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Recurrent neural networks (RNNs) are an excellent fit for regression problems where 
sequential data are the norm since their recurrent internal structure can analyse and 
process data for long. However, RNNs are prone to the phenomenal vanishing gradient 
problem (VGP) that causes the network to stop learning and generate poor prediction 
accuracy, especially in long-term dependencies. Originally, gated units such as long 
short-term memory (LSTM) and gated recurrent unit (GRU) were created to address this 
problem. However, VGP was and still is an unsolved problem, even in gated units. This 
problem occurs during the backpropagation process when the recurrent network 
weights tend to vanishingly reduce and hinder the network from learning the 
correlation between temporally distant events (long-term dependencies), that results 
in slow or no network convergence. This study aims to provide an empirical analysis of 
LSTM networks with an emphasis on inefficiency in long-term dependencies 
convergence because of VGP. Case studies on NASA’s turbofan engine degradation are 
examined and empirically analysed. 
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1. Introduction 
 

A recurrent neural network (RNN) is a model of neural network for modelling time-series data 
devised in the 1980s [1,3]. Through the connections between hidden units linked with the time delay, 
the network can preserve information about the past, allowing it to uncover temporal correlations 
between events that occurred in the data at long distances apart. Even though the core function of 
RNNs is to learn long-term dependencies (the temporal correlations or dependencies between 
events far away from each other), theoretical and experimental evidence indicates that learning to 
process information for a long time is challenging. One solution to this issue is to add explicit memory 
to a network. In 1997, Hochreiter and Schmidhuber [4] created the first suggestion of this type, the 
long short-term memory (LSTM) with particular hidden units whose natural tendency is to retain 
inputs for a longer period of time. Later in 2014, the gated recurrent unit (GRU) was developed by 
Cho et al., [5] to make it possible for each recurrent unit to capture the relationships between 
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differences on different time scales adaptively. Like the LSTM unit, the GRU unit features gating 
mechanisms that regulate the information flow without the need for separate memory cells [6]. 

RNNs are an excellent fit for regression problems where sequential data are the norm due to the 
fact that their recurrent internal structure can analyze and process data for long. However, two 
widely known issues with training RNNs are the exploding and the vanishing gradient [6]. The 
exploding gradient problem (EGP) happens when long-term elements exponentially grow more than 
short-term dependencies. On the other hand, the vanishing gradient problem (VGP) happens when 
long-term elements grow exponentially and rapidly to norm 0, preventing the model from learning 
the correlation between temporally distant events [7] It is due to the vanishingly small value of the 
gradients, which causes slight or negligible improvement in weights. A deep learning model may 
require more time to train and learn from the data, indicating that there is little or no neural network 
convergence [8]. 

Based on experimental findings, gated units, such as LSTM and GRU, outperform the Vanilla RNNs 
in terms of prediction and validation accuracy. Numerous recent studies stated that LSTM could 
mitigate or lessen the VGP through effective learning [9-14]. Although gated units were originally 
developed to solve this problem, this problem was, and still is, an unsolved problem and gated units 
can still run or face this issue especially for long-term inputs and outputs dependencies, but not 
nearly as much as the Vanilla RNN [15-17]. 

Furthermore, Bayer [18] demonstrates that LSTM can still encounter VGP because of the 
gradients given in the below Eq. (6), where repeated multiplications of recurrent weights U can lead 
the gradients to vanish, making it difficult to calculate long-term dependencies. Consequently, LSTM 
may continue to struggle to identify long-term dependencies in excessively lengthy sequences. 
Besides, according to Chandar et al., [19],  the gradients on the gating units themselves vanish as the 
units’ activations functions saturate and cause the problem. From this observation, they introduced 
the Non-saturating Recurrent Units (NRUs) to mitigate the problem of vanishing gradient further.  

To analyze LSTM models used in regression problems, we have selected the well-known public 
data set for asset degradation modelling generated by NASA’s C-MAPSS software [20,21] for the 
literature comparison in this study. C-MAPSS is the benchmark data set for remaining useful life (RUL) 
regression problems [22]. The data set is distributed into four different simulated subsets (FD001 to 
FD004), provides multivariate time series data with various operational modes, and contains run-to-
failure simulated data from 218 turbofan jet engines whose readings are measured by 21 attached 
sensors. Root mean squared error (RMSE) is used as an evaluation metric since it is the most 
applicable evaluation metric for RUL prognosis models, according to Vollert et al., [23]. 

The rest of this paper is organized as follows: Section 2 highlights the research background. 
Section 3 presents some related works to regression problems in LSTM, along with a deep discussion 
and results. Section 4 shows our experiment about how efficient LSTM is in handling long-term 
dependencies. Finally, this study is summarized in section 5. 
 
2. Background  
 

This section provides a background about the research problem in three sub-sections. The RNN 
overall training process is highlighted in sub-section 2.1. The vanishing gradient problem is discussed 
in sub-section 2.2. The LSTM cell structure and operations are covered in sub-section 2.3. 
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2.1 RNN Overall Training Process 
 
The overall training process of RNN consists of two passes, a forward pass, and a backward pass, 

and it is illustrated in Figure 1 [16]. 
 

i. Compute the “forward pass” equations using initialized weights/hidden states. 
ii. Compute and evaluate the “loss/error” function using the given ground truth 

targets/labels and the predicted values/labels as shown in this equation 
 

J(W, b) =
1

n
∑  n

i=1 L(ŷi, yi)2             (1) 

 

where W denotes the weight matrix, b denotes the bias vector, n denotes the number of inputs, �̂�𝑖 

denotes the predicted value,  𝑦𝑖 denotes the true observed value, and L denotes the loss value 
between the predicted and the true observed value. The cost function J, which is the square of the 
difference between the true observed value and the predicted value, can be used to figure out how 
much this loss is. 
 

i. Compute the “backward pass” equations to acquire the required gradients to update the 
current weights with the goal of reducing (optimizing) the loss/error function. 

ii. Update the weights using the acquired gradients and repeat steps (a and b). 

iii. Repeat steps (a to d) until a satisfactory loss/error threshold value is reached. 

 

 
Fig. 1. Recurrent neural network overall training process 

 
2.2 Vanishing Gradient Problem (VGP) 

 
RNN operates by the fundamental of storing the output of a layer and sending it back to the input 

to predict the output of the layer. However, RNNs suffer from a remarkable problem known as 
vanishing gradient or gradient disappearance, particularly when learning long-term dependencies 
(usually within 10:15  time steps) [24]. Hochreiter and Schmidhuber [4] first discovered this problem 
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in 1991. The primary reason for this phenomenon is the decrease in gradients during 
backpropagation epochs while updating the weights of the network’s prior layers [7,15]. It occurs 
when the gradients become exponentially smaller and approach 0 during the training process. They 
no longer contribute to finding the optimum weights needed to learn long-term data dependencies. 
This problem makes the RNN unable to bridge the long-term dependencies within the data due to 
infinitesimally small gradients in the previous time steps. 

RNN updates its hidden state mathematically as follows by taking Xt as input at any time step t. 
 
St = Wxt +  Uht−1             (2) 
 
ht = f(St)              (3) 
 
where W denotes the input weight, U denotes the recurrent weight of the network, and 𝑓 denotes a 
non-linear activation function like tanh or sigmoid. Consider a T-length sequence with a loss of ℒ 

determined when the sequence is over. To calculate the gradient of the loss function 
∂ℒ

∂U𝑖𝑗
 at time t, 

we must first calculate 
∂ℒ

∂ht
 using this chain rule 

 
∂ℒ

∂ht
=

∂ℒ

∂hT
 
∂hT

∂ht
              (4) 

 

=
∂ℒ

∂hT
∏  T−1

k=t
∂hk+1

∂hk
             (5) 

 

=
∂ℒ

∂hT
∏  T−1

k=t (diag [f ′(Sk)]U)            (6) 

 
For a very long sequence length T, multiplying U over and over in the last Eq. (6) during the 

backpropagation through time (BPTT) process can cause the network gradients to grow or shrink at 
an exponential rate causing the problem of exploding or vanishing gradient respectively.  

Another cause of VGP in deep RNN is the use of saturated activation functions 𝑓, such as the 
logistic function (sigmoid) σ (·) or a hyperbolic tangent (tanh) (.) [19]. The difference between the 
variance of these activation functions’ inputs and outputs is extremely large because they transform 
and shrink a bigger input space into a smaller output space that is between (0, 0.25) in sigmoid and 
between (0,1) in tanh [25]. Also, using the normalized exponential function (softmax) can leave the 
network susceptible to vanishing gradient. 

Although RNNs improve predictions in many regression tasks, vanishing and exploding gradient 
issues are more likely to occur when the network is deeper, which exacerbates the problem. 
Moreover, VGP makes it challenging to determine in which direction the cost function parameters 
should be adjusted to increase its performance. In RNNs, only a portion of the gradients at time steps 
far enough from the current input may vanish, making diagnosing the problem difficult. Since 
information travels through time and layers in the RNN, and the weights are shared across all time 
steps, examples with longer sequences can frequently come across this problem. In the worst-case 
scenario, if all the gradient terms in BPTT equations vanish or explode, the network stops learning 
altogether; therefore, further improvement of the network performance becomes impossible 
without changing the hyperparameters of the network. One way to diagnose both issues is to track 
the norm of the temporal components of the gradients. If the norm at a given time step is 
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substantially lower than 1, the vanishing gradient issue is present [16]. Conversely, if it is substantially 
higher than 1, then the exploding gradients issue is present.  

Nonetheless, with LSTM, the gradients will not exponentially decay as it does with Vanilla RNN. 
There is at least one optimal approach to a combination of weights that mitigates the VGP as much 
as possible and avoids the training stagnating. Bayer’s [18] observation regarding this issue in LSTM 
demonstrates the importance of initializing and optimizing the network’s weights using gradient 
descent or metaheuristic algorithms enhancing the model architecture, applying batch 
normalization, choosing efficient activation functions or using non-saturating activation functions 
such as rectified linear unit (ReLU) as all of these can help avoid vanishing gradient for longer periods 
in LSTM [8,26-30] Thus, enabling more efficient learning of long-term dependencies. However, even 
with these techniques, the ability of an LSTM to remember long-term dependencies will still be 
limited by the specific architecture and training of the model, the data it is being applied to, and the 
performance metrics being used to evaluate it [16,18].  
 
2.3 Long Short-Term Memory 
 

Neural network topologies such as RNNs are an excellent fit for regression problems where 
sensors’ sequential data are the norm because their internal structure can analyze and process 
sequential input data [4]. However, because of the VGP, RNNs have difficulty learning long-term 
dependencies. In 1997, Hochreiter and Schmidhuber [4] devised the long short-term memory (LSTM) 
with special hidden units whose natural tendency is to remember inputs for a longer period of time 
and minimize the likelihood of VGPs in RNNs. With the invention of LSTM, two main terms were 
added to the simple RNN terminologies, the cell states, and the gates. The cell states can be thought 
of as a storage or long-term memory that stores past relevant information while the gates manage 
and regulate the flow of information through the network. Besides, LSTM has also hidden states and 
they are known as short-term memory. Therefore, many time series applications can benefit from 
implementing LSTM such as network latency reduction in healthcare, autonomous negotiation, web 
services [31-33] It also can be used in detection tasks such as Iron oxide nanoparticles, fatigue crack 
growth prediction and gas coning detection [34-36]. 

LSTM may be presented as an RNN with a memory pool and two key vectors 
 

i. Short-term state that maintains the current time-step’s output.  
ii. Long-term state that handles long-term entities while travelling through the network.  

 
Both the cell states and the hidden states flow forward through time while getting updated and 

influencing each other at each time step. Unlike the hidden state, the cell state is usually not used as 
an output, but it is passed and updated internally along with the hidden states at each time step and 
influences the hidden state at each time step. Additionally, the flow of information in LSTM networks 
is regulated by three internal gates during the learning process: the input gate, the output gate, and 
the forget gate. The LSTM cell structure and operations are highlighted in the sub-sections below. 

 
2.3.1 LSTM cell structure 

 
The generalized single-cell LSTM structure with its gates is illustrated in Figure 2, and the LSTM 

cell architecture is illustrated in Figure 3. 
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Fig. 2. A generalized single cell LSTM structure [37] 

 
Where the input gate 𝑖𝑡 controls what relevant long-term information can be added to the cell 

state 𝑐𝑡 from the new candidate state vector �̃�𝑡. The forget gate 𝑓𝑡, was introduced in 1999 by Gers 
et al., [38], eliminates irrelevant data with less significance on the prediction progress to allow new 
information to be processed in the cell state. Finally, the output gate 𝑜𝑡 outputs the valuable data 
from the current cell state. 
 

 
Fig. 3. LSTM architecture [10] 

 

2.3.2 Single cell LSTM operations 

 
The internal operations and activities of a single cell LSTM are explained in Algorithm 1, where 𝜎 

denotes the logistic sigmoid function, tanh denotes the hyperbolic tangent function, and ⊙ denotes 
the Hadamard product (element-wise product) [4,37]. 
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  Algorithm 1  
  Single cell LSTM operations 

Given 𝑊 Matrix of input-to-hidden weights 
𝑈 Matrix of hidden-to-hidden weights 
𝑏 Vector of Bias 

Input 𝑥𝑡 Vector of input at time step 𝑡 
𝑐𝑡−1 Vector of previous memory cell state 
ℎ𝑡−1 Vector of previous hidden state 

Output 𝑐𝑡 Vector of memory cell state  
ℎ𝑡 Vector of hidden state 

Process 1. Compute the input gate vector 

𝒊𝒕 = 𝝈(𝑾(𝒊) 𝒙𝒕 + 𝑼 (𝒊) 𝒉 𝒕−𝟏 + 𝒃 (𝒊) )                                                                                                                 (7) 

 
2. Compute the forget gate vector 
 

𝒇𝒕 = 𝝈(𝑾 (𝒇) 𝒙𝒕 + 𝑼 (𝒇) 𝒉 𝒕−𝟏 + 𝒃(𝒇) )                                                                                                     (8) 

 
3. Compute the output gate vector 
 

𝒐𝒕 = 𝝈(𝑾(𝟎) 𝒙𝒕 + 𝑼(𝟎) 𝒉 𝒕−𝟏 + 𝒃(𝟎))                                                                                                     (9) 

 
4. Compute the memory cell state vector 
 
𝒄𝒕 = 𝒊𝒕 ⊙ 𝒖𝒕 + 𝒇𝒕 ⊙ 𝒄𝒕−𝟏                                                                                                                    (10) 

 
where 

𝒖𝒕 = 𝒕𝒂𝒏𝒉 (𝑾 (𝒖) 𝒙𝒕 + 𝑼 (𝒖) 𝒉 𝒕−𝟏 + 𝒃 (𝒖))                                                                                                   (11) 

 
5. Compute the hidden state vector 
 
𝒉𝒕 = 𝒐𝒕 ⊙ 𝒕𝒂𝒏𝒉(𝒄𝒕)                                                                                                                     (12) 

 
Based on experimental findings, gated units outperform the Vanilla RNNs in terms of prediction 

and validation accuracy. Still, they have four times as many parameters as the Vanilla RNN, and hence 
they suffer from high complexity in the hidden layers [26]. LSTM has more trainable weights than 
Vanilla RNN. Specifically, it features four distinct sets of trainable input weights for input data: 
[𝑊𝑓 , 𝑊𝑖, 𝑊𝑜 , 𝑊𝑐] and four distinct sets of trainable recurrent weights for hidden states: 

[𝑈𝑓 , 𝑈𝑖 , 𝑈𝑜, 𝑈𝑐]. In addition, there are also four distinct trainable bias terms: [𝑏𝑓 , 𝑏𝑖, 𝑏𝑜 , 𝑏𝑐]. 

 
3. Results and Discussion 

 
This section presents some related works to regression problems in LSTM, along with a deep 

discussion and results. Vollert et al., [23] published a review paper on the challenges of RUL prognosis 
using machine learning-based methods. The majority of the 81 reviewed papers were based on LSTM 
models. On the other hand, the C-MAPSS data set is the standard benchmark for evaluating RUL 
regression problems [22]. Thus, the case studies on NASA’s turbofan engine degradation are 
examined and empirically analyzed. Table 1 shows the comparison of related works. 
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  Table 1 
  Related works to LSTM networks used in remaining useful life prediction 

Publication Year Techniques Findings Discussion 

Bae et al., 
[39] 

2022 PHT - LSTM Physical health timesteps (PHT) were 
introduced as an additional input 
feature to the proposed LSTM 
network to facilitate learning the 
relationship between sensory data 
and the remaining useful life. Utilizing 
the LSTM model to exploit the long-
term dependencies of the temporal 
information in the time series data, 
this approach enhances the RUL 
prediction by refining the timestep 
information to be helpful. 

Before estimating the RUL, they 
first estimate the training and test 
data PHT. The estimated PHT is 
then added to the input features 
for the primary goal of RUL 
estimation. However, this pre-
calculation of the PHT can be time-
consuming for systems that require 
rapid predictions. Besides, they 
used three distinct LSTM networks 
for 1) Estimating PHT for training 
units, 2) Estimating PHT for test 
units, and 3) Estimating RUL for the 
test units with the estimated PHT. 
Although the authors mentioned 
that the VGP could undermine 
their LSTM predictions in long-term 
dependencies, their study did not 
cover the problem of vanishing 
gradient and its impact on their 
LSTM models. 

Muneer et 
al., [40] 

2021 LSTM with 
Attention 
Mechanism 

They presented LSTM with an 
attention mechanism to depict the 
association between the selected 
features and the RUL. Due to the 
dimensionality reduction, their model 
generated better results in terms of 
improved prediction quality and 
increased computing performance. 

This method could not capture the 
long-term dependencies entirely 
because of the VGP, and it was 
tested on the easiest subsets of the 
data set. Besides, the researchers 
used the softmax activation 
function in their LSTM model with 
30 neurons, which leaves the 
network susceptible to vanishing 
gradient. 

Xie et al., 
[41] 

2021 AM-
ConvFGRNET 

The proposed attention convolutional 
forget gate recurrent network (AM-
ConvFGRNET) has two phases. The 
first one is a forget gate convolutional 
recurrent network (ConvFGRNET) that 
is proposed based on a one-
dimensional analogue LSTM, where 
all gates except the forget gate are 
removed, and chrono-initialized 
biases are used. The second one is 
the attention mechanism, which 
assures the method captures more 
particular features in order to 
generate better results. 

The proposed model takes longer 
time to capture long-term 
dependencies compared with 
others (more than eight minutes in 
the FD002 subset). Possible 
reasons for that could be using the 
raw vibration signals as input 
directly without removing the 
outliers. Besides, using the softmax 
activation function inside their 
LSTM model, which leaves the 
network susceptible to VGP. 
 

Kumar [42] 2021 CNN-LSTM A hybrid model composed of stacked 
CNN layers for features extraction 
and an LSTM layer to estimate the 
RUL. A genetic algorithm was used for 
hyperparameter selections and 
optimization. 

The CNN-LSTM model was 
developed and compared with 
numerous models, such as HDNN, 
deep CNN, and deep LSTM. 
However, the results indicate that 
the HDNN model scored the best in 
multi-operating condition subsets, 
while the deep CNN model scored 
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the best in single-operating 
condition subsets. i.e., this study 
gives low RUL predictions 
compared with other studies. 
Moreover, the computation time is 
extremely long (up to 6 hours in 
the FD002 subset), which proves 
that this LSTM model suffers from 
VGP and its consequences in long-
term dependencies. 

Zhao et al., 
[43] 

2020 A double-
channel hybrid 
model based on 
bidirectional 
LSTM and CNN 

The authors argued that both CNN 
and LSTM have limitations and 
drawbacks in RUL prediction.  CNN is 
well known for its capabilities for 
extracting highly abstract features 
according to the spatial feature 
method, but it neglects the time 
sequence of the data. On the 
contrary, LSTM performs better with 
time-series data, but it is incapable of 
spatial data extraction. Thus, they 
proposed a model based on CNN and 
BiLSTM so that each method fulfils 
the gap of the other. 

The hybrid model’s first channel is 
composed of 3 layers of CNN with 
filter size (1*10), (1*3), and (1*3), 
respectively, to obtain the spatial 
features from the data, whereas 
the second channel has stacked 2 
BiLSTM with 16 and 8 neurons 
respectively to obtain the long-
term data dependencies. All these 
layers use the ReLU activation 
function, and the maximum 
training epoch was set as 200. 
However, this hybrid model did not 
completely capture the long-term 
dependencies, especially in the 
complex dataset FD002 and FD004. 

Da Costa et 
al., [44] 

2019 LSTM network 
with a global 
attention 
mechanism 

An LSTM network with a global 
attention mechanism was developed 
for learning RUL relationships directly 
from time-series data. To improve the 
model results, the researchers also 
focused on the hyperparameters 
analysis, such as learning rate, batch 
size, number of LSTM layers, number 
of neurons, and time window size. 
They also proposed a soft attention 
mechanism for learning attention 
weights at each RUL estimation 
timestep. 

The authors mentioned that gated 
architectures reduce the VGP. They 
performed 10-fold cross-validation 
in order to determine the best 
network architecture. Then, they 
concluded that having one LSTM 
layer with 100 neurons resulted in 
the best performance, whereas 
adding more LSTM layers only 
added more complexity to the 
network without enhancing the 
performance. 

Zheng et 
al., [45] 

2017 Deep LSTM The deep model that was employed 
contains two LSTM layers, each with a 
different number of nodes (32 and 
64), followed by an (8-8-1) neural 
network layer. They control the 
model overfitting by utilizing dropout 
and L2 regularization in addition to 
the RMSprop optimizer while training 
models. 

This study gives low RUL prediction 
results compared with other 
studies in this paper, making it 
impractical for real prognosis 
problems. Early stopping was 
utilized to stop the learning 
process when there was no 
improvement in the data 
validation. 

 

The findings and discussion of the literature reviewed are highlighted in Table 1 The authors have 
used different architectures, techniques, and hyperparameters tunings to enhance their models and 
to get more reliable and accurate RUL predictions. The RMSE results across the surveyed models, and 
the four subsets of the C-MAPSS dataset (FD001 to FD004) are listed in Table 2 and plotted in Figure 
4.  
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  Table 2 
  RMSE results across models and subsets 

Techniques RMSE 

FD001 FD002 FD003 FD004 

PHT – LSTM [39] 9.75 12.90 12.16 23.10 
LSTM with Attention Mechanism [40] - 12.87 11.23 - 
AM-ConvFGRNET [41] 12.67 16.19 12.82 19.15 
CNN-LSTM [42] 15.68 22.26 16.89 26.32 
A double-channel hybrid model based on bidirectional LSTM and CNN [43] 12.58 19.34 12.18 20.03 
LSTM network with a global attention mechanism [44] 13.95 17.65 12.72 20.21 
Deep LSTM [45] 16.14 24.49 16.18 28.17 

 

 
Fig. 4. Comparison of RMSE results across models and subsets 

 
It is clearly shown that the best result in RMSE among the literature surveyed is (9.75) by Bae et 

al., [39] for the subset FD001. On the other hand, the worst result is (28.17) generated by the deep 
LSTM model designed by Zheng et al., [45] for the subset FD004. Besides, the LSTM model with 
attention mechanism designed by Muneer et al., [40] scored (12.87) and (11.23) for the subset FD002 
and FD003, respectively. However, their models were not tested with the most complicated subset 
in C-MAPSS, the FD004 subset. In that subset, the AM-ConvFGRNET model based on LSTM and 
proposed by Xie et al., [41] generated a value of (19.15). 

Researchers proposed numerous LSTM models with different techniques to mitigate VGP and 
EGP as much as possible and to obtain better results from their designed models, such as 

 
i. Applying weights regularization to prevent the gradients from becoming too small and to 

encourage the model to learn more stable and generalizable patterns in the data.  
ii. Building deeper LSTM architectures with multiple layers to help their models to learn 

more complex dependencies and to better retain information over longer sequences of 
inputs. 

iii. Initializing and optimizing the models’ weights using gradient descent or metaheuristic 
algorithms. 

iv. Testing and trying different activation functions. 
v. Tuning the model’s hyperparameters such as learning rate, number of LSTM layers, batch 

size, number of neurons, and time window size. 
 
However, even with these solutions, the ability of LSTM models to remember long-term 

dependencies will still be limited by the specific architecture and training of the model, the data it is 
being applied to, and the performance metrics being used to evaluate these models [16,18]. 
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To prove the inefficiency of LSTM on long-term dependencies, an experiment was developed 
using Python programming language for building a sequential LSTM model. The idea is to train the 
LSTM model on a sequence of numbers where the value of each number is determined by the 
previous number, with a long-time gap between the relevant numbers to analyze the long-term 
dependencies among the data. First, the length of the sequence (N) and the gap between relevant 
numbers (G) are initialized. Then, the training and testing data are generated by creating two lists of 
numbers from 1 to N, with some of the numbers changed according to the gap value. After that, the 
developed LSTM model is trained for (100) epochs on the training data that have some missing 
values. Finally, the model is evaluated on the testing data with the same missing values.  

This section includes three sub-sections; the experiment setup and model configuration in sub-
section 3.1, the evaluation metrics used to evaluate the developed model in sub-section 3.2, the 
experiment results and discussion in sub-section 3.3. 

 

3.1 Experiment Setup 
 
The developed LSTM sequential model consists of two layers: an LSTM layer and a dense layer. 

The LSTM layer has 32 units and expects input with any number of time steps, where each time step 
has one feature. The dense layer has one unit, which is the model’s output.  

The experiment is performed on Intel (R) Core (TM) (i7-5600U) CPU @ 2.60GHz, (16.0) GB DDR3 
RAM using Python (3.9.12), Anaconda (22.11.1), TensorFlow (2.11.0). Besides, the following libraries: 
Pandas (1.5.2), NumPy (1.23.5), Matplotlib (3.5.3), and Keras (2.11.0).  

 
3.2 Experiment Evaluation Metrics 

 
Four evaluation metrics are used to evaluate the developed LSTM model: Mean Absolute Error 

(MAE), Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and Root Mean Squared 
Error (RMSE). These metrics are defined as 

 
3.2.1 Mean absolute error (MAE) 

 
It represents the average of the absolute difference between the actual and predicted values in 

the dataset, and it is denoted as 
 

1

n
∑  n

1 |yi − ŷi|                                      (13) 

 
3.2.2 Mean squared error (MSE) 

 
It represents the average of the squared difference between the original and predicted values in 

the dataset, and it is denoted as 
 

1

n
∑  n

i (yi − ŷi)
2                        (14) 

 
3.2.3 Mean absolute percentage error (MAPE) 
 

It is a measure of the prediction accuracy of a forecasting method in statistics, and it is denoted 
as 
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1

𝑛
∑  𝑛

𝑡=1
|�̂�𝑡−𝑦𝑡|

𝑦𝑡
× 100                        (15) 

 
3.2.4 Root mean squared error (RMSE) 
 

It is defined as the standard deviation of the RUL prediction errors, and it measures how far data 
points are plotted from the regression line, and it is denoted as 

 

√
1

n
∑  n

j=1 (yj − ŷj)
2
                        (16) 

 
where 𝑛 represents the total number of predictions made, 𝑦𝑗 is the true observed value, and �̂�𝑗 

represents the predicted value. When both values are equal, the plotted points lie on the regression 
line, so no prediction errors occur. When the predictions errors increase, the values of the RMSE also 
increase correspondingly. 
 
3.3 Experiment Results and Discussion  
 

This experiment is repeated multiple times to test the model on different sequence lengths (10, 
20, 30, 40, 50, 60, 70, 80, 90, and 100), where the gap between the relevant numbers is set as (3). In 
each sequence length, the model is evaluated, and the metrics are stored and plotted. In conclusion, 
when tested on a longer sequence with a larger gap, the model had higher metrics values, indicating 
that it is less efficient in making predictions for long-term dependencies. The evaluation metrics 
values over an increased sequence length are shown in Table 3 and are plotted in Figure 5. 

 
Table 3 
LSTM model loss over sequence length 
                        Metrics  
Sequence  
Length 

MAE MSE MAPE RMSE 

10 2.32808 7.291632 56.92557 2.700302 
20 6.750084 63.25161 59.2161 7.953088 
30 12.46396 206.8792 67.89247 14.3833 
40 18.97133 467.5989 74.83435 21.62403 
50 25.95008 855.7687 81.26044 29.25352 
60 31.18816 1230.381 82.7712 35.07679 
70 37.78834 1789.665 86.09274 42.30444 
80 43.95028 2412.183 87.8178 49.11398 
90 47.4785 2843.848 85.13817 53.32774 
100 55.66957 3848.653 90.10715 62.03751 
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Fig. 5. LSTM model loss over sequence length 

 
Moreover, the length of the input sequence can affect the performance of the LSTM model in 

several ways. One way is by determining the amount of context the model has made available when 
making predictions. LSTM models can remember long-term dependencies in the data, but the longer 
the input sequence, the harder it is for the model to remember all the relevant information. If the 
sequence length is too short, the model may not have enough context to make accurate predictions, 
but if the sequence length is too long, the model may have difficulty retaining the necessary 
information. Finding the optimal sequence length for a given dataset and prediction task is often a 
matter of experimentation and tuning.  

Another way the sequence length can affect model performance is by determining the amount 
of training data needed to train the model. LSTM models may require a large amount of training data, 
and the longer the input sequence, the more training data is needed to fully capture the data 
dependencies. If the available training data is insufficient to train the model adequately, the model’s 
performance may be poor. 
 
4. Conclusions 
 

RNNs, with their recurrent internal structure, can analyze and process sequential data in 
regression problems for a long time. However, RNNs are prone to the problems of exploding and 
vanishing gradients. Although gated units, such as LSTM and GRU, were initially created to solve these 
problems, these problems remain unsolved. Gated units facing these problems, especially for long-
term inputs and outputs dependencies. Nonetheless, with LSTM, the gradients do not exponentially 
degrade as they do with Vanilla RNN. 

Case studies on NASA’s turbofan engine degradation are examined and empirically analyzed to 
understand how VGP affects LSTM performance. Besides, to prove the inefficiency of LSTM on long-
term dependencies, an experiment is developed by using Python for a sequential LSTM model. The 
results showed that the longer the input sequence, the harder it is for the LSTM model to remember 
all the relevant information. Our future proposed model will be based on avoiding all causes of VGP 
and proposing an optimized metaheuristic method for LSTM weight optimization. We believe that 
there exists at least one ideal weight combination that mitigates the VGP as much as possible, 
prevents training stagnation, and improves LSTM performance in solving the regression problems. 
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