples collected in Montenegro for 
comparative analysis. The classified soil data were displayed on a static Google map for visualization 
[38,39]. Evolutionary K-Means (EKM) merged K-Means with genetic algorithms, autonomously 
selecting parameters during partition evolution. While effective for distinct clusters, EKM struggled 
with noise. To improve, combined EKM with clustering stability-based analysis. The novel CSEKM 
method used matrices to capture clustering tendencies, enhancing robustness to noise across various 
datasets [40].  

In the context of existing literature, there is a noticeable gap in studies that specifically examine 
the accuracy and execution times of the K-means clustering algorithm across diverse datasets 
featuring varying sample sizes and features. 

 
3. Methodology 

 
In this section, the paper explores the analysis of the K-means clustering algorithm, its associated 

flowchart and the process employed in clustering datasets with K-means. The primary goal is to 
assess the accuracy and quantify the execution time of K-means clustering algorithms. 

 
3.1 K-Mean Clustering Algorithm  

 
K-means clustering stands out as a top algorithm in the realm of unsupervised machine learning. 

The clustering process is visually represented in the flowchart below. 
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Fig. 1. Flow chart of k-mean clustering algorithm 

 
The process begins with setting initial centroids for the clusters, serving as reference points. 

Subsequently, the data points are grouped into their respective clusters based on proximity to these 
predetermined centroids [18,41,42]. This assignment involves multiple sequential steps as outlined 
below. 

 
Algorithm: Assigning data points to clusters 
Given a collection of n data points represented by D and a set of k centroids denoted by C, where 

D contains elements 𝑑1 to 𝑑𝑛 and C includes elements 𝑐1 to 𝑐𝑘, the provided input defines the dataset 
and the centroid references. 

Input:  
D = { d1, d2, d3, … … … … … … … . dn} // set of n data points  
C = { c1, c2, c3, … … … … … … … … . ck} // set of k centeriods 
A set of k canter  
Steps: 
1. Calculate the distance between each data points 𝑑𝑖 (1<=i<=n) to all the centroid 𝑐𝑗 (1<=j<=k) 

as d( 𝑑𝑖 , 𝑐𝑗); 

2. Identify the closest centroid 𝑐𝑗 for each data point 𝑑𝑖 and allocate di to the corresponding 

cluster j. 
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3. Assign the cluster ld[i] =j,  //j:ld of the closest cluster 
4. The nearest Distance D(i)= d (𝑑𝑖, 𝑐𝑗). 

5. Each cluster j (I<=J<=k), recompute the centroids. 
6. Repeat 
7. For each datapoints 𝑑𝑖 , 
Determine the distance from the data point to the centroid of the currently nearest cluster. 
Should this distance be less than or equal to the current closest distance, the data point remains 

assigned to the cluster. 
Else 
 Calculate the distance, denoted as d(𝑑𝑖, 𝑐𝑗), between each centroid 𝑐𝑗 (I<=J<=k) and the    data 

point 𝑑𝑖. 
End for; 
Allocate the data point 𝑑𝑖 to the cluster possessing the closest centroid 𝑐𝑗. 

Set clusterld[i]=j; 
Set nearest distance[i]= d(𝑑𝑖, 𝑐𝑗) 

End for; 
8. Iteratively recompute the centroids for each cluster, j(I<=j<=k), until the convergence 

condition is satisfied. 
 
The iteration persists through steps 2 and 5 until stability is reached. Stability is achieved when 

the centroids exhibit minimal to no further change or after a specific number of iterations. 
Consequently, the outcome comprises clusters along with their individual centroids, signifying the 
arrangement of similar data points. This iterative method aims to reduce the total variance within 
clusters or the squared distances of data points to their respective centroids, ensuring the formation 
of coherent and distinct clusters [43]. In the above step 2 we assigned the data point by using Eq. (1). 
 
𝐶𝑖 = 𝑎𝑟𝑔. 𝑚𝑖𝑛𝑗 ∥ 𝑥𝑖 − 𝜇𝑗 ∥2             (1) 

 
Where  𝐶𝑖: cluster to which data points. 𝑥𝑖  𝜇𝑗: centroid of clusters. ∥ 𝑥𝑖 − 𝜇𝑗 ∥2: Euclidean 

distance  
Updating cluster centroid by applying the formula as in Eq. (2). 

 

𝜇𝑗 =
1

∥𝐶𝑗∥
∑ 𝑋𝑖𝑥𝑖⊆𝑐𝑗

              (2) 

 
Where, ∑ 𝑋𝑖𝑥𝑖⊆𝑐𝑗

: summation of all data points in clusters j 

The process will be iterative and convergence will be achieved when the assignments and 
centroid stop changing or if a stopping criterion is reached. K-means does not present a general 
equation which is also the case with linear regression and others [44,45].  
 
4. Results and Discussion 

 
In this section, the research provides an overview of the datasets, evaluation criteria, clustering 

algorithms targeted for optimization, initial methodologies used as a benchmark and the 
configurations of parameters applied in the study. 
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4.1 Datasets  
 
Table 1 summarizes three distinct datasets: seed data, iris data and well log data sourced from 

GitHub, each varying in size and features. The table includes details such as mean, standard deviation, 
kurtosis, symmetry and the total number of observations for each dataset. The seed dataset includes 
three types of wheat seeds: Kama, Rosa and Canadian each with 210 observations. The standard 
deviation of the Kama seeds is higher compared to the other two varieties. All three types of data 
exhibit a platykurtic distribution, indicated by a kurtosis value below 3. Kama and Rosa seeds display 
positive skewness, while Canadian seeds show negative skewness. The Iris dataset comprises three 
species: Iris setosa, Iris versicolor and Iris virginica, each with 1500 observations. The standard 
deviations of both datasets are moderate. Both setosa and versicolor datasets exhibit a slightly 
platykurtic pattern, indicated by a kurtosis below 3 and all skewness values greater than 0 indicate 
positive skewness. The well log dataset includes gamma ray data and Sonic data, comprising 2435 
observations each. There's a disparity in the means of the two logs: the gamma ray log has a mean 
of 26.60, while the sonic log has a mean of 0.06. Both datasets display a platykurtic pattern and 
demonstrate positive skewness in their distributions. 
 

Table 1 
The description of dataset 
Measure Seed Data Iris Data Well Log Data 

 Kama Rosa Canadian Setosa versicolor virginica Gamma Ray Sonic log  

Mean  14.84 14.55 0.87 5.76 3.07 3.46 44.72 0.06 
S. D 2.90 1.30 0.02 0.80 0.53 1.71 26.60 0.064 
Kurtosis -1.08 -1.10 -0.14 -0.19 -0.16 -1.43 0.72 1.131 
Skewness 0.39 0.38 -0.53 0.46 0.31 0.13 1.08 1.21 
Total observations  210 1500 2435 

 
4.2 K-Means Clustering Algorithm Across Different Datasets 

 
The K-means unsupervised machine learning algorithm's performance is assessed across diverse 

datasets, revealing a correlation between the number of clusters and the data diversity and size. 
Larger and more diverse datasets often require a greater number of clusters. K-means clustering 
leverages similarity and prevalence within the data to form clusters. Figure 2 visually represents K-
means clustering applied to diverse datasets, showcasing how the algorithm organizes data based on 
their similarities and distributions. 
 

  
(a) (b) 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 65, Issue 1 (2026) 1-13 

8 
 

 
(c) 

Fig. 2. The K-means clustering on the seed, iris and well log datasets (a) K-means clustering 
using seed datasets (b) K-means clustering using Iris dataset (c) K-means clustering using 
well log data 

 
Figure 2(a) illustrates the application of the K-means clustering algorithm to select clusters based 

on seed data. In this scenario, the seed dataset is structured in a way that distributes the data in a 
linear formation within the clusters. The algorithm operates by iteratively assigning data points to 
the nearest cluster centroid and refining these assignments until convergence. Moving on to Figure 
2(b), it showcases K-means clustering applied to the Iris dataset. Here, the K-means algorithm 
organizes observations into circular clusters, each represented by distinct colours. The Iris dataset, 
known for its floral species classification, demonstrates how K-means can delineate different species 
into cohesive clusters, aiding in their visual differentiation. Figure 2(c) depicts K-means clustering 
applied to well log data. These well log data, known for their quality and significance in various 
analyses, showcase a linear formation of clusters. The abundance of observations in the Well log 
dataset allows K-means to effectively delineate the data points into well-defined clusters, offering 
valuable insights into the underlying structure of the data. Each representation highlights how the K-
means clustering algorithm adapts to different datasets, shaping clusters based on the inherent 
distribution and characteristics of the data, whether linear, circular or otherwise, aiding in pattern 
identification and analysis. 
 
4.3 The Accuracy and Computational Efficiency of K-Means Clustering Algorithm 

 
Evaluating the accuracy and efficiency of K-means clustering across varied datasets is crucial. The 

objective is to assess its performance on different datasets and observe variations in both accuracy 
and execution time. The figures below showcase this evaluation, aiming to quantify the accuracy 
levels achieved and the time taken for execution across various datasets. Each dataset introduces 
distinctive results in terms of accuracy and execution time, providing insights into how well K-means 
adapts to different data structures. These assessments serve to highlight the variability in K-mean 
performance across diverse datasets, shedding light on its efficacy and computational efficiency 
under varying circumstances. 
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(a)  (b) 

Fig. 3. Accuracy and Execution Time of the algorithm (a) Accuracy in the K-
means clustering algorithm (b) Execution time in the K-means clustering 
algorithm 

 
In Figure 3(a), the accuracy assessment of the k-means clustering algorithm demonstrates a 

76.95% accuracy level for the seed dataset, 86.67% for the Iris dataset and a remarkable 90.00% 
accuracy for the well log data. Now, focusing on Figure 3(b), which illustrates the execution times of 
the k-means clustering algorithm across three diverse datasets with varying sample sizes. For the 
seed dataset, the clustering process takes 1.3683 seconds. The clustering of the Iris dataset using k-
means requires only 0.1792 seconds, while for the well log dataset, it takes a mere 0.1151 seconds. 
These results underscore that the k-means algorithm showcases superior performance in both 
accuracy and execution times when applied to the well log data.  
 
4.4 The Precision and Effectiveness in Carrying Out the K-Means Clustering Algorithm 
 

In Table 2, we can find accuracy and execution time metrics for the K-means clustering algorithm 
applied to three distinct datasets: Seed, Iris and Well log. Within this table, the Seed dataset, 
configured with 4 clusters, attained an accuracy level of 76.95%, accompanied by an execution time 
of 1.3683 seconds per iteration. The Iris dataset, employing 5 clusters, attained an accuracy of 86.67% 
with an execution time of 0.1792 seconds. Notably, the Well Log dataset, utilizing 6 clusters, 
demonstrated an exceptional 90.00% accuracy within a mere 0.1151 seconds per iteration. 
 

 Table 2 
 The accuracy and execution time of k mean clustering algorithms 
Dataset Number of clusters  Accuracy (%) Execution Times/sec 

Seed  4 76.95 1.3683 
Iris  5 86.67 0.1792 
Well Log  5 90.00 0.1151 

 
4.5 Discussion 

 
Clustering stands as a pivotal component in unsupervised machine learning, pivotal for handling 

varied and diverse datasets. Its primary aim is to group similar data points together, laying the 
groundwork for deeper analysis. With a multitude of clustering algorithms available, selecting the 
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most appropriate method for different datasets presents a significant challenge.  
The primary focus of this research is the investigation of the K-means clustering algorithm, utilizing 
three distinct datasets: the seed dataset, Iris dataset and a well log dataset acquired from GitHub. 
The table 1 presents descriptive statistics of the three datasets, outlining the count of observations, 
mean, standard deviation, kurtosis and skewness for each dataset. The K-means clustering algorithm 
is applied to all the datasets, as illustrated in Figure 1. The results of the clustering process are 
depicted in Figure 2, providing a detailed representation of the obtained clustering outcomes. Figure 
2 visually represents our evaluation of accuracy and execution time across a range of datasets 
through the application of the K-means clustering algorithm. A comprehensive summary of all the 
findings is presented in detail within Table 2. Research findings reveal that K-means performs notably 
well in clustering the well log dataset, achieving a remarkable accuracy of 90.00% with an execution 
time of 0.1151 seconds. This study highlights two significant observations: K-means clustering is 
better suited for managing larger datasets. Moreover, we noted a positive correlation between 
sample size and accuracy, along with a negative correlation between number of features and 
execution time. 
 
5. Conclusions 

 
Clustering plays a vital role in unsupervised machine learning, especially when dealing with 

extensive datasets and intricate feature spaces. The performance of clustering algorithm depends on 
the nature of dataset. Despite the availability of various clustering algorithms in unsupervised 
learning, each comes with its own limitations. Among these algorithms, K-means clustering stands as 
a widely used and efficient method. However, assessing its accuracy and efficiency across diverse 
datasets remains a significant challenge for researchers. To fill this research gap, the primary 
objective of this study is to assess and compare the performance of the K-means clustering algorithm 
across diverse datasets. This study investigates varied outcomes observed when applying the K-
means clustering algorithm to datasets, including Seed, Iris and well log, each characterized by unique 
sample sizes and attributes. The goal is to evaluate how accurately and efficiently the K-mean 
clustering algorithm performs across various datasets. The findings emphasize the outstanding 
performance of the K-means algorithm, achieving an accuracy of 90.00% and execution times of 
0.1151 seconds when applied to the well log dataset. This highlights a positive correlation between 
sample size and enhanced accuracy. Moreover, we noted a positive correlation between sample size 
and accuracy, along with a negative correlation between number of features and execution time. 
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