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 ABSTRACT 

 
Computed Tomography (CT) is a non-invasive imaging modality widely used for the 
precise detection of abnormalities within the human body. However, the 
electromagnetic radiation generated during CT scans poses health risks, including 
metabolic disturbances and genetic mutations, which can increase cancer 
susceptibility. To mitigate these hazards, Low-Dose CT (LDCT) techniques were 
introduced, significantly reducing radiation exposure. However, LDCT compromises 
image quality by introducing increased noise, artifacts, reduced contrast and structural 
distortions, which can impair the accuracy and reliability of Computer-Aided Diagnosis 
(CAD) systems. This study presents EdgeNet+, an advanced U-Net architecture with 21 
convolutional layers and three skip connections, which facilitate the maintenance of 
high-quality structural details by allowing features from earlier layers to directly 
influence later stages. EdgeNet+ enhances performance by incorporating a multi-level 
edge detection block and a hybrid loss function. The edge detection block effectively 
captures edge features across various scales. The hybrid loss function combines 
Structural Similarity Index Measure (SSIM) and L1 losses, where SSIM promotes the 
preservation of image structures and perceptual quality, while L1 loss ensures accurate 
pixel-wise reconstruction. This combination enables EdgeNet+ to produce denoised 
images that are visually appealing and faithful to the original content, making it highly 
effective in enhancing detection accuracy. In the ablation study, the impact of each 
component of the EdgeNet+ model was systematically assessed, demonstrating a 
significant improvement in denoising performance. Comparative analysis reveals a 
noteworthy 45.12% increase in Peak Signal-to-Noise Ratio (PSNR), a 26.17% 
enhancement in SSIM and a remarkable 90.71% reduction in Root Mean Square Error 
(RMSE) when juxtaposed with the LDCT image. Compared to benchmark algorithms, 
the proposed approach demonstrates a marked improvement in noise reduction and 
artifact removal. Qualitative comparisons reveal a high similarity between the 
denoised CT images produced by EdgeNet+ and normal-dose CT images. 
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1. Introduction 
 

Medical imaging is essential for diagnosing various diseases, starting with the discovery of X-rays 
by Wilhelm Conrad Roentgen in 1895, which established X-ray radiography as the first diagnostic 
imaging modality [1]. Further, technologies such as Computed Tomography (CT), ultrasound, 
Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) have advanced and are 
now vital in-patient care, aiding in detection, characterization, staging and treatment assessment [2]. 
The increasing sophistication of imaging techniques has led to a significant rise in the volume of 
images, challenging radiologists to maintain efficient workflows [3]. The emergence of Artificial 
Intelligence (AI) and Deep Learning (DL) has greatly impacted medical image processing, enhancing 
the analysis of imaging data and improving diagnostic outcomes [4]. AI in medical imaging could 
potentially save 40,000 lives annually, reduce healthcare costs by over 200 billion euros and free up 
1.8 billion hours of medical professionals' time, equivalent to adding 500,000 full-time healthcare 
workers [5]. 

In comparison to other medical imaging modalities, CT scans offer superior tissue differentiation 
and provide detailed three-dimensional images, effectively addressing the limitations of 
conventional X-ray techniques [6]. Additionally, CT scans can visualize both soft tissues and blood 
vessels simultaneously, facilitating the early diagnosis of various pathological conditions, including 
malignancies, vascular disorders, internal injuries, lung nodules and bone fractures. The CT scan has 
many contributions to medical treatment; However, ionized radiation is one of the main pitfalls, 
particularly for patients who undergo multiple scans [7]. According to Zubair et al., [5] the likelihood 
of developing thyroid cancer is significantly increased, with an Odds Ratio (OR) of 2.55 and a 95% 
Confidence Interval (CI) ranging from 2.36 to 2.75. Similarly, the risk of leukaemia is also heightened, 
with an OR of 1.55 and a 95% CI between 1.42 and 1.68. To address these issues, As Low as 
Reasonably Achievable (ALARA) principle has been adopted and is a fundamental guideline in the CT 
imaging community to minimize radiation exposure to patients [8,9]. To mitigate the radiation 
exposure associated with CT scans, LDCT technology has been developed. This approach utilizes two 
primary strategies: first, by decreasing the flux of the X-ray tube and second, by reducing the number 
of scan trajectories. Both methods ultimately lead to a diminished Signal-to-Noise Ratio (SNR) for the 
X-ray signals [10,11]. However, this introduced noise and artifacts in CT images, which can lower the 
SNR and impact the diagnostic accuracy [12]. Removing these noise and artifacts from LDCT images 
poses a significant challenge.  

Numerous algorithms have been developed to enhance the quality of LDCT images. These 
algorithms are generally classified into three groups: Sinogram filtering, Iterative Reconstruction (IR) 
and Post-processing techniques [13,14]. Where Sinogram filtering, preprocessing the raw data before 
CT image reconstruction, utilizes methods like Filtered Back-Projection (FBP). One advantage of this 
approach is its reliance on well-known noise characteristics in the Sinogram domain [15]. However, 
Sinogram-based filtering methods may suffer from drawbacks such as spatial resolution loss or edge 
blurring, thereby limiting their effectiveness [16]. IR methods are continuously improved by refining 
objective functions, considering the statistical aspects of projection data, real CT image insights and 
system-specific parameters [17]. These methods encompass dictionary learning, nonlocal means, 
low-rank, total variance and other approaches [18,19]. Many modern Multidetector Computed 
Tomography (MDCT) scanners have adopted IR techniques, which have demonstrated significant 
advancements. However, they possess two primary limitations: First, the proprietary nature of IR 
techniques limits their interoperability across different scanner manufacturers due to restricted 
access to scanner geometry and correction procedures. Secondly, widely used IR techniques incur 
substantial computational overheads [20]. The third category of LDCT image denoising is post-
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processing methods. These methods operate directly on the CT images, requiring no prior knowledge 
of raw data and offering practical convenience [21,22]. Post-processing methods are generally 
divided into traditional techniques and deep learning-based approaches. Traditional methods, relying 
on predefined noise-image relationships, employ optimization algorithms and prior noise knowledge 
for denoising. Further, wavelet-based denoising filters denoise the CT image but may blur fine details, 
while Block-Matching and 3D Filtering (BM3D) filtering enhances anatomical visualization yet 
struggle with streak artifacts near bones [23]. Dictionary learning effectively removes Gaussian noise 
but has limited success with complex LDCT noise and Non-Local Means (NLM) algorithms preserve 
features well but are computationally intensive. Although traditional methods can be costly and may 
introduce artifacts in uniform areas, deep learning-based methods offer more efficient and effective 
solutions to improve LDCT image quality [6]. Deep learning techniques have shown considerable 
success in denoising CT images, effectively reducing noise and improving image quality. Further, deep 
learning-based image-denoising models are divided into three categories Discriminative models 
(CNN and Its variants), Generative models (Autoencoder and U-Net Models) and Hybrid Models 
(Combination of Discriminative and Generative models). Unlike conventional techniques reliant on 
prior information, deep learning, notably Convolutional Neural Networks (CNN), autonomously 
learns intricate image representations, excelling in extracting features from CT images and 
accommodating diverse noise patterns [24]. Further, Zubair et al., [10] introduced a deep learning 
model, DEPnet, utilizing the dilated convolution with a batch normalization layer. Moreover, Shan et 
al., [25] introduced MAP-NN, which employs progressive denoising through multiple CLONEs and 
optimization with composite loss functions, however, this approach may lead to heightened 
computational demands and longer training durations. Further, Gou et al., [26] proposed GRCNN, 
which integrates both pixel-wise grey value loss and image gradient loss, providing a comprehensive 
approach to preserve image details during denoising. Furthermore, Ansari et al., [27] combined an 
edge detection layer and perceptual loss to denoise the LDCT image. Additionally, Liang et al., [28] 
proposed EDCNN for LDCT image denoising challenges using trainable Sobel convolution for edge 
enhancement and dense connections for feature fusion, however, it needs computational resources 
during training and inference. Moreover, Liu et al., [29] proposed Stacked Sparse Denoising 
Autoencoders (SSDAs) to enhance the quality of LDCT imaging, however, the proposed methodology 
has a potential risk of overfitting. Also, Fenga et al., [30] introduced a novel DRCNN model which 
combines MSE losses for sinogram and image domains, along with TV regularization. Additionally 
Feng et al., [31] combined residual U-Net with a multidimensional feature extraction unit and spatial 
attention mechanisms, however, it faces challenges in generalizing its performance across different 
datasets and imaging conditions. Further, Zhang et al., [32] combined U-Net architecture with a 
multi-attention mechanism, comprising three attention modules for contextual information 
extraction, feature extraction and detail retention, but computationally complex. Furthermore, Jiao 
et al., [33] used an encoder-dual decoder sub-network to reduce noise but may inadvertently create 
artifacts or distortions in the processed images, which can degrade the overall image quality. Further, 
Zubair et al., [21] introduced a DoG-UNet+ deep learning algorithm that enhanced U-Net with a 
"Difference of Gaussians Sharpening Layer" and utilized dual convolutional kernels to capture diverse 
features. Further, this technique used an attention mechanism to highlight important features in CT 
images, its performance warrants validation on real datasets. Also, Park et al., [34] introduced a 
fidelity-embedded GAN to learn from unpaired LDCT and SDCT images, optimizing a generator by 
minimizing a weighted sum of KL divergence and loss. Further, Chi et al., [35] proposed a 
methodology using an enhanced U-Net and a novel discriminator with multiple CNNs to denoise LDCT 
images. One area that has been comparatively underexplored in the literature is features edge 
detection, a critical aspect of medical imaging. Edge detection significantly enhances the ability to 
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identify anatomical structures with high precision, directly contributing to improved diagnostic 
accuracy and more effective treatment planning. This paper has the below-mentioned contributions. 

 
i. EdgeNet+ introduces a refined U-Net architecture tailored for CT image denoising utilizing 

21 convolutional layers and three skip connections to enhance feature preservation and 
denoising effectiveness. 

ii. A novel edge detection block is introduced, combining convolutional layers with multiple 
kernel sizes (3x3, 5x5, 7x7 and 9x9) and a residual connection to capture edges across 
various scales. 

iii. A hybrid loss function is proposed, combining SSIM loss to preserve structural information 
and L1 loss to ensure smooth gradient signals. This combination aims to maintain both 
perceptual quality and structural integrity in denoised images. 

iv. An ablation study is undertaken on the EdgeNet+ model to rigorously assess, the 
significance and functionality of its components and mechanisms. 

v. The EdgeNet+ model employs a hybrid loss function and is evaluated on the COVID-19 
artificial LDCT dataset using performance metrics, including PSNR, SSIM and RMSE. 

vi. The performance of the EdgeNet+ algorithm is evaluated against established state-of-the-
art models by analysing regions of interest (ROIs) from two images in the COVID-19 LDCT 
test dataset. 

 
This paper is structured as follows: Section 2 presents the “Methodology”, providing a detailed 

description of the approach employed in this study. Section 3, titled "Experiments and Results", 
evaluates the proposed model through empirical analysis. Finally, Section 4, "Conclusion and Future 
Work", summarizes the key findings and proposes potential avenues for future research. 

 
2. Methodology 
2.1 Objective Function 
2.1.1 Structure similarity loss 

 
Enhancing the method of minimizing the least amount of square loss can result in denoised 

images that closely resemble the distribution found in normal-dose CT scans. However, it often fails 
to retain intricate details. The typical Mean Squared Error (MSE) loss employed in CNN-based 
techniques often results in excessively smooth and blurred images, causing a degradation of 
structural details [36]. In medical imaging, CT images exhibit variations in dose levels. The 
relationships between features in CT images are significant. The SSIM considered three key aspects 
of human visual perception: luminance, contrast and structure. SSIM demonstrates superior 
performance compared to conventional loss functions such as MSE in diagnostic accuracy [37]. To 
quantify the similarity between a denoised CT image and its normal-dose counterpart, we are 
employing a hybrid loss function. One component of this loss function is to formulate and assess the 
resemblance between CT images, based on their luminance, contrast and structural similarities as 
given in Eq. (1). 
 

SSIM (x, y) =
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+ 𝜇𝑦

2+ 𝐶1
∗

𝜎𝑥𝑧+𝐶2

𝜎𝑥
2+ 𝛼𝑦

2+ 𝐶2
                                      (1) 

 
where the parameters "µx", "µy", "σx", "σy" and "σxy" denote the means, standard deviations and 

cross-correlation of two CT images being compared. "C1" and "C2" are constants utilized to prevent 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Article in press 

125 
 

numerical issues. As the similarity between x and y grows, the SSIM value tends towards one. Hence, 
the loss function for SSIM can be expressed as Eq. (2). 
 
𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀=1- SSIM (x, y)                           (2) 
 
2.1.2 Least absolute error 

 
The "L1" loss, also known as the Least Absolute Error (LAE), serves as a loss to evaluate the 

difference between two images. Unlike the MSE loss, the "L1" loss does not overly penalize larger 
discrepancies between a denoised image and its ground truth counterpart. This indicates that in 
scenarios where substantial discrepancies exist, the "L1" loss treats them more leniently compared 
to the MSE loss. One of the notable advantages of the "L1" loss is its ability to mitigate certain 
drawbacks often associated with the MSE loss [38]. These drawbacks include the tendency for MSE 
to produce blurred outputs and introduce unnatural artifacts. By utilizing the "L1" loss, these issues 
can be alleviated to some extent as given in Eq. (3). 
 

L1LOSS = 
1

𝑚𝑛𝑏
| x-y|             (3) 

 
where, "x" and "y" represent the noisy and original CT images, while "m" and "n" stand for the 

dimensions of the CT image and "b" indicates the batch size. 
 
2.1.3 Hybrid loss function 

 
The comprehensive objective function incorporates the least squares, "L1" and SSIM to ensure 

denoised CT images of high quality with preserved texture and structure as given in Eq. (4). 
 

HYBRIDLOSS=  𝛼(1 −
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+ 𝜇𝑦

2+ 𝐶1
∗

𝜎𝑥𝑧+𝐶2

𝜎𝑥
2+ 𝛼𝑦

2+ 𝐶2
)+ 𝛽(

1

𝑚𝑛𝑏
∗| x-y|)        (4) 

 
where α and β represent the weights assigned to prioritize different components. 

 
2.2 EdgeNet+ Architecture 

 
The EdgeNet+ architecture is characterized by its symmetric structure, which contains an 

encoder, latent space, Multi-Level Edge Detection Block and a decoder. 
 
2.2.1 Encoder 

 
Let h (0) = X, which denotes the input grayscale CT images with dimensions 256x256. The 

convolutional hidden layers are represented as mentioned in Eq. (5). 
 
h(l) = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(W(l) * h(l-1) +b(l))           (5) 

 
where "Activation" represents the activation function, "W" and "b" signify the weights and biases 

for the layers respectively. Also, "h" represents hidden layers and "l" denotes the number of layers, 
ranging from 1 to "l-1". These convolutional layers have "3×3" filters to extract features from the 
input CT images. After each pair of convolutional layers, max-pooling layers with a "2×2" window size 
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are applied to down-sample the feature maps, reducing their spatial dimensions while preserving 
important features as given in Eq. (6). 
 
h(c)= (h(l), k)              (6) 

 
where "K" indicates the Max pooling layer as applied on the feature map generated by the 

convolutional layer "(h(l))". 
 
2.2.2 Bottleneck layers 

 
The bottleneck layer serves as a bottleneck for feature extraction, where the most abstract and 

high-level features are encoded. If "Z" denotes the output feature maps of the latent space. 
Mathematically, the bottleneck layer can be represented as given in Eq. (7). 
 
Z= (h(c))               (7) 

 
where "h(c)" indicates the output feature maps of the last convolutional layer in the encoder. 

 
2.2.3 Multi-level edge detection block 

 
The EdgeNet+ model strategically incorporates the Multi-Level Edge Detection Block at the start 

of the decoder. This addition is pivotal for capturing edge features across multiple scales during 
feature extraction. This novel Multi-Level Edge Detection Block utilizes four convolutional layers with 
varying kernel sizes: "3x3", "5x5", "7x7" and "9x9" to process the CT image. Each convolutional layer 
is followed by a Rectified Linear Unit (ReLU) activation function to introduce non-linearity and a skip 
connection links the input of the block to this layer's output. By setting the padding parameter to 
'same', the output feature maps maintain the same spatial dimensions as the input. The output 
feature maps from the convolutional layers are then concatenated along the channel axis using the 
concatenate operation. This concatenation combines edge information captured at different levels, 
enhancing the model's edge detection capabilities. The output of the latent space is "Z", then 
mathematically it can be represented in Eq. (8). 
 

C(i, j)= 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (∑ ∑ 𝑍(𝑙−1)(𝑖 + 𝑢, 𝐽 +   𝑣) ∗   𝐾𝑙(𝑢, 𝑣) + 𝑏𝑙𝑞(𝑖)−1)
𝑣=0

𝑃(𝑖),−1)
𝑢=0 )           (8) 

 
where, "C(i,j) " is the output feature map at position    "(i,j) " in the "l-th" convolutional layer. "Z 

"signifies the feature map from the latent space. The K indicates the Kernal matrix for the "l-th" 
convolutional layer. Also, "b(l) "represents the bias for the "l-th" convolutional layer. The Kernal size 
"p(i) q(i)" varies at each layer. The block of the four convolutional layers is backed by a Max-pooling 
layer as mentioned in Eq. (9). 
 
𝑃′

(𝑖′,𝑗′) = (C(i,j),k′ )             (9) 

 
where "k′" is the max pooling layer, applied on the Multi-Level Edge Detection Block "C(i,j)", as 

illustrated in Figure 1. 
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Fig. 1. Multi-level edge detection block 

 
2.2.4 Decoder 

 
The output of the Multi-Level Edge Detection Block serves as the input to the Up-sampling layer 

in the decoder section. Where the up-sampling layer expands the spatial dimensions of the feature 
maps to align with those of the corresponding feature maps in the encoder section, while the 
convolutional layers refine the features obtained from the Up-sampling layers, capturing finer details 
and patterns. The ReLU activation functions introduce non-linearity to extract abstract 
representations. The mathematical representation of the decoder part is given in Eq. (10). 
 

h(l) = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑤′𝑙
∗ ℎ(𝑙−1) + 𝑏′)                     (10) 

 
2.2.5 Skip connections 

 
The proposed EdgeNet+ model contains three concatenation layers. The convolutional layers are 

concatenated with their corresponding Up-sampling layers to facilitate the reconstruction process, 
where the Up-sampling Layer 3 relates to Convolutional Layer 2 and Up-sampling Layer 2 relates to 
Convolutional Layer 4. Finally, Convolutional Layer 6 is concatenated with Up-sampling Layer 1, 
enabling the fusion of the most abstract features from the convolutional layer with the Up-sampled 
feature maps at the highest spatial resolution, facilitating the generation of the final reconstructed 
output with the desired level of detail and fidelity [39]. These concatenation operations merge 
feature maps with the same spatial dimensions along the channel axis, allowing the model to 
combine low-level and high-level features effectively. This integration enables the EdgeNet+ model 
to capture local and global contextual information, facilitating accurate denoising of LDCT images 
while preserving fine details. Mathematically the skip connection can be represented as given in Eq. 
(11). 
 
Y(i) = f (x)i + xi                          (11) 

 
where I =1,2,3,4. The proposed EdgeNet+ diagram is given in Figure 2. 
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Fig. 2. Proposed EdgeNet+ diagram 

 
2.3 Model Evaluation  

 
The proposed model, EdgeNet+, has assessed state-of-the-art methods using metrics such as 

PSNR, SSIM and RMSE to evaluate performance. 
 

2.3.1 PSNR 
 
PSNR is frequently employed as a quantitative measure to assess the denoising efficacy of CT 

images. It quantifies the quality of the denoised image by comparing it to the original image, 
considering both the signal strength and the presence of noise. Higher PSNR values indicate better 
denoising performance, with increased fidelity in preserving image details and reduced distortion as 
given in Eq. (12). 

 

PSNR= 10. 𝑙𝑜𝑔10(
𝑀𝐴𝑋2

𝑀𝑆𝐸
)                      (12) 

 
Where, "MAX" is the maximum possible pixel value of the image (typically 255 for 8-bit images) 

and MSE is the Mean Squared Error between the original and denoised images, calculated as the 
average of the squared differences between corresponding pixels. 

 
2.3.2 RMSE 
 

RMSE is a precise metric used to measure the average difference between pixel intensities in the 
denoised image and the corresponding ground truth LDCT image. It is calculated as given in Eq. (13). 

 

RMSE=√
1

𝑁
∑ (𝐼𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑

𝑁
𝑖=1 (𝑖) − 𝐼𝐿𝐷𝐶𝑇(𝑖)2                    (13) 
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where "N" is the total number of pixels in the image. "𝐼𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑖)"𝑎𝑛𝑑 "𝐼𝐿𝐷𝐶𝑇(𝑖)" represent the 
intensity values of the denoised image and the ground truth LDCT image, respectively, at pixel 𝑖. 
 
2.3.3 SSIM 

 
SSIM metric provides a comprehensive assessment of how well the denoised image preserves 

important structural information compared to the ground truth CT image [40]. A higher SSIM value 
implies that the denoised image closely mirrors the ground truth CT image, demonstrating superior 
denoising performance. SSIM can represented as given in Eq. (14). 
 

SSIM (X1, X2) = 
(2𝜇𝑥1𝜇𝑥2 + 𝐶1)

(𝜇𝑥1
2 + 𝜇𝑥2

2 + 𝐶1)

(2𝛼𝑥1𝑥2 + 𝐶2
)

(𝛼𝑥2
2 + 𝛼𝑥2

2 +𝐶2 )
                                (14) 

 
where "x" and "y" are the input images: ground truth and denoised images to compare and 

"𝜇𝑥", "𝑎𝑥," 𝑎𝑛𝑑 "𝛼𝑥1 𝑥2 " which signify the means, standard deviation and cross-correlation of two 

patches, respectively [41]. Additionally, "C₁" and "C₂" serve as positive constants to stabilize 
calculations in the context of the SSIM formula. 
 
3. Experiments and Results 
3.1 Dataset for Model Evaluation 

 
To evaluate the effectiveness of the proposed EdgeNet+ model, a simulated COVID-19 dataset 

was utilized available publicly on GitHub. The dataset is partitioned into three subsets. The training 
set comprises 2097 pairs of images, each measuring 256x256 pixels, constituting 80% of the total 
dataset. Each pair consists of a clean image and its corresponding noisy version. The validation and 
test sets consist of 260 noisy images each, mirroring the dimensions of the training set. They each 
account for 10% of the dataset. This dataset has been meticulously organized to facilitate the 
training, validation and assessment phases of the proposed EdgeNet+ model. During the training 
phase, the model is trained using the training set. The validation set is utilized to fine-tune 
hyperparameters and evaluate the model's performance during training. Finally, the test set remains 
reserved for the final evaluation, assessing the model's ability to generalize to unseen data. 
 
3.2 Parameters Setting  

 
The model is trained using the Adam optimizer with a learning rate of 1e-3. The coefficients of 

the objective function (α=0.005, β=0.0093) are empirically determined values. These coefficients are 
crucial in the custom loss function, which combines SSIM loss and L1 loss. Adjusting α and β allows 
for control over balancing the measurement of structural similarity and absolute difference in the 
output. The performance of the model is evaluated using PSNR, RMSE and SSIM metrics. The input 
images are resized to 256x256 pixels and the training is conducted using a batch size of 32 for 100 
epochs. Additionally, the model architecture includes a multi-level edge detection block comprising 
convolutional layers with kernel sizes of "3x3", "5x5", "7x7" and "9x9", followed by a max-pooling 
layer. The experiments were conducted using a personal computer equipped with an Intel i5-4300 
processor and 16 GB of RAM. The computational power was boosted by NVIDIA Tesla T4 GPU 
acceleration. 
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3.3 Qualitative Results 
 
To assess the efficacy of the proposed EdgeNet+ approach, two distinct LDCT images have been 

selected from the COVID-19 test dataset. Within these images, two Regions of Interest (ROIs) have 
been identified for comparison purposes. The performance of the proposed method, EdgeNet+ has 
been compared, with four state-of-the-art algorithms: NLM, BM3D, RED-CNN and DOG-UNet+. The 
denoised results obtained from these methods are illustrated in Figure 3 and Figure 4, Where NLM 
and BM3D are two popular traditional denoising schemes extensively utilized for denoising CT 
images, While the RED-CNN utilizes an autoencoder approach with MSE cost function. On the other 
hand, the DOG_UNet+ model adopts a deep learning autoencoder methodology, incorporating a 
custom loss function alongside an attention mechanism. 
 
3.3.1 LDCT first image (ROI-I) 

 
Figure 3 presents CT images alongside their zoomed-in versions to assess the performance of 

various algorithms. The first CT image from the COVID-19 test dataset is depicted.  
 

 
Fig. 3. Results from different methods, region of interest (ROI-I) along with zoomed images version (a) 
original image (b) LDCT image (c) BM3D (d) NLM (e) RED-CNN (f) DOG-UNet 

 
Where Figure 3(a) illustrates the original CT image and Figure 3(b) presents the corresponding 

LDCT image. To assess the performance of different denoising techniques, a specific Region of 
Interest (ROI-I) is carefully chosen. When traditional algorithms like BM3D and NLM are applied to 
the LDCT image Figure 3(b), BM3D effectively preserves edges and clarity, as shown in Figure 3(c), 
while NLM results in blurring and over-smoothing effects, making it difficult to read the ROI as 
depicted in Figure 3(d). Consequently, BM3D in Figure 3(c) exhibits superior performance over NLM 
in Figure 3(d) in terms of enhancing visual quality. Transitioning to deep learning methods, including 
RED-CNN, DOG_UNet+ and the proposed EdgeNet+, it is observed that RED_CNN Figure 3(e) denoises 
the LDCT image Figure 3(b) while maintaining edge information, but it introduces streak artifacts. 
Conversely, DOG_UNet+ Figure 3(f) preserves edge information but exhibits an over-smoothing 
effect, showing superior performance compared to RED_CNN Figure 3(e). Finally, when the proposed 
method, EdgeNet+, is applied to LDCT images, the denoised results in Figure 3(g) not only preserve 
edge information but also exhibit superior visual quality compared to all other methods.  
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3.3.2 LDCT second image (ROI-II) 
 
The second CT image from the COVID-19 test dataset is selected. Image Figure 4(a) displays the 

original CT image, while Figure 4(b) shows the corresponding LDCT image. To evaluate the efficacy of 
our proposed method compared to other denoising methods, precise ROI-II is selected. 

 

 
Fig. 4. Results from different methods, region of interest (ROI-II) along with zoomed images version (a) 
original image (b) LDCT image (C) BM3D (d) NLM (e) RED-CNN (f) DOG-UNet 

 
Where BM3D and NLM are both widely recognized traditional methods for denoising CT images. 

When utilized on the LDCT image in Figure 4(b), both methods yield enhanced outcomes, however, 
in Figure 4(c), BM3D preserves the clarity, while NLM in Figure 4(d) introduces some blurriness into 
the denoised output. After analysing the experimental findings, it was observed that RED-CNN Figure 
4(e) effectively preserves the clarity of CT images, albeit with the drawback of introducing blocky 
artifacts. Conversely, DOG_Unet+ demonstrates superior performance compared to RED-CNN, 
showcasing better results. Finally, when the proposed EdgeNet+ methods were applied to LDCT 
images, the results depicted in Figure 4(g) for EdgeNet showcased not only improved denoising but 
also remarkable preservation of image clarity. 
 
3.4 Quantitative Results 

 
Three widely used metrics PSNR, SSIM and RMSE were employed for quantitative assessments of 

Regions of Interest (ROI-I and ROI-II). PSNR and RMSE evaluate denoising efficacy at the pixel level, 
while SSIM measures structural similarity within a defined window. The quantitative results from 
various denoising methods are presented in Table 1 and Table 2, corresponding to the LDCT images 
depicted in Figure 3 and Figure 4. The first two methods, Block-Matching and 3D Filtering (BM3D) 
and Non-Local Means (NLM), represent traditional approaches. In contrast, RED-CNN, DOG_UNet 
and EdgeNet+ are deep learning methods utilizing distinct cost functions for CT image denoising. 
Notably, EdgeNet demonstrated superior performance compared to the other methods.  
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 Table 1  
 Quantitative results of ROI-I from Figure -3 in  
 terms of PSNR, SSIM and RMSE metrics 
S/No Protocols PSNR SSIM RMSE 

1 LDCT 27.125 0.818 0.136 
2 BM3D 32.913 0.899 0.028 
3 NLM 31.241 0.898 0.029 
4 RED-CNN 28.435 0.813 0.049 
5 DOG-UNet+ 35.355 0.878 0.026 
6 EdgeNet+ (Proposed) 38.763 0.973 0.014 

 
Table 2  
 Quantitative results of ROI-II from Figure-4 in  
 Terms of PSNR, SSIM and RMSE 
S/No Protocol PSNR SSIM RMSE 

1 LDCT  27.041 0.725 0.144 
2 BM3D 32.744 0.821 0.025 
3 NLM  30.495 0.934 0.033 
4 RED-CNN 29.942 0.769 0.046 
5 DOG-UNet+ 34.022 0.824 0.021 
6 EdgeNet+ (Proposed) 39.841 0.974 0.013 

 
Table 3  
Average quantitative results from Table 1 and 
Table 2 in Terms of PSNR, SSIM and RMSE 
S/No Protocol PSNR SSIM RMSE 

1 LDCT  27.083 0.772 0.140 
2 BM3D 32.829 0.860 0.026 
3 NLM  30.868 0.916 0.031 
4 RED-CNN 29.189 0.791 0.047 
5 DOG-UNet+ 34.689 0.851 0.023 
6 EdgeNet+ (Proposed) 39.302 0.974 0.013 

 
Figure 5 reflects the ROIs in Figure 3 and Figure 4.  
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Fig. 5. ROIs comparison of Figure 3 and Figure 4 

 
4. Ablation Study  

 
In this section, an ablation study was conducted to comprehensively analyse the effectiveness of 

the proposed method EdgeNet+. In the component analysis, we delve into the impacts of three 
configurations: the basic U-Net model, the U-Net model coupled with the HYBRIDLOSS function and 
the U-Net model augmented with both HYBRIDLOSS and the Multi Edge Detection Block as mentioned 
in Table 4. 
 

Table 4  
Ablation study of the component analysis of EdgeNet+ model 

Method PSNR SSIM RMSE 

U.Net model 36.231 0.967 0.252 
U.Net model + HYBRIDLOSS 37.472 0.971 0.181 
U.Net model+ HYBRIDLOSS + Multi Edge Detection Block 39.841 0.972 0.141 

  
To evaluate the impact of different components of the proposed model EdgeNet a notable 

improvement across several metrics was observed. Initially, we employed the basic U-Net model 
along with four skip connections that yielded a PSNR of 36.231, SSIM of 0.967 and RMSE of 0.252. 
Upon integrating the HYBRIDLOSS function, these metrics demonstrate enhancements, with PSNR 
increasing to 37.472, SSIM to 0.971 and RMSE decreasing to 0.181. Further augmentation of the Multi 
Edge Detection Block yields substantial improvements, resulting in a PSNR of 39.841, SSIM of 0.972 
and RMSE of 0.141. This sequential enhancement underscores the synergistic contribution of both 
the HYBRIDLOSS and the Multi Edge Detection Block in refining the denoising capabilities of the 
EdgeNet+ model, ultimately yielding significant advancements in PSNR, SSIM and reduction in RMSE. 
 
5. Conclusion  

 
In conclusion, the EdgeNet+ model demonstrates significant advancements in denoising low-dose 

CT images by effectively integrating skip connections, a Multi Edge Detection Block and a hybrid loss 
function. The model's ability to preserve intricate details and edge clarity sets it apart from traditional 
and contemporary state-of-the-art algorithms. Comparative analyses reveal that EdgeNet+ not only 
surpasses the performance of established methods like BM3D and NLM but also outperforms deep 
learning approaches such as RED-CNN and DOG_Unet+. The evaluation metrics, including PSNR, SSIM 
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and RMSE, underscore the superior denoising quality achieved by EdgeNet+, establishing it as a 
leading solution for enhancing image clarity and accuracy in medical imaging applications. The 
findings from the ablation study further validate the effectiveness of the proposed enhancements, 
indicating promising implications for future research and practical applications in image restoration. 
Overall, the findings support the conclusion that EdgeNet+ demonstrates significant enhancements, 
with a 45.12% increase in PSNR, a 26.17% improvement in SSIM and a remarkable 90.71% reduction 
in RMSE when compared to the LDCT image. In future studies, it will be crucial to validate the 
proposed method using real datasets and to explore the incorporation of attention mechanisms. 
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