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ARTICLE INFO ABSTRACT 

 Human emotions, a complex interplay of psychological and physiological signals are a 
critical aspect of human interaction and well-being. Emotion recognition models in 
general capture human behaviour via facial features, voice/speech, and physiological 
signals, and evaluate and predict emotional states. The physiological signals, like 
brainwave, heart rate, eye movement, or galvanic skin response are the major cause of 
emotional changes. The combination of these signals contributes to the emotion 
change. Thus, effective models with combined physiological signals will serve better 
solutions compared to other modalities in practice. The rapid and precise recognition 
of emotions remains a challenge due to not enough combined physiological datasets. 
The promising characteristics of deep learning will help in achieving efficient emotional 
recognition models in place which use physiological signals as the predominant concern. 
The paper aims to propose a framework that utilizes Convolutional Neural Networks 
(CNN) with feature engineering to process combined physiological signals enabling the 
model to discern relevant emotional patterns while filtering out noise. To improve the 
consistency and accuracy of the prediction of emotions Linear Regression (LR) is used 
and Random Forest (RF) was employed to reduce the overfitting and noise problem. 
The efficacy of the proposed model was rigorously evaluated using standard 
performance metrics which are precision, recall, F1 score and accuracy. The proposed 
model, CNN+LR+RF with feature optimization model performed well with 61% accuracy 
compared to other proposed models. 
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1. Introduction 
 

Human feelings are complex and highly individual; thus, they become the foundation of our 
behaviour and mental health. These emotions are all largely recognized, the physiological responses, 
cognitive evaluation, and cultural influences being the main influencers [1]. The emotions are joy, 
sadness, anger, fear, surprise, and disgust. A subjective method is based on personal opinions and 
feelings rather than objective measurements. Subjective methods were employed in the research to 
elicit emotions from participants and collected data for emotional analysis, selecting four individuals 
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aged 20-30 to monitor Photoplethysmography (PPG) signals while viewing music videos chosen for 
their valence and arousal levels based on a survey of 10 people. Even though they are subjective, the 
study of emotions has much to offer in human-computer interactions; hence, there is a need to find 
ways of substituting subjective methods with objective ones, such as combined physiological signals 
for emotional analysis [2]. Consequently, several physical signals, including the heart rate, skin 
conductance, facial expressions, and EEG (electroencephalogram), are used because they 
supplement one another and provide more information regarding a person's emotional state. The 
sophisticated model systems composed of such diverse signals are more likely to be precise in 
emotion recognition than the single-signal systems. This highlights the need for adaptive models that 
can handle minor variations in physiological responses [3]. 

Deep learning (DL) algorithms have proved to be most useful for recognizing emotions from 
physiological signals, resulting in more precise, robust and interpretable structures. The development 
of CNNs in pattern recognition has proved to be a significant milestone in DL and is currently being 
used for feature recognition in complex signals. Nevertheless, most of the studies that were 
conducted restricted physiological signals to only one or two signals. It can be challenging for emotion 
recognition models to overfit and reduce generalizability. As an example, authors took the 
opportunity in pupillometry to capture human emotion, disgust, and fear, which is directly and 
automatically processed by the brain [3]. Similarly, another study focused on the emotions of 
disillusion and fear [4]. In this study, to make an emotion state assertion, authors used heartbeat 
dynamics for assertion using a support vector machine (SVM) [5]. This research  used 1D CNN for the 
categorization of short-term emotions based on single pulse photoplethysmogram (PPG) signals [2]. 
This study seeks to forecast arousal and valence by analyzing individual peripheral signals (galvanic 
skin response (GSR), RSP, BVP, Temp) through CNN [3]. The limitation in signal variety often results 
in CNN models underperforming, which has led researchers to integrate LR techniques to enhance 
prediction consistency and accuracy. Hence, it is necessary to have a model that can recognize minor 
variations in the inputs and predict complex emotions with reasonable accuracy. 

Nevertheless, the potential of DL in emotion recognition remains substantial. The capability of 
combining and analyzing the signals from different physiological systems would result in more precise 
models that can recognize and identify a wider variety of emotional states [5]. The primary objective 
of this research is to propose a framework based on CNN to improve efficiency and accuracy of 
emotion prediction on combined physiological signals. Additionally, this research seeks to address 
the challenge of overfitting and noise in emotion recognition models.  

The structure of this paper is as follows: Section 1.1 lists relevant research done in recent years 
in emotion recognition using physiological signals. Section 2 explains the techniques used in this 
research. Section 3 discusses the results of this research, and Section 4 contains the conclusion of 
this research. 

 
1.1 Literature Review 

 
The literature review shows the research on face recognition and the employment of machine 

learning (ML) and DL algorithms for emotion recognition. It includes research areas that introduce an 
application of modern techniques for increasing precision in natural language processing; for 
example, feature optimization methods and DL models with CNNs and SVMs for emotion sensing are 
used from EEG signals. This evidences the ability of DL to recognize fine nuances of emotions from 
physiological data, where emotions are usually represented in a complex way. 
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1.1.1 Feature optimization 
 
The paper introduced a new approach to feature optimization [6]. Targeted at its compatibility 

with classification techniques that seek to reduce noise and enhance the quality of data in natural 
language processing, it outperformed basic models. At the same time, standard Particle Swarm 
Optimization (PSO) methods might be mute about particular elements necessary for the process of 
emotion recognition and therefore offer an inferior outcome in comparison to the proposed time 
adaptive PSO version, which suggests that conventional PSO algorithms might be incapable of 
capturing all necessary features for accurate emotion recognition. In this article, the authors directed 
their attention to two issues the forest optimization method has: control parameter setting and 
population generation, which are primarily addressed and lead to improved classification accuracy 
and dimension reduction respectively [7]. The effectiveness of PSO in searching the solution space 
stems from the power of the swarm to work as a coherent unit in order to achieve a goal, but it also 
comes with the problem of high dimensional feature space, which entails high computations. A 
tweaked version of PSO has been utilized  to determine the feelings in the frames of videos to include 
a time constant in the algorithm to curtail the premature convergence and enable the identification 
of emotional expressions across various datasets such as Cohn-Kanade (CK+), JAFFE, and NIMH-ChEFS 
[8]. 

An innovative two-stage feature optimization procedure, which includes the integration of the 
FCA and ReliefF algorithm, has significantly boosted emotion recognition from physiological signals 
using the DEAP database and the Augsburg Bio-Signal Toolbox by refining the feature set through 
discarding of unimportant features [9]. Likewise, a dual combination is implemented whereby 
recursive feature elimination (RFE) is used in conjunction with several feature importance methods 
– support vector machine (SVM), RFand generalized boosted regression models for data with large 
numbers of features [10]. This operation eliminates noise and overfitting, which in turn increases 
model accuracy. This method underscores the need for solutions to be scalable across various 
application scenarios in those cases when such a process could be tailored to specific application 
needs to be most effective. In contrast, some methods may be specific to a particular dataset. 

In addition, ensemble classifiers allow RFE to be integrated into their design to increase stroke 
prediction accuracy and reduce overfitting by using several base classifiers simultaneously [11]. To 
increase generalization and decrease noise in the model, IGRF-RFE [12-14] is a method that uses a 
combination of information gain, RF importance, and RFE for feature selection in network intrusion 
detection. On the other hand, these studies advance the issues of feature enhancement and emotion 
detection, as well as the problems that still need to be dealt with. Most of these techniques need to 
be modified explicitly for various requirements, which is unrealistic in non-mass application areas. 
Moreover, the accuracy of these models, which depend on vast and fortuitous datasets, presents 
issues in their generalizability and applicability to different real-world scenarios. 

The comparative analysis of PSO with RFE is presented in Table 1. This article focuses on Feature 
optimization algorithms for emotion recognition and other related tasks. The results of the new 
feature optimization approach used in NLP tasks appear promising due to noise elimination. At the 
same time, traditional PSO algorithms tend to miss crucial parts regarding emotion classification. An 
improved variant of PSO with a time constant converged on the problem of premature convergence 
in multiple emotion recognition or expression identification tasks using CK+, JAFFE and NIMH-ChEFS 
datasets. It achieved better performance metrics on forest optimization algorithms' classification 
accuracy and dimension reduction. In conclusion, these results highlight not only the progress but 
also the problems of feature optimization, pointing out the need for scalable and adaptable 
approaches for multiple datasets. 
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Table 1 
Comparison of Particle Swarm Optimization (PSO) and Recursive Feature 
Elimination (RFE) usage in various studies 

Study Particle Swarm Optimization (PSO) Recursive Feature Elimination (RFE) 

[4]   
[5]   
[6]   
[7]   
[8]   

[9]   

[10]   

[11]   

[12]   

 
1.1.2 Machine learning challenges 
 

ML is crucially essential in emotion recognition, which is achieved with the help of the 
identification of complex human emotional expressions using physiological and behavioural cues. 
Recent improvements in DL have given rise to novel models that exploit CNN and support vector 
machines (SVM) for emotion recognition from EEG signals [15]. This method has proven its potential 
by translating EEG signals into 2D spectrograms to increase recognition accuracy for diverse datasets 
such as DEAP and SEED. Additionally, the performance of the subject-independent classification 
strategies can be optimized, as it was noted that the individual baselines exhibited some variability. 

The study further elaborates on the effectiveness of CNNs in EEG-based recognition of emotions 
compared to RF algorithms [16]. The research indicated that CNN obtained an accuracy of 67%, which 
signals their proficiency in managing intricate data interpretations and implies optimizations could 
span a broader category of emotions. In addition, class EEG physiologic signals integration with 
classes has been explored, and such multimodal data fusion has been found to significantly boost the 
accuracy of emotion recognition of the DEAP platform [17]. Further advances are needed in 
developing particularly adaptive algorithms required to process data from diverse sources. 

A multi-featured deep forest model has been analyzed deeply in the previous research [18]. The 
model utilized the PSD and DE from the DEAP dataset and achieved an average accuracy of 71%. The 
model performed better than the traditional classifiers such as RF, SVM and KNN. This model marked 
the first application of DL. However, the authors of the paper tried to reproduce the results of Cheng 
et al., [19], but this time using different methods to induce emotions and confirmed that FFNN had 
70% accuracy. The effectiveness of DL technology has been confirmed. Research using RF obtained 
the lowest accuracy of 62% [20]. The DEAP dataset includes over 50 videos labelled with affective 
dimensions that range from happy to sad and calm to angry, while the other 58% of videos exhibit 
emotions that are less clearly definable. It can be concluded that algorithmic approaches to emotion 
recognition still need to be developed to achieve higher accuracy and generalization. The study 
investigates how emotions can be identified from Hindi audio using different ML methods with 
significant accuracy using the RF algorithm [21]. 

Though these studies indicate some encouraging developments, certain constraints can 
circumscribe the more extensive application of these machine-learning models to recognize 
emotions. Additionally, the diversity in the accuracy of different subjects with the classifiers suggests 
the need for better and more objective approaches to classification. Furthermore, although fusing 
multiple forms of data seems promising, existing models need to be improved for better handling of 
the variety and complexity of data types to achieve uniform and reproducible outcomes across 
various datasets. 
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1.1.3. Deep learning approaches 
 

DL techniques have significantly impacted emotion detection, especially in the case of modern 
neural systems. Emotion recognition from EEG signals was done with a randomized CNN model, 
which tagged a greater accuracy than existing systems on the DEAP dataset [4]. Similarly, as described 
in Sharma et al., [21], negative feelings are accurately identified by an LSTM architecture from EEG 
data in the DEAP and SEED datasets. DL can analyze and extract complicated emotional patterns from 
physiological data. 

Several ML approaches, including SVM, LR, CNN, and Recurrent Neural Networks (RNN), have 
been thoroughly investigated in the context of the recognition of emotions from EEG signals, for 
example, in Nakisa et al., [23]. The research further identifies the challenges faced in emotion 
recognition from data. It stresses the need to select suitable features and classifiers to increase the 
precision. In addition, CNN has been shown to successfully classify emotions by analyzing signals from 
electrodermal activity in the MAHNOB and DEAP datasets, with 78% and 82% classification accuracy, 
respectively. This research fails to demonstrate CNN's problem-solving capabilities. It also highlights 
the various issues of building models that could yield good results for different individuals and 
datasets. 

A recent approach generally integrates early and late fusion models into the time-based 
multimodal learning model using multi-signal interfaces [24]. The time-based model is illustrated 
particularly with the multimodal model and, in this instance, BVP and EEG sensors acquired from 
devices. This suggests that the fusion technique has great potential in overcoming the weakness of 
short-tersignalls operations by improving the accuracy of the emotion recognition systems. 

In addition, the investigation on expanding CNN to identify six primary emotions from 
physiological signals has pointed out the necessity to emphasize data preprocessing and tuning of 
parameters using adequate techniques for best results [29]. The reports focused on cross-subject 
emotion recognition where pre-trained CNNs are applied, which implies the potentiality of more 
generalization, but the data limits the work [30]. The research on different architectures of DL 
approaches for analyzing emotions and stress indicates the need to validate and optimize these 
models in hyperparameter comparison studies [31]. Besides, the BI-LSTM model application on EEG 
signals for emotion recognition has attained appreciable success [32]. However, the employed 
computational resources and the complexity of tuning such models preclude their use in real-time 
situations. The current study  has developed a stress recognition model that employs CNNs to extract 
features from video and EEG data and uses XGBoost for classification [33]. It has been demonstrated 
that this model can accurately detect stress and work better than conventional methods like decision 
trees (DT) and RF. The systematic review  highlights the application of RFE and CNNs in the task of 
Alzheimer's disease diagnosis [34]. 

Table 2 shows the DL approaches in recent studies. Although DL for emotion recognition has 
progressed greatly, some limitations still exist. One of the disadvantages of training complex models, 
including CNN and extended short-term networks (LSTM), is the necessity of massive, well-annotated 
datasets, especially in situations where data privacy is significant and the data collection process is 
complicated. Besides, most of these models are computationally expensive and complex; thus, 
implementation in real-time systems is very challenging. As such, the issue is finding ways to develop 
these models to make them more efficient and flexible. 
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Table 2 
Deep Learning Approaches used in recent 
studies 
Study Models 

CNN LSTM RNN 

[19]    
[20]    
[21]    

[22]    
[23]    
[24]    
[25]    
[26]    
[27]    
[28]    
[29]    
[30]    
[31]    
[32]    
[33]    
[34]    

 
2. Methodology  

 
This section of the paper discusses the methodology of emotion recognition using DL and 

physiological signals to provide a broad description of the methods and technologies used. The 
purpose is to develop a technique that can detect and process a wide variety of physiological signals 
covering human emotions, using innovative machine-learning methods to achieve high accuracy in 
detecting emotions. Figure 1 shows the proposed methodology. 

 
2.1 Data Obtained 

 
The paper uses the ASCERTAIN dataset, a group of data collected from 58 participants who 

watched 36 emotional videos and rated their feelings on a seven-point scale ranging from very boring 
to very exciting [35]. The bio-signals of the participants were obtained through commercial sensors 
that were used to record physiological signals. The Electroencephalogram (EEG) captures brain 
activity, the Electrocardiogram (ECG) monitors heart rate, galvanic skin response (GSR) to track sweat 
gland response and the EMO to track facial response. A total of 36 emotional videos were presented. 
Table 3 shows the dataset description. 
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Fig. 1. Proposed Methodology 
 

Table 3 
Dataset Description 
Features Description 

Participants Number of participants 
Physiological Signals ECG recordings in combination with other physiological activities. 
Video Stimuli Classified video clips according to emotional valence and arousal levels. 
Emotional Categories Subcategories under the umbrella of emotional categories 
Personality Traits Big Five personality characteristics 
Data Collection Method Physiological data collected from the participants during the video 

stimuli sessions. 

 
2.2 Data Pre-Processing 

 
The ASCERTAIN dataset undergoes rigorous preprocessing steps to conform the to the input data 

format specified by the CNN. It starts by merging features from different providers of physiological 
data into a single feature matrix known as ‘X’. To deal with the differences in sensor data outputs, 
we implement normalization processes with the use of ‘StandardScaler’ so that every feature has a 
mean of zero and a standard deviation of one. This step is significant in improving the model’s 
convergence and in reducing the effects of sensor variations. 
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Also, the occurrence of infinite numbers in ‘X’ is replaced with NaNs that are later filled with the 
mean value to prevent data loss. By validating and normalizing the data set, we improve the 
performance reliability and accuracy of our model on different devices. During the development 
phase, we used a variety of libraries and frameworks in constructing our model to cope with different 
types and configurations of sensors. This strategy stems the variations from the sensor data and also 
gives a robust implementation for emotion identification based on biological signals using DL 
methodologies. 

 
2.3 Feature Optimization 

 
RFE and PSO are the feature optimization techniques considered to fine-tune the features. RFE 

runs through the existing subset and eliminates the least important features, allowing the model to 
be built on minimal features and finding the optimum number of features. It assists in increasing the 
quality of the models by cleaning the data and decreasing the model complexity, reducing the 
chances of overfitting. In the same way, PSO can efficiently search the feature space and choose 
relevant feature subsets depending on principles of swarm intelligence and improve the model 
action. This iterative fine-tuning weighs more for the model to learn better generalization from the 
training dataset towards predicting emotional emotions from physical signals and emotional state 
recognition patterns. 

 
2.4 Model Building  

 
The use of a CNN in this study is because of its ability to recognize spatial features in physiological 

signals, which is important in emotion recognition tasks. The model is trained based on the dataset, 
of which the training and validation data ratio is 80:20 to allow robustness and generalization. The 
activation of the second to the last layer will be the feature representations of the physiological 
signals to which the training features and the testing data will be extracted using the CNN model, 
which will extract the implicit, hidden patterns in the multimodal data, resulting in accurate emotion 
recognition. Figure 2 shows the CNN architecture. 
     
 
 
 
 
 
 
 
  

Fig. 2. Visualize of CNN architecture 
 
2.5 Evaluation Metrics 
 

To evaluate the performance evaluation, certain evaluation metrics will be used, including 
precision, accuracy, F1 score, recall, and Receiver Operating Characteristic (ROC). 
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2.5.1 Precision 
 

Precision is a fundamental metric that calculates the percentage of true positives among all 
anticipated positives. High accuracy leads to confidence in the models' favourable forecasts, but low 
precision leads to the need for a change. The precision is computed as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
          (1) 

 
2.5.2 Accuracy 

Accuracy in performance evaluation is defined as the proportion of correctly classified instances 
among all occurrences in the dataset. It is a common metric for evaluating the overall performance 
of a classification model. Accuracy is computed as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
      (2) 

 
2.5.3 Recall 

Recall, often known as the true positive rate, is a performance metric used in classification tasks 
to assess how successfully a model recognises positive cases. It represents the proportion of 
accurately anticipated positive events to all actual positive instances. Recall is computed as follows: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
        (3) 

 
2.5.4 F1 score 

The F1 score is a metric for evaluating the performance of a classification model. The harmonic 
mean of accuracy and recall generates a single score that balances both measurements. The F1 score 
is computed as follows: 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2∗(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
         (4) 

 
2.5.5 Receiver Operating Characteristics (ROC) 
 

The ROC graph shows false positive rates on the X axis and true positive rates on the Y axis. The 
False Positive Rate and the True Positive Rate are computed as follows:  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
       (5) 

 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
       (6) 

 
3. Results And Discussion 
 

The proposed model was trained and tested with ASCERTAIN dataset. In the beginning, we used 
CNN both with and without feature optimization to get the accuracy of the model. The models’ 
performance was not good because of the dataset with both linear and nonlinear relationships 
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between the variables. Nevertheless, the feature optimization model of CNN outperforms the one 
without feature optimization. 

 
3.1 Convolutional Neural Network (CNN) and Feature optimization 
 

Initially, CNN architecture was designed with two 1D convolutional layers with ReLU activation 
functions, followed by max pooling layers to downsample the feature maps. Then, a flattened layer 
is added to transform the 3D output into a 1D vector, followed by two Dense layers with ReLU and 
softmax activation functions to output probabilities for each emotion class. Next, the model is 
instantiated and trained using the training data. An early stopping callback is incorporated to monitor 
the validation loss and restore the best weights when the loss fails to improve for 10 epochs. 

In this study, we assessed the performance of two CNN models to classify the emotions into seven 
classes. The models implemented were CNN and CNN with feature optimization, including RFE and 
PSO. We selected RFE as one of the feature selection algorithms because of its effectiveness in 
boosting model performance by identifying and removing fewer essential features from the model 
and targeting more relevant ones. PSO was also examined as an alternative method due to its 
capacity to effectively search the feature space and select feature subsets with the help of swarm 
intelligence principles, which could increase model accuracy. The CNN+RFE model resulted in an 
accuracy of 28%, a notable increase over the regular CNN model’s performance, while PSO achieved 
19% accuracy.  

Based on the given Table 3, the optimized model showed balanced improvement in all classes, 
especially in class 4, where the precision is 0.32 and recall is 0. 47. This indicates that the CNN model 
with the feature optimization gives better results, with an overall accuracy of 28% than the 18% of 
CNN model. It highlights the role of feature optimization in enhancing model accuracy and its 
efficiency for multi-class prediction. It also indicates that these enhancements are critical to improve 
the performance of CNN in classification tasks. As the RFE outperformed PSO, the feature 
optimization used with CNN is RFE for the other models discussed in this paper. 

 
3.2 CNN + RF 
 

Next, CNN with a RF model was used to improve the prediction accuracy by reducing overfitting, 
which is an issue of CNN. We assessed the performance of CNN+RF and CNN+RF with feature 
optimization. The results are shown in Table 4. 

Both models show high precision levels for all classes, but there is a significant difference in recall 
rate, which considerably impacts the F1 scores. From the CNN+RF with feature optimized model, the 
accuracy increased slightly from 28% to 30%, and in most of the cases, it has better recall and F1-
score, especially for the class 0 (with an F1-score of 0.91). 

 
3.3 CNN + LR + RF 

 
To improve the consistency and accuracy of the prediction, LR was included. The integrated 

model utilized CNN for feature extraction, followed by LR and RF models for prediction, which was 
trained and tested and achieved notable performance on the physiological dataset. It is because CNN 
is excellent at automatically learning relevant features from the raw data and can capture intricate 
patterns and relationships within the signals crucial for recognizing different emotions. Feature 
optimization technique was applied to identify the most informative subset of features. CNN excels 
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in feature extraction from datasets and learning spatial patterns, providing rich features for emotion 
complexity. 

 
Table 3 
Comparative analysis of CNN model metrics with and without 
feature optimization 

Model  Accuracy Class Precision Recall F1-score 

CNN  18% 0 
1 
2 
3 
4 
5 
6 

0.00 
0.17 
0.00 
0.20 
0.50 
0.12 
0.11 

0.00 
0.05 
0.00 
0.82 
0.02 
0.01 
0.10 

0.00 
0.08 
0.00 
0.32 
0.03 
0.02 
0.10 

CNN with RFE 28% 0 
1 
2 
3 
4 
5 
6 

0.12 
0.12 
0.14 
0.26 
0.32 
0.31 
0.25 

0.11 
0.10 
0.11 
0.25 
0.47 
0.27 
0.05 

0.12 
0.11 
0.12 
0.25 
0.38 
0.29 
0.08 

CNN with PSO 19% 0 
1 
2 
3 
4 
5 
6 

0.00 
0.04 
0.09 
0.20 
0.35 
0.25 
0.29 

0.00 
0.15 
0.21 
0.07 
0.18 
0.25 
0.05 

0.00 
0.06 
0.13 
0.11 
0.24 
0.25 
0.08 

 
Table 4 
Comparative analysis of CNN-RF model metrics with and without 
optimization 
Model Accuracy  Class   Precision Recall F1-score 

CNN+RF without feature optimization 28% 0 
1 
2 
3 
4 
5 
6 

1.00 
1.00 
1.00 
1.00 
0.00 
1.00 
1.00 

0.86 
0.40 
0.23 
0.05 
0.00 
0.01 
0.38 

0.91 
0.57 
0.37 
0.09 
0.00 
0.03 
0.55 

CNN+RF with feature optimization 30% 0 
1 
2 
3 
4 
5 
6 

1.00 
1.00 
1.00 
1.00 
0.00 
1.00 
1.00 

0.84 
0.45 
0.27 
0.05 
0.00 
0.01 
0.41 

0.91 
0.62 
0.43 
0.09 
0.00 
0.01 
0.58 

 
LR efficiently makes predictions based on these features, ensuring effective utilization. This 

integration brings several benefits, such as feature extraction and interpretable relationships leading 
to consistent and accurate predictions and computational efficiency for scalability and faster training 
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and prediction. The LR model was trained with and without optimized features to learn the 
coefficients that best fit the relationship between features and emotions.  

For further enhancement of the model's accuracy, RF aggregates predictions from multiple DT, 
reduces overfitting and handles noise in the data. We applied feature optimization techniques to 
identify the most informative subset of features. It can reduce the dimensionality of the data by 
removing redundant and irrelevant features, which in turn improves the model's performance. RFE 
was used to select the top features, which ensured that the most informative features were used for 
training the LR and RF models. We assessed the performance of CNN+LR+RF and CNN+LR+RF with 
feature optimization. The performance results of the methods are shown in Table 5. 

By comparing these two models, CNN+LR+RF with feature optimization gives better results than 
CNN+LR+RF without feature optimization. This implies that models without feature optimization lead 
to overfitting, which means the model will capture noises rather than underlying patterns, which can 
affect the model's performance. 

 
Table 5 
Comparative analysis of CNN-LR-RF model metrics with and without 
optimization 
Model Accuracy  Class  Precision Recall  F1-score 
CNN+LR+RF without feature optimization 52% 0 

1 
2 
3 
4 
5 
6 

0.99 
0.93 
0.96 
0.88 
0.73 
0.88 
0.97 

0.99 
0.82 
0.70 
0.30 
0.06 
0.14 
0.72 

0.99 
0.88 
0.81 
0.44 
0.10 
0.25 
0.83 

CNN+LR+RF with feature optimization 61% 0 
1 
2 
3 
4 
5 
6 

0.97 
0.91 
0.90 
0.68 
0.53 
0.68 
0.91 

0.99 
0.92 
0.81 
0.34 
0.17 
0.29 
0.82 

0.98 
0.91 
0.85 
0.45 
0.25 
0.41 
0.86 

 
3.4 LSTM 
 

For a more comprehensive analysis of our proposed model's performance, we tested LSTM 
Networks, which serve as a benchmark for both their efficiency and the performance of the models 
we advance. 

The efficacy of the Long Short-Term Memory (LSTM) model was tested under two conditions, 
without and with feature optimization through RFE. The results are shown in Table 6. In the case 
without feature optimization, the LSTM achieved an accuracy of 46%, showing commendable 
classification performance for Class 0 with a precision of 0.77, recall of 0.93 and F1-score of 0.84, 
which reliably identifies this class. The model, however, faced issues with the other classes, including 
Class 4, where a precision of 0.37 was achieved alongside its recall, which stood at only 0.21. 
However, applying feature optimization resulted in a PSP of the model accuracy of just 23%. This 
suggested that important features were possibly eliminated during the optimization process, an 
observation further confirmed by the decline in class metrics. For example, a fall in the Class 0 
Precision to 0.30 coupled with the recall of 0.64, which provided an F1 score of 0.41. Such declines 
were witnessed in the performance of the rest of the classes as well, the most notable being Class 4, 
where precision and recall were around 0.04 and 0.01, respectively.  
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3.5 Discussion 
 

The strengths and weaknesses of the model CNN+LR+RF in predicting multiclass outcomes will be 
discussed in this section. 

We understand that it is essential to include a complete comparative evaluation to validate our 
choice of LR and RF models in conjunction with the CNN model. The addition of LR helps to interpret 
the obtained linear patterns from the features extracted by the CNN, thereby aiding in correlating 
the emotion of a subject to physiological changes. On the other hand, RF efficiently handles non-
linear relations and, at the same time, minimizes overfitting, which is particularly essential in datasets 
with deep neural networks. This combination takes the best of both approaches to enhance 
prediction ability.  

 
Table 6 
Comparative analysis of LSTM model metrics with and without optimization 

Model Accuracy Class Precision Recall F1-score 

LSTM without feature optimization 46% 0 
1 
2 
3 
4 
5 
6 

0.77 
0.43 
0.43 
0.31 
0.37 
0.34 
0.44 

0.93 
0.60 
0.43 
0.31 
0.21 
0.22 
0.56 

0.84 
0.50 
0.43 
0.31 
0.27 
0.27 
0.49 

LSTM with feature optimization 23% 0 
1 
2 
3 
4 
5 
6 

0.30 
0.19 
0.22 
0.20 
0.04 
0.21 
0.22 

0.64 
0.14 
0.34 
0.12 
0.01 
0.13 
0.24 

0.41 
0.16 
0.27 
0.15 
0.01 
0.16 
0.23 

 
Compared to the CNN + RF model, our CNN + LR + RF results, as reported in Table 5, are more 

trustworthy. More specifically, the CNN + LR + RF model accomplished a 52% accuracy score, 
surpassing the CNN + RF model by 24%. The integration of LR improves the interpretability of the 
features that CNN has extracted. It helps to understand the relationship between the emotional 
states and the physiological signals. Moreover, feature optimization is an effective means of 
improving the performance of the model as it assists in identifying and retaining critical features 
whilst reducing overfitting. Such optimization also enables advancement in accuracy to 61% of the 
CNN + LR + RF model. On the contrary, the CNN + RF models, both without and with feature 
optimization, struggle with accuracy, achieving only 28% and 30% accuracy, respectively. Moreover, 
with feature optimization, the CNN + LR + RF model reached 61% accuracy, which is considerably 31% 
larger than what CNN + RF + feature optimization could reach.  

Figure 3 shows the training and validation accuracy of CNN+LR+RF with a feature optimization 
model. The training accuracy of this model increases, which indicates that the model is learning. The 
validation accuracy also increases, but it has no change after a certain point, which the model may 
not improve during training. However, it appears that CNN+LR+RF with a feature optimization model 
is learning and fitting to the training data. 
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Fig. 3. Training and validation accuracy over Epochs 
 

Moreover, our evaluation of ROC curves and AUC scores provides further support to these 
conclusions. CNN+RF, together with RFE, as shown in Figure 4, can achieve AUC scores between 0.48 
(Class 0) and 0.57 (Class 6). Even though it can increase accuracy, the costs in computational 
resources do not offer any benefits to the overall process. Meanwhile, the combination of 
CNN+LR+RF, which combines feature optimization, achieves AUC scores close to ideal separation 
among multiple types with Class 0 (AUC = 1.00), Class 1 (AUC = 0.98), and Class 6 (AUC = 0.97). The 
AUC indicators of CNN+LR+RF with the RFE model, as shown in Figure 5, show greater potential in 
discriminating between various emotional conditions compared to CNN+RF with the RFE model. This 
indicates that our combined framework has an increased capacity to extract the features necessary 
for achieving accurate emotion recognition. In summary, these conclusions confirm our 
methodological approach and demonstrate the advantages of handling the emotional recognition 
problem by combining LR and RF with the CNN architecture. 

 

 
Fig. 4. CNN+RF+RFE model - Receiver Operating Characteristic (ROC) Curves for 
Multi-class Classification 
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Fig. 5. CNN+LR+RF+RFE model - Receiver Operating Characteristic (ROC) curves 
for multi-class classification  

 
The comprehensive emotion recognition models are depicted in Figure 6, with CNN achieving a 

fair baseline. Rationally, the proposed approach moves from classification tasks to regression tasks 
by augmenting RF to make it the CNN+RF model. In this model, better performance is obtained 
because it addresses non-linear relationships, thereby controlling overfitting. Then, adding LR to the 
model, CNN+LR+RF improves the robustness of the model while maintaining decent accuracy. The 
accuracy of CNN+LR+RF increases to 61% with the integration of RFE. The LSTM models suffer from 
poor results, translating into recognition accuracy of only 46% without feature improvement and 23% 
with, which further confirms the effectiveness of the CNN+LR+RF+RFE model for these tasks. 

 

 
Fig. 6. Models comparison 

 

Overall, CNN+LR+RF model results are more reliable compared to LSTM models. LR was 
integrated with CNN and RF because it can improve the consistency and accuracy of the predictions 
and leverage the power of CNNs to extract more meaningful features from the dataset. We obtained 
the accuracy of this model, which is 61%, 31% more compared to CNN+RF. Besides that, feature 
optimization also enhances the model’s performance, identifying the most important features and 
reducing the overfitting issue. 
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4. Conclusion 
 

Human emotions, a complex blend of psychological and physiological cues, play a vital role in 
human well-being and social interactions. Emotion recognition models use facial expressions, voice 
and physiological signals such as brainwaves and heart rate to anticipate emotional states, with the 
later playing a significant role in emotional fluctuations. Integrating these signals offers more 
effective solutions for emotion recognition models than other modalities. The study proposed a 
framework combining CNN and feature engineering to analyze physiological signals for emotional 
pattern recognition, utilizing LR for consistent emotion prediction and RF to address overfitting 
issues. According to the results of the study, the CNN+LR+RF with feature optimization has proved to 
be an effective model for the recognition of psychological states that can be determined by 
physiological signals. Including feature optimization approaches has become exceedingly helpful in 
increasing the accuracy of the models using the systematic tuning of the data input and eliminating 
overfitting and noise. 
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