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ARTICLE INFO ABSTRACT 

 
In the rapidly evolving landscape of Industry 4.0, achieving seamless interoperability 
among diverse systems and technologies is paramount for organizations seeking to 
enhance operational efficiency and maintain competitiveness. This paper presents a 
ground-breaking solution, the reactive microservices-based connector, designed to 
address the intricate challenges of data exchange and communication within Industry 
4.0 environments. By leveraging the principles of microservices architecture and 
reactive programming, the connector offers a scalable, resilient, and agile framework 
for facilitating real-time data integration across heterogeneous systems. Drawing upon 
a comprehensive literature review, this paper establishes a theoretical foundation by 
examining key concepts of Industry 4.0 and microservices architecture. 
Methodologically, the research adopts a Design Science Research approach, guiding the 
systematic development, implementation, and evaluation of the connector. Detailed 
insights into the design and implementation aspects of the connector, including its 
architecture, data processing pipeline, and integration with Akka Cluster and Akka 
Streams, are provided. Testing results offer valuable insights into the capabilities and 
limitations of the connector, particularly emphasizing observations from testing in 
virtualized environments. The paper concludes by highlighting the significance of the 
proposed approach in advancing interoperability efforts within the Industry 4.0 
landscape and offering recommendations for future research directions. 
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1. Introduction 
 

In the landscape of Industry 4.0, where digital transformation is reshaping manufacturing 
processes, achieving seamless interoperability among diverse systems remains a paramount 
challenge. The proliferation of IoT devices, sensors, and automation systems has led to an 
exponential increase in data generation, necessitating robust solutions for effective data exchange 
and communication across industrial ecosystems. Horizontal data sharing has emerged as a critical 
aspect of Industry 4.0, where various systems and stakeholders need to exchange data seamlessly to 
optimize processes and drive innovation. 
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To address these challenges, the development of innovative technologies is crucial to empower 
organizations with the capability to optimize operational efficiency and maintain competitiveness in 
the digital era. A key component in enabling horizontal data sharing is the implementation of 
connectors that facilitate the seamless exchange of data between disparate systems. These 
connectors play a vital role in orchestrating real-time data exchange and ensuring interoperability 
across heterogeneous systems. 

This paper introduces a pioneering solution designed to address the complexities associated with 
data integration and interoperability in Industry 4.0 environments. The reactive microservices-based 
data connector is specifically developed to enable horizontal data sharing and streamline data 
exchange processes across industrial ecosystems. By leveraging the principles of microservices 
architecture and reactive programming, the connector offers a flexible and scalable framework for 
orchestrating real-time data exchange between diverse systems. 

The significance of this research lies in its potential to revolutionize the approach to data 
interoperability challenges in Industry 4.0. With a focus on data integration, real-time data exchange 
orchestration, and data interoperability, the reactive microservices-based data connector aims to 
address the pressing need for seamless data exchange and communication in modern manufacturing 
environments. Through its innovative design and capabilities, the connector seeks to enhance 
operational efficiency, drive innovation, and ensure competitiveness in the digital era. 

Aligned with the challenges identified in transitioning from Industrial Revolution 3.0 (IR3) to 
Industry 4.0, this research sets out to explore key objectives aimed at addressing these challenges. 
The objectives of the research are as follows: 

 
i) Flexibility: The research aims to ensure that all components of the data connector are 

decoupled and autonomous, allowing the system to adapt to different manufacturing 
environments and connect with various modern protocols and applications. 

ii) Scalability: Another crucial objective is to achieve high availability and scalability within the 
data connector. This entails implementing robust error handling, recovery mechanisms, and 
failover strategies to mitigate the risk of data loss or service interruption, particularly during 
peak operational hours. 

iii) Enhanced Data Processing Efficiency: A key focus area is to enhance data processing 
efficiency within the data connector. By optimizing data processing pipelines and resource 
allocation strategies, the system aims to facilitate the seamless handling of high-volume 
data streams without overburdening computational resources. 

 
Through the pursuit of these objectives, the research endeavors to develop a reliable and flexible 

data connector capable of meeting the demands of Industry 4.0 and addressing the identified 
challenges in data interoperability and integration. 

 
2. Literature Review 
2.1 Industry 4.0 and the International Data Spaces Reference Architecture Model (IDS-RAM) 
 

The fourth industrial revolution, commonly referred to as Industry 4.0, emerged in Germany in 
2011 as the next evolutionary step building upon the previous three industrial revolutions. At its core, 
Industry 4.0 is characterized by the seamless integration of cyber-physical systems (CPS)[1], the 
Internet of Things (IoT), and cloud computing technologies. 

A pivotal framework for realizing Industry 4.0 initiatives is the Reference Architecture Model 
Industrie 4.0 (RAMI 4.0)[2], developed by the German Electrical and Electronic Manufacturers' 
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Association (ZVEI). This comprehensive three-dimensional model encompasses Hierarchy Levels, Life 
Cycle Value Stream, and Cross-Cutting Aspects, providing a structured approach to implement 
Industry 4.0 functionalities within factories and manage product lifecycles[3]. RAMI 4.0 facilitates 
communication between participants and workpieces through IoT or cloud technologies, making it a 
valuable tool for businesses adopting Industry 4.0. However, challenges remain, such as achieving 
interoperability and standardization across different systems and components. Efforts like 
"Constructing a Real-Time Value-Chain Integration Architecture for Mass Individualized Juice 
Production" [4], built on RAMI 4.0, demonstrate the potential for further evolution towards 
microservices architectures[5] . 

In today's data-driven landscape, ensuring data sovereignty and interoperability is crucial. The 
International Data Spaces (IDS) initiative [6] aims to establish a secure and reliable data exchange 
infrastructure, facilitating data interoperability between organizations. IDS is based on creating 
secure data spaces for efficient data exchange, comprising four key layers: application, transport, 
data, and governance. The IDS architecture is technology-neutral, enabling organizations to 
implement IDS-compliant solutions using their preferred technologies while providing data 
sovereignty and interoperability. 

A key component of both IDS-RAM 3.0 and 4.0 is the IDS Connector, serving as a standardized 
interface for communication between Industry 4.0 system components. In IDS-RAM 3.0, the 
connector is based on the OPC UA protocol, providing a uniform data model to enable data and 
information exchange. However, IDS-RAM 4.0[7] further enhances the connector with additional 
features like cross-domain communication, enabling secure and efficient interaction between 
different Industry 4.0 systems, while still leveraging the OPC UA protocol with Industry 4.0-specific 
extensions. Fig. 1 illustrates the structure of the IDS connector as described in IDS-RAM 4.0. 

 

 
Fig. 1 IDS Connector in IDS-RAM 4.0 

 

2.2 Contrasting Architectural Paradigms: Monolithic, Microservices, SOA, and Reactive Microservices 
 

The discussion on the pivotal role of the IDS Connector in enabling standardized communication 
within Industry 4.0 systems underscores the importance of selecting the appropriate architectural 
paradigm for its implementation. A key consideration arises: whether the IDS Connector should be 
realized within a monolithic, microservices[8], or a more advanced reactive[9] microservices 
architecture. 

Monolithic architecture is a traditional approach characterized by a single, tightly-coupled 
application where all components are bundled together. While this architecture simplifies 
development and testing, it can become challenging to scale and maintain as the application grows 
in size and complexity. In contrast, microservices architecture is a modern paradigm that comprises 
a suite of small, independent services communicating via lightweight protocols. Microservices 
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architecture is a variant of Service-Oriented Architecture (SOA)[10], which is built from a collection 
of services. Each microservice contains minimal functions and runs autonomously on its own process, 
enabling greater flexibility, scalability, and resilience compared to monolithic architectures. 

Reactive microservices further enhance standard microservices by providing more isolation and 
autonomy through their consensus protocol and asynchronous non-blocking messaging architecture 
[11]. According to Boner [12,13], for a system to be considered reactive, it needs to comply with a 
set of principles to build applications meeting the requirements of responsiveness, even in the 
occurrence of failures and high demand. These principles stipulate that the system design must be 
responsive, resilient, elastic, and message-driven. Isolation is a prerequisite for resilience and 
elasticity, requiring asynchronous communication between services to decouple them in terms of 
time (allowing concurrency), space (allowing distribution and mobility), failure (allowing failure 
handling without cascading effects), and state (allowing each microservice to take sole responsibility 
for its own state and persistence). 

Microservices that adhere to these principles are termed reactive microservices. Reactive 
microservices must adapt to the availability or unavailability of surrounding services, handling 
failures, acting independently, and cooperating with other microservices as required. A reactive 
microservice uses asynchronous messaging to interact with its peers and must implement recovery 
or compensation strategies whenever a failure occurs. 

Recent studies [14] have explored utilizing reactive and asynchronous programming paradigms 
to improve service availability in distributed IIoT networks, although further research is needed to 
address timely data exchange requirements in manufacturing environments. 

A key advantage of microservices and reactive microservices architectures is its ability to provide 
better fault isolation. If one service fails, it does not impact the entire application, unlike in monolithic 
architectures where a single module's failure can cause a system-wide crash. Furthermore, the 
microservices approach enables greater agility, allowing organizations to release new features and 
functionality at a faster pace. However, this architecture also presents challenges, such as increased 
complexity, higher operational costs, and the need for a robust DevOps culture to effectively manage 
and operate the independent services. 

Recent research works, such as [15-17] have compared monolithic and microservices 
architectures. These studies have reported that microservices offer better scalability, fault isolation, 
and agility, while acknowledging the increased complexity and the need for specialized expertise and 
robust DevOps practices to effectively manage microservices architectures. 

 
2.3 Clustering and Consensus Protocols for Enhancing Microservices Scalability and Availability 
 

Microservices architecture offers scalability benefits through horizontal scaling, allowing 
individual services to be scaled independently. However, the scalability potential of microservices 
can be constrained by blocking code, which limits concurrency. Gunther's Law, also known as the 
Universal Scalability Law shown in Fig. 2, highlights how blocking code can hinder system scalability 
by reducing concurrency. External factors such as network latency and hardware resources further 
impact microservices scalability. 
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Fig. 2 Amdahl’s Law and Gunther’s Law[18] 

 

Communication between microservices typically occurs via TCP or UDP protocols, which are 
constrained by hardware bandwidth and resources. To enhance scalability, it's essential to minimize 
the blocking fraction of the program and adopt reactive architecture principles. Selecting the 
appropriate clustering management model is also crucial for achieving scalability and availability. 

Clustering management models can be centralized or decentralized. Centralized models rely on 
centralized services for node management, while decentralized models use consensus protocols 
within the application. Consensus protocols ensure agreement among multiple servers, facilitating 
fault-tolerant distributed systems. Fig. 3 illustrate how the cauterized service manage the metadata 
of the members in the cluster. 

 

 
Fig. 3 Clustering with Centralized Service. 

 

Examples of consensus protocols include Raft [19], Gossip protocol [20], and SWIM [21]. Raft 
operates on a single-leader model and uses elections to select leaders and followers. Gossip protocol 
employs an infection approach by broadcasting state to nearest neighbours. SWIM maintains 
membership and status through "ping" messages. Fig. 4 illustrate how the nodes communicate to 
each other without the centralized server. 
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Fig. 4 Decentralized Cluster Management with Gossip Protocol  

 

2.4 Motivation for Using Akka Cluster 
 

Akka Cluster, a JVM-based cluster management tool from Lightbend, is based on the gossip 
protocol with membership. It implements the actor pattern as a basic building block of concurrency 
systems, abstracting complex algorithms and network protocols. This decentralized cluster 
management model offers several advantages over centralized models. In centralized cluster 
management, a middleman (e.g., ZooKeeper) is responsible for managing nodes, registering 
members, sharing state and metadata, and managing clustering-related activities such as adding or 
removing members and load balancing. While this approach provides higher consistency, it 
introduces overhead due to the need to communicate with the middleman to get the status and 
manage the cluster. In contrast, Akka Cluster's decentralized model allows the cluster to self-manage 
and react to changes immediately, reflecting the principles of the Reactive Manifesto. Specifically, 
Akka Cluster utilizes the Gossip protocol, which ensures high availability and eventual consistency 
through an infection-style process group membership. This decentralized, reactive approach reduces 
overhead and enhances the system's ability to handle dynamic and distributed environments 
effectively. Moreover, consensus protocols are not limited to microservices but are also relevant in 
blockchain systems. For instance, the paper "Evaluation of an Actor Model-based Consensus 
Algorithm on Neo Blockchain" [22] demonstrates the importance of consensus protocols in ensuring 
the integrity and reliability of blockchain networks. The use of consensus protocols, exemplified by 
Akka Cluster, highlights their significance in enhancing scalability and availability in distributed 
systems architecture. 

Akka Cluster is just one of the toolkits that can provide decentralized cluster management, and 
its creator is one of the co-authors of the Reactive Manifesto, making it a good candidate to 
demonstrate how decentralized clusters work. The comparison and optimization with other 
decentralized cluster management toolkits are beyond the scope of this research. Conducting such 
comparisons would involve setting up complex testing environments for each protocol, which 
requires considerable time and expertise. However, such cluster optimization could be a focus for 
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future studies, providing a broader understanding of the performance and scalability of various 
decentralized cluster management tools. This comprehensive approach to cluster management and 
the alignment with reactive principles make Akka Cluster a robust and efficient choice for developing 
a scalable, flexible, and highly available data connector in Industry 4.0 environments. It should also 
be noted that as of October 2022, Akka has moved to a commercial license model, which may impact 
its accessibility for some users. Future research can build upon this foundation to explore and 
compare other decentralized cluster management solutions that remain open source. 

While microservices and reactive microservices architectures offer greater flexibility, scalability, 
and maintainability compared to monolithic architectures, they require additional effort in designing 
and managing the independent services, as well as ensuring reliable and secure communication 
between services. Addressing these challenges aligns with the core objectives of our research. The 
connector prioritizes flexibility by ensuring that all components are decoupled and autonomous, 
allowing the system to seamlessly adapt to different manufacturing environments and connect with 
various modern protocols and applications. High availability and scalability are critical in Industry 4.0 
environments, driving the incorporation of robust error handling, recovery mechanisms, and failover 
strategies in the connector to mitigate the risk of data loss or service interruption, especially during 
peak operational hours. Additionally, the emphasis on scalability is motivated by the need to support 
dynamic and growing demands in modern manufacturing systems. Moreover, the connector focuses 
on enhancing data processing efficiency by facilitating the seamless handling of high-volume data 
streams without overburdening computational resources. Through optimized data processing 
pipelines and resource allocation strategies, the connector ensures efficient utilization of hardware 
resources while maintaining responsiveness and reliability. This objective underscores the 
importance of efficient data processing in enabling real-time decision-making and analytics in 
Industry 4.0 environments. 

 
3. Research Methodology 

 

This study employed a hybrid approach that integrated the Design Science Research Methodology 
(DSRM) [23,24] with Agile practices [25]. This combined methodology was chosen for its suitability in 
addressing the research objectives of designing, implementing, and evaluating a reactive 
microservices-based connector to enable seamless interoperability in Industry 4.0 environments. 

The rationale behind this methodological choice lies in its ability to provide practical solutions to 
real-world problems through an iterative development process and close collaboration with 
stakeholders. While DSRM offered a structured framework for creating innovative artifacts, the 
integration of Agile practices fostered flexibility, iterative development cycles, and adaptability to 
evolving requirements and stakeholder feedback. 

The key steps of the DSRM process employed in this study included: 
 
i) Problem Identification: Identifying the challenge of achieving seamless interoperability 

between heterogeneous systems in Industry 4.0 environments. 
ii) Objective Definition: Defining clear objectives to guide the design and development 

process, including ensuring flexibility, scalability, and enhanced data processing efficiency. 
iii) Design and Development: Creating an innovative artifact, the reactive microservices-based 

connector, leveraging microservices architecture, reactive programming principles, and 
modern communication protocols. 
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iv) Evaluation: Rigorously assessing the artifact's effectiveness in addressing the identified 
problem and achieving the defined objectives, based on criteria such as functionality, 
performance, reliability, and usability. 

v) Reflection: Reflecting on the design process and outcomes to identify lessons learned and 
areas for improvement, informing future iterations of the design process. 

 
3.1 System Architecture Design 
 

The system architecture design played a crucial role in the development of the microservices data 
connector, providing a high-level representation of the system's structure and identifying key 
components that enable seamless integration into existing manufacturing environments. 

The microservices architecture was well-suited for the data connector system, adhering to the 
principle of "do one thing and do it well" [26]. This approach ensured that the service was solely 
responsible for data transfer, without additional tasks. Microservices were designed to be 
autonomous and independent, allowing for the use of any programming language, framework, or 
platform, and facilitating easier upgrades or enhancements. 

The reactive microservice architecture variant was adopted to achieve high availability and 
enhanced data processing efficiency. It enabled microservices to react to changes in the 
environment, failures, and limitations, ensuring a highly responsive and efficient data connector. 

 
3.2 Enabling Clustering with Akka Cluster, Akka HTTP and Akka Streams 
 

To achieve high availability, fault tolerance, and scalability, the microservices data connector 
employed Akka Cluster to enable clustering of its microservices. Akka Cluster allowed the 
microservices to form a distributed cluster and work together as a cohesive unit, enabling high 
availability and scalability. Any node within the cluster could handle requests and provide services, 
while clustering ensured fault tolerance, allowing the system to continue functioning even if one or 
more nodes encountered failures. 

Akka HTTP was utilized to enable clustering among the microservices, providing a robust and 
efficient foundation for building RESTful services integrated into the microservices architecture. By 
leveraging Akka HTTP, the connector's microservices could communicate using HTTP-based 
protocols, facilitating clustering and distributing workloads. 

Reactive streaming with Akka Streams and Akka HTTP transformed the microservices data 
connector into a highly responsive and efficient data processing system. Akka Streams empowered 
the creation of asynchronous, backpressure-aware data processing pipelines, enabling real-time data 
processing, efficiency and resource optimization, resilience and fault tolerance, and scalability 
through distributed stream processing. 

 
3.3 Testing Methodologies 
 

Testing was a crucial aspect of the development process, ensuring the reliability, performance, 
and correctness of the microservices data connector. The testing methodologies employed included: 

Data Collection: Collaborating with domain experts to understand the existing data sources, 
formats, and challenges within the manufacturing environment, identifying key stakeholders, and 
assessing data quality. 
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Testing the Clustering Feature: Evaluating the system's ability to adapt to node failures, handle 
leader election, maintain data consistency across the cluster, and assess the impact of increased 
loads on the cluster's scalability. 

Testing Reactive Streaming: Evaluating the efficiency and reliability of the data processing 
pipeline, measuring the system's ability to handle real-time data streams with low latency and high 
throughput, conducting load testing, and examining the integration of reactive streaming with the 
clustering feature. 

Through rigorous testing of the clustering feature, reactive streaming, and overall system 
performance, the microservices data connector's reliability, resilience, and ability to meet the 
defined objectives were thoroughly evaluated, serving as a basis for making necessary adjustments 
and improvements. 
 

4. Design and Implementation 
 

The design and implementation of the microservices data connector within the context of 
Industry 4.0 environments require careful consideration of various architectural aspects and design 
patterns. This chapter provides an overview of the design and implementation process, highlighting 
key decisions and considerations made throughout the development lifecycle. 

 
4.1 Connector in Microservice Architecture 
 

The microservices data connector serves as a critical component within the overall architecture, 
facilitating seamless interoperability between disparate systems and services. Built upon 
microservices principles, the connector architecture embodies modularity, flexibility, and scalability, 
enabling it to adapt to diverse environments and evolving requirements. At its core, the connector 
implements a range of features to ensure robust connectivity and efficient data exchange. 

Security is paramount in the design of the microservices data connector. Leveraging the 
capabilities of the API Gateway, the connector incorporates authentication and authorization 
services, generating OAuth tokens from an OAuth server to enable secure communication with 
external systems. Furthermore, the connector can validate these tokens via the OAuth server, 
ensuring that only authorized entities can access its services. 

The deployment context of the connector is carefully managed to optimize scalability and 
manageability. It provides APIs to share crucial information about its deployment, including location, 
type, participants, and other metadata. Alternatively, this metadata can be centrally managed by a 
service registry, streamlining the deployment process, and enhancing system scalability. 

To facilitate resource discovery and utilization, the connector incorporates a catalogue feature, 
allowing users to query resource metadata from a broker. This functionality enables efficient access 
to resources, enhancing overall system interoperability. In terms of host connectivity, the connector 
is designed to connect to different hosts using standard protocols such as HTTP or custom protocols 
supported by third-party libraries. This flexibility ensures compatibility with diverse environments 
and systems, enabling seamless integration and communication. 

Data pre-processing is seamlessly integrated into the core functionality of the connector, 
leveraging the Reactive Stream API. This allows for efficient and scalable data processing, enabling 
real-time analysis and transformation of incoming data streams. API exposure is managed through 
the API Gateway, which controls the exposure of the connector's API endpoints based on predefined 
policies and configurations. This ensures controlled access to the connector's services, enhancing 
security and governance. By incorporating these features into its design and implementation, the 
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microservices connector achieves a high level of flexibility, scalability, security, and efficiency, making 
it well-suited for addressing the interoperability challenges inherent in Industry 4.0 environments. 

 
4.2 Designing the Microservices Data Connector 
 

The architecture of the microservices data connector is designed to facilitate seamless integration 
and data exchange between various manufacturing systems, applications, and protocols. At a high 
level, the architecture is based on a distributed and modular approach, enabling each component to 
operate independently while collaborating efficiently as a whole system. The primary architectural 
components of the microservices data connector include: 

Microservices: The core of the architecture is built on the microservices paradigm. Each 
microservice represents a self-contained and independent functional unit responsible for specific 
tasks, such as data ingestion, data processing, and data delivery. The microservices are designed to 
be lightweight and loosely coupled, promoting flexibility, maintainability, and scalability. 

Data Processing Pipeline: The data processing pipeline plays a crucial role in efficiently handling 
data streams and enabling real-time data processing. It consists of multiple stages, each performing 
specific data transformations and filtering operations. The pipeline ensures that data is efficiently 
processed and forwarded to the appropriate microservices for further actions. 

Clustering Management: Clustering management is a critical aspect of the microservices data 
connector architecture, enabling high availability, fault tolerance, and scalability. This feature allows 
multiple instances of microservices to work together as a cohesive cluster, ensuring continuous 
service availability even in the face of failures and increasing the system's capacity to handle a higher 
load of incoming data. 

Reactive Streaming Integration: Reactive streaming is incorporated into the architecture through 
Akka Streams, providing a powerful tool for handling large volumes of data streams efficiently. 
Reactive streams facilitate non-blocking and asynchronous processing, essential for managing high-
throughput real-time data. By adopting reactive streaming, the microservices data connector can 
efficiently process and transmit data, ensuring continuous handling of incoming data without delays 
or bottlenecks. Key benefits include backpressure handling, asynchronous processing, and memory 
efficiency. 

The integration of Akka Streams involves defining streams using a fluent DSL (Domain-Specific 
Language) and applying various transformations and operations to process the data streams. Within 
the data processing pipeline, reactive streaming enables efficient handling of the continuous flow of 
incoming data. As data is ingested, it traverses through a series of Akka Streams' Flows, where various 
processing operations occur, such as data transformation, filtering, and enrichment. The reactive 
nature of Akka Streams ensures asynchronous data processing with backpressure handling, 
preventing data congestion and resource exhaustion. 

This design choice results in an efficient and responsive data processing pipeline, enabling the 
microservices data connector to handle data in real-time with low latency. By integrating reactive 
streaming with Akka Streams, the microservices data connector achieves enhanced data processing 
efficiency, facilitating the seamless handling of high data volumes without overburdening 
computational resources. 

 
4.3 System Development 
 

The system development phase involves selecting appropriate technology stacks and tools to 
implement the designed architecture. Build management, microservices implementation, integration 
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with Akka Cluster and Akka Streams, as well as configuration and deployment processes, are essential 
aspects of system development. 

To address the identified problem, the proposed solution involves the development of a proof of 
concept using microservice architecture. This approach follows a structured software development 
life cycle encompassing stages such as development, unit testing, and system testing[25], [27]. During 
development, essential components of the microservice architecture, including the connector, 
cluster management system, and streaming system, are constructed with careful consideration of 
their intended functionalities. 

Unit testing plays a crucial role in ensuring the correctness and reliability of each component. 
Rigorous testing procedures are employed to identify and address potential issues or bugs promptly, 
guaranteeing that the components function as intended. Subsequently, system testing is conducted 
to comprehensively assess the overall performance and efficacy of the developed system, measuring 
its effectiveness in addressing the identified problem and handling real-world scenarios seamlessly. 

The microservices connector is built using a combination of technologies and tools that support 
the implementation of a robust and scalable system. The primary components of the technology 
stack include the Scala programming language and the Akka toolkit. Scala's versatility and expressive 
nature make it an ideal choice for building distributed systems, while Akka provides libraries for 
creating reactive, concurrent, and distributed applications. 

Akka Cluster facilitates clustering management, enabling high availability and fault tolerance, 
while Akka Streams are utilized for efficient stream processing. Simple Build Tool (SBT) is employed 
for build management, offering functionalities to compile, test, package, and deploy Scala projects. 
External configuration files are utilized for configuring the microservices data connector, allowing 
easy adjustment of parameters and settings without code changes. 

The microservices data connector is implemented as a collection of loosely coupled 
microservices, each responsible for specific tasks such as data ingestion, processing, streaming, 
storage, and retrieval. Integration with Akka Cluster and Akka Streams enables effective clustering 
management and efficient stream processing, respectively. Kubernetes orchestrates deployment, 
ensuring consistent and reliable deployment across various environments. 

By utilizing this technology stack and implementing microservices as described above, the 
microservices data connector achieves a flexible, scalable, and efficient architecture capable of 
handling real-time data streams and meeting specified research objectives. 

 
4.4 Testing Environment and Methodology 
 

Establishing a robust testing environment and methodology is crucial for ensuring the reliability 
and performance of the microservices data connector. The testing environment is carefully 
configured to simulate real-world scenarios, and various testing methodologies, including Akka 
Cluster tests and reactive streaming tests, are employed to evaluate the system's behaviour under 
different conditions. By conducting comprehensive tests, developers can identify and rectify 
potential issues, guaranteeing a high-quality product that meets the desired standards of 
functionality and reliability. 

 
4.4.1 Testing Environment 
 

To assess the effectiveness and performance of the microservices data connector, a 
comprehensive testing environment and methodology were employed. The evaluation aimed to 
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measure the system's ability to achieve the defined objectives and verify its efficiency, scalability, 
and responsiveness. 

The testing environment was meticulously configured to simulate real-world conditions while 
ensuring flexibility and ease of deployment. It comprised virtual machines running on high-end 
servers, allowing for the simulation of multiple microservices instances and the deployment of the 
microservices data connector. The hardware specifications used in the research are detailed in Table 
1. 
 

Table 1 
Hardware Specification used for this testing 

Specification Description 

Model HX240C-M5SX 
Processor Intel Xeon Platinum 8168 CPU @ 2.7GHz 
Hypervisor VMware ESXi, 6.7.0.14320388 
Logical Processors 96 
Virtual Machines 39 created and 8 is used for this research 
Operating System in VM Ubuntu 
JVM Java 11 

 
To address the challenges associated with testing microservices at scale, 39 virtual machines 

running either Ubuntu or Windows operating systems were utilized. Each virtual machine was 
equipped with 4 CPUs, 8GB of memory, and 100GB of storage. However, it's important to note that 
these machines were shared among multiple researchers, leading to unpredictable CPU load 
variations. Despite these limitations, the HX240C-M5SX machines provided an exceptional platform 
for microservices development and research. 

 
4.4.2 Testing Methodology 
 

The testing methodology comprised a series of controlled experiments designed to assess specific 
aspects of the microservices data connector's performance. Key areas of focus included clustering 
performance and reactive streaming efficiency. 

Testing the Akka clustering feature involved a range of methodologies, including telemetry 
monitoring, automated and manual testing, and chaos testing. Telemetry monitoring enabled 
developers to gain insights into the cluster's behavior and performance, facilitating prompt issue 
identification and resolution. Unit tests and integration tests were employed to assess individual 
components and interactions between different microservices, respectively. Load testing tools like 
JMeter were utilized to evaluate performance and scalability across varying traffic levels. Chaos 
testing involved intentionally introducing faults and failures to assess system resilience and identify 
potential weaknesses. 

The testing of reactive streaming focused on assessing performance in terms of data delivery and 
processing efficiency compared to conventional HTTP request-response approaches. When 
configured optimally, reactive systems exhibited drastically increased throughput during load tests 
until reaching maximum efficiency. The backpressure mechanism ensured that the system was not 
overloaded, preventing resource exhaustion and system halts. Fig. 5 illustrates the expected pattern 
of throughput versus time in reactive systems, considering external factors such as Java garbage 
collection and operating system activities. 
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Fig. 5 Sigmoid Graph describes the pattern of the maximum 
throughput cap by the systems limitation. c is the maximum efficiency, 
a is the request rate or processing rate. Y-Axis is throughput, X-axis is 
time. 

 
The design and implementation of the microservices data connector represent a significant 

milestone in addressing the interoperability challenges in Industry 4.0 environments. By leveraging 
microservices architecture, design patterns, and modern technologies, the connector demonstrates 
the potential to facilitate seamless data exchange and integration across heterogeneous systems. 

 
4.5 IDS Connector Transformation 
 

In the process of evaluating the IDS Connector, it's essential to delve into its transformation, 
particularly focusing on the shift towards a microservices architecture. This transformation marks a 
significant evolution in the architecture, moving away from monolithic systems towards a more 
modular and scalable approach. 

The IDS Connector transformation involves restructuring the architecture to leverage 
microservices governance components effectively. These components include the Gateway, Service 
Discovery, and Authentication mechanisms, each playing a vital role in ensuring the reliability, 
security, and flexibility of the system. 

The Gateway serves as a centralized entry point, facilitating communication between external 
systems and the microservices within the IDS Connector. By consolidating external interactions 
through the Gateway, the system gains greater control over access, security policies, and traffic 
management. This centralized approach enhances security and simplifies the management of 
incoming requests. 

Service Discovery emerges as a critical component in dynamic ecosystems, enabling 
microservices to locate and communicate with each other seamlessly. In the context of the IDS 
Connector, Service Discovery facilitates the dynamic discovery of microservices, allowing them to 
adapt to changes in the environment, such as scaling, updates, or failures. This dynamic nature 
ensures the resilience and scalability of the system, even in complex and rapidly changing 
environments. 

Authentication mechanisms play a crucial role in ensuring secure interactions between 
microservices and external systems. By implementing robust authentication protocols, such as OAuth 
or token-based authentication, the IDS Connector can authenticate and authorize requests 
effectively, safeguarding sensitive data and resources from unauthorized access. 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 63, Issue 1 (2026) 120-142 

133 
 

Furthermore, the use of Akka Cluster introduces an alternative approach to service registration 
and management within the microservices architecture. Akka Cluster provides robust cluster 
management capabilities, allowing microservices to operate in a clustered environment with high 
availability and fault tolerance. This alternative approach enhances the scalability and resilience of 
the IDS Connector, ensuring uninterrupted service delivery even in the face of failures or increased 
demand. There are many forms setup of microservice architecture, Fig. 7 illustrate one of the 
common use patterns to transform the original IDS Connector illustrate in Fig. 6. 
 

 
Fig. 6. The IDS Connector Architecture describe in IDS-RAM 4.0 
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Fig. 7. IDS Connector after transform into Microservice Architecture by 
including the Gateway, Service Discovery and Authentication module 

 

In conclusion, the transformation of the IDS Connector towards a microservices architecture is a 
strategic move aimed at enhancing its flexibility, scalability, and security. By leveraging microservices 
governance components such as the Gateway, Service Discovery, and Authentication mechanisms, 
along with Akka Cluster for cluster management, the IDS Connector can evolve into a more resilient, 
adaptable, and efficient system, capable of meeting the demands of dynamic manufacturing 
environments. 

 
5. Evaluation and Discussion 
5.1 Clustering for High Availability 
 

In the evaluation and analysis of the IDS Connector, the results of two critical experiments 
conducted on a microservices system within a VMware virtual machine are presented. These 
experiments aimed to assess the clustering management and compare the traditional HTTP request-
response protocol with Akka reactive streaming, utilizing the HTTP stream protocol. 

The clustering management experiment demonstrated the configuration options available for 
Akka cluster member lookup. Two approaches were explored: defining seed nodes and predefining 
a list of members in a properties file. The results in Fig. 8 showcased the system's ability to form 
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cohesive clusters, manage cluster membership, and handle node failures effectively. Notably, the 
configuration with predefined cluster members provided a static and fixed number of nodes, ideal 
for illustrating the behavior of reactive streaming. Table 2 summarized of the activities from these 
observations. 

 

 

 
Fig. 8. Example of Activities like Joining, Leaving and Removing from the 
cluster. 

 

Table 2 

Summary of the activities shown in Fig. 8 

Time Reachable 
node 

Unreachable 
node 

Activity 

From To 

19:39 19:44 3 0 Start-up 3 nodes 
19:44 19:46 5 0 Start-up 2 nodes, it takes a while to 

accept to the cluster 
19:46 19:46 4 0 Shutdown 1 node 
19:47 19:47 3 0 Shutdown 1 more node 
19:48 19:48 2 0 Shutdown 1 more node 
19:51 19:55 5 0 Start back 3 nodes 
19:55 19:59 3 2 2 nodes not reachable, removed from 

cluster. Unreachable node will force 
shutdown after 30s 

19:59 20:01 5 0 Start back 2 nodes 
20:01 20:01 4 1 1 node detected unreachable and 

rejoin back within 30s.  

 
The evaluation of clustering performance focused on scalability, resilience, and handling node 

failures. The Akka Cluster demonstrated its ability to form cohesive clusters, manage membership 
effectively, and redistribute responsibilities in the event of node failures. Load testing revealed that 
the clustering mechanism efficiently distributed tasks among cluster members, maintaining high 
availability and scalability under heavy traffic conditions. 
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Overall, the results of the clustering management experiment and the evaluation of clustering 
performance demonstrate the effectiveness of the Akka Cluster in achieving high availability, 
scalability, and resilience in microservices architectures. These findings validate the suitability of Akka 
clustering for building robust and reliable distributed systems, such as the IDS Connector, and 
highlight its importance in ensuring the system's stability and performance. 
 
5.2 Streaming versus non-Streaming 
 

The testing aims to showcase the effectiveness of reactive streaming in processing data in chunks, 
preventing server crashes caused by resource depletion, a common issue in traditional HTTP request-
response models. Using Apache JMeter, post requests with large payloads are generated to a 
microservice API with reactive streaming enabled, and another test is conducted with an API handling 
normal HTTP request. 

The results in Fig. 9, Fig. 10 and Fig. 11 highlight the benefits of reactive streaming in preventing 
server crashes and enhancing performance. In the streaming API test, JMeter sends requests to the 
HTTP stream endpoint, resulting in efficient processing of data in chunks. The microservice 
demonstrates high throughput, handling over 100 transactions per second with dynamic resource 
allocation based on available threads. This showcases the and efficiency of Akka reactive streams in 
handling continuous data streams. 

Conversely, in the HTTP API test, requests are sent to a standard HTTP endpoint. The microservice 
struggles to handle the large volume of data, resulting in out-of-memory errors and failed requests. 
Even with reduced data size, the microservice fails to process all requests efficiently, indicating 
limitations in handling large payloads with traditional HTTP request-response models. 

 

 
Fig. 9 JMeter Test Result for Reactive Streams with 1000 Threads 2000 Data 
and 100 Iterations 
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Fig. 10 JMeter Test Result for Http Post with 1000 Threads, 2000 Data and 100 
Iterations 

 

 
Fig. 11 Higher rate or error due to Http Post approach not able to accept connections 

 

The analysis of reactive streaming efficiency highlights the superior performance of Akka Streams 
in processing real-time data streams. The system achieves low latency and high throughput, 
efficiently handling continuous data streams without compromising performance. The reactive 
nature of Akka Streams optimizes resource utilization, preventing memory overflows and ensuring 
stability during data processing. 

 
5.3 Experimentation, Data Types and Environment 
 

This study primarily focused on evaluating the performance and scalability of the reactive 
microservices-based data connector using HTTP-based requests. The choice of HTTP was deliberate—
it is a widely adopted protocol, straightforward to implement, and well-suited as a baseline for this 
initial evaluation. One of the main reasons for limiting the scope to HTTP requests was the complexity 
involved in setting up testing environments for each protocol. Different protocols come with unique 
configuration requirements and learning curves, which demand significant time and effort to master. 
Other protocols like gRPC, MQTT, or WebSocket may have their strengths in specific scenarios, their 
inclusion was beyond the scope of this phase of the research. 

The testing environment relied on virtual servers due to cost considerations. Virtualization 
provided a flexible and scalable setup for development and testing, but it’s important to acknowledge 
the trade-offs. Virtual servers introduce an additional layer of abstraction, which can result in higher 
latency and reduced computational efficiency compared to bare-metal servers. As highlighted by 
George from FS.com[28], bare-metal servers are better suited for environments demanding 
consistent, high performance, as they eliminate the overhead associated with virtualization. While 
the use of virtual servers allowed us to explore scalability and fault tolerance effectively, future 
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testing on physical hardware will be essential to validate the system’s real-world performance in 
industrial settings. 
 
5.3.1 Error Handling and Recovery 

 
The error handling and recovery mechanisms in this study are primarily managed by Akka Cluster. 

Akka Cluster provides robust features for handling node failures, redistributing tasks, and maintaining 
cluster integrity. Key mechanisms include gossip-based communication for state sharing, automatic 
leader election, and fault-tolerant recovery strategies. These features enable the system to detect 
and recover from intra-cluster communication failures efficiently, manage latency during peak loads 
through asynchronous processing, and restore operations seamlessly after outages. Future 
enhancements could involve more granular error reporting and advanced recovery strategies 
tailored for specific industrial use cases. Figure 12 shown the life cycle of Gossip Protocol. 
 

 
Fig. 12 Gossip Protocol Life Cycle in Akka Cluster 

 
5.3.2 Evaluation Limitations and Future Research 
 

It’s important to reflect on some limitations of this study and the directions for future work. 
Testing was conducted in a virtualized environment, which, while cost-effective and flexible, may not 
fully capture the nuances of real-world deployments on physical hardware. Future research will 
address this gap by conducting tests on bare-metal servers, focusing on key performance indicators 
like latency and throughput under industrial workloads. 
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Additionally, while HTTP served as a practical starting point, protocols like gRPC, MQTT, and 
WebSocket each bring unique capabilities that could enhance the system’s versatility: 

gRPC: Known for its efficient serialization and low latency, gRPC is well-suited for high-throughput 
scenarios requiring rapid data exchange. 

MQTT: A lightweight protocol ideal for IoT applications, particularly in environments where 
devices have limited resources or network constraints. 

WebSocket: Designed for bidirectional, real-time communication, WebSocket is especially useful 
for continuous data streaming or interactive use cases. 

Comparing these protocols will provide a clearer picture of the connector’s adaptability across 
different use cases. Metrics such as throughput, latency, and fault tolerance will be carefully 
measured to identify the strengths and weaknesses of each protocol. By exploring these alternatives, 
we aim to demonstrate the connector’s ability to meet the diverse demands of Industry 4.0 
environments. This will allow us to refine the system further and optimize its performance for a 
variety of scenarios. 

Despite these limitations, the findings from this study offer valuable insights into the connector’s 
design and functionality. The results demonstrate its scalability and resilience within a controlled 
virtualized setup, laying a strong foundation for future enhancements and broader applicability in 
Industry 4.0 environments. 

 
5.3.3 Case Study Integration 
 

The proposed framework offers flexibility and scalability, making it suitable for various real-world 
scenarios. Some examples include: 

 

i) Heat Transfer Optimization: The study by Fauzi et al., [29] explores the use of nanofluids 
and regression analysis to improve heat transfer efficiency in complex fluid systems. 
Applying the reactive microservices-based data connector to similar domains could enhance 
data processing for real-time monitoring and optimization of heat transfer systems. The 
framework could facilitate efficient data exchange between sensors, analytical models, and 
control systems in such applications. 

ii) Knowledge-Enhanced Educational Tools: Lu et al., [30] demonstrated the potential of large 
language models, such as ERNIE Bot, to enhance educational outcomes in automotive 
marketing. By integrating AI-driven systems into the proposed data connector, real-time 
knowledge dissemination and decision-making could be enabled, supporting smart training 
systems and advanced learning platforms within Industry 4.0 environments. 

iii) Geoinformation Systems for Landslide Mitigation: The geoinformation system for landslide 
mitigation presented by Yanuarsyah et al., [31] could benefit from the flexible, scalable data 
exchange enabled by the reactive microservices-based data connector discussed in this 
paper. Integrating this framework could enhance system responsiveness and 
interoperability, especially when processing geospatial data in real time. 

iv) IoT-Enabled GPS Tracking Systems: Similarly, the IoT-enabled GPS tracking system for 
school student safety described by Hanafi et al., [32] aligns with the objectives of this 
research. By leveraging the proposed connector's scalability and real-time streaming 
capabilities, such systems could efficiently handle dynamic data streams while ensuring 
system reliability and scalability. 

These case studies highlight the potential applications of the proposed connector in diverse fields, 
emphasizing its adaptability and broad impact. 
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6. Conclusion 
 

In this paper, we have presented a comprehensive evaluation of a microservices data connector 
system, focusing on its transformation, performance, and efficiency. Through rigorous testing and 
analysis, we have gained valuable insights into the capabilities and limitations of the system, shedding 
light on its suitability for modern distributed environments. 

The transformation of the microservices data connector, particularly in the context of governance 
and service orchestration, has been a key area of focus. By leveraging gateway, service discovery, 
and authentication mechanisms, we have demonstrated how the system can adapt to dynamic 
ecosystems, ensuring secure and efficient interactions between microservices. The integration of 
Akka Cluster as an alternative service registration mechanism further enhances the system's 
flexibility and scalability. 

Our evaluation of clustering performance has highlighted the system's robustness in managing 
cluster membership and handling node failures. Through scalable configurations and effective split-
brain resolution strategies, the system has exhibited resilience and high availability, essential 
characteristics for distributed environments. Furthermore, our analysis of streaming versus non-
streaming approaches has underscored the importance of reactive streaming in modern data 
processing applications. By comparing the performance of reactive streaming with traditional HTTP 
request-response models, we have demonstrated the efficiency and scalability advantages offered 
by Akka Streams. The ability to process real-time data streams with low latency and high throughput 
positions the system as a reliable choice for Industry 4.0 environments. 

Looking ahead, one potential area of exploration is the integration of advanced analytics and 
machine learning algorithms into the connector, enabling real-time data analysis and predictive 
maintenance capabilities. Additionally, the connector could be extended to support edge computing 
architectures, allowing for distributed data processing closer to the data source. These 
enhancements would further optimize operational efficiency and facilitate data-driven decision-
making in Industry 4.0 environments. 

However, the successful implementation of the microservices data connector also revealed 
certain limitations and challenges. One notable limitation stemmed from the use of a virtualized 
testing environment, potentially limiting the representation of real-world performance on physical 
hardware. To obtain a more accurate assessment of the system's performance, future work should 
focus on conducting tests on physical hardware. Additionally, further research and improvements 
are opportunities to boost the system's performance and adaptability in complex manufacturing 
environments. 

During the development and evaluation of the microservices data connector, several challenges 
were encountered, and solutions were devised to overcome them. Fine-tuning of the cluster 
management configuration, optimization of the reactive streaming pipeline, and iterative 
development were key steps taken to address these challenges. These experiences underscore the 
importance of continuous improvement and adaptation in the rapidly evolving landscape of 
distributed systems architecture. 

In conclusion, the microservices data connector has effectively addressed Industry 4.0 challenges, 
exhibiting flexibility, high availability, scalability, and enhanced data processing efficiency. The 
implementation of microservices architecture, clustering with Akka Cluster, and reactive streaming 
with Akka Streams has demonstrated effectiveness in creating a robust and efficient data connector. 
However, ongoing research and development efforts will be essential to further enhance the 
system's capabilities and meet the evolving demands of modern distributed environments. 
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