

Journal of Advanced Research in Applied Sciences and Engineering Technology 30, Issue 3 (2023) 16-31

16

Journal of Advanced Research in Applied

Sciences and Engineering Technology

Journal homepage:
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index

ISSN: 2462-1943

LSTM Inefficiency in Long-Term Dependencies Regression Problems

Safwan Mahmood Al-Selwi1,2,*, Mohd Fadzil Hassan2, Said Jadid Abdulkadir1,2, Amgad Muneer1,3

1 Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
2 Center for Research in Data Science (CeRDaS), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
3 Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

ARTICLE INFO ABSTRACT

Article history:
Received 1 December 2022
Received in revised form 29 March 2023
Accepted 10 April 2023
Available online 2 May 2023

Recurrent neural networks (RNNs) are an excellent fit for regression problems where
sequential data are the norm since their recurrent internal structure can analyse and
process data for long. However, RNNs are prone to the phenomenal vanishing gradient
problem (VGP) that causes the network to stop learning and generate poor prediction
accuracy, especially in long-term dependencies. Originally, gated units such as long
short-term memory (LSTM) and gated recurrent unit (GRU) were created to address this
problem. However, VGP was and still is an unsolved problem, even in gated units. This
problem occurs during the backpropagation process when the recurrent network
weights tend to vanishingly reduce and hinder the network from learning the
correlation between temporally distant events (long-term dependencies), that results
in slow or no network convergence. This study aims to provide an empirical analysis of
LSTM networks with an emphasis on inefficiency in long-term dependencies
convergence because of VGP. Case studies on NASA’s turbofan engine degradation are
examined and empirically analysed.

Keywords:

Recurrent Neural Networks; regression
problems; Vanishing Gradient Problem;
Long Short-Term Memory; long-term
dependencies

1. Introduction

A recurrent neural network (RNN) is a model of neural network for modelling time-series data
devised in the 1980s [1,3]. Through the connections between hidden units linked with the time delay,
the network can preserve information about the past, allowing it to uncover temporal correlations
between events that occurred in the data at long distances apart. Even though the core function of
RNNs is to learn long-term dependencies (the temporal correlations or dependencies between
events far away from each other), theoretical and experimental evidence indicates that learning to
process information for a long time is challenging. One solution to this issue is to add explicit memory
to a network. In 1997, Hochreiter and Schmidhuber [4] created the first suggestion of this type, the
long short-term memory (LSTM) with particular hidden units whose natural tendency is to retain
inputs for a longer period of time. Later in 2014, the gated recurrent unit (GRU) was developed by
Cho et al., [5] to make it possible for each recurrent unit to capture the relationships between

* Corresponding author.
E-mail address: safwan_21002827@utp.edu.my

https://doi.org/10.37934/araset.30.3.1631

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 3 (2023) 16-31

17

differences on different time scales adaptively. Like the LSTM unit, the GRU unit features gating
mechanisms that regulate the information flow without the need for separate memory cells [6].

RNNs are an excellent fit for regression problems where sequential data are the norm due to the
fact that their recurrent internal structure can analyze and process data for long. However, two
widely known issues with training RNNs are the exploding and the vanishing gradient [6]. The
exploding gradient problem (EGP) happens when long-term elements exponentially grow more than
short-term dependencies. On the other hand, the vanishing gradient problem (VGP) happens when
long-term elements grow exponentially and rapidly to norm 0, preventing the model from learning
the correlation between temporally distant events [7] It is due to the vanishingly small value of the
gradients, which causes slight or negligible improvement in weights. A deep learning model may
require more time to train and learn from the data, indicating that there is little or no neural network
convergence [8].

Based on experimental findings, gated units, such as LSTM and GRU, outperform the Vanilla RNNs
in terms of prediction and validation accuracy. Numerous recent studies stated that LSTM could
mitigate or lessen the VGP through effective learning [9-14]. Although gated units were originally
developed to solve this problem, this problem was, and still is, an unsolved problem and gated units
can still run or face this issue especially for long-term inputs and outputs dependencies, but not
nearly as much as the Vanilla RNN [15-17].

Furthermore, Bayer [18] demonstrates that LSTM can still encounter VGP because of the
gradients given in the below Eq. (6), where repeated multiplications of recurrent weights U can lead
the gradients to vanish, making it difficult to calculate long-term dependencies. Consequently, LSTM
may continue to struggle to identify long-term dependencies in excessively lengthy sequences.
Besides, according to Chandar et al., [19], the gradients on the gating units themselves vanish as the
units’ activations functions saturate and cause the problem. From this observation, they introduced
the Non-saturating Recurrent Units (NRUs) to mitigate the problem of vanishing gradient further.

To analyze LSTM models used in regression problems, we have selected the well-known public
data set for asset degradation modelling generated by NASA’s C-MAPSS software [20,21] for the
literature comparison in this study. C-MAPSS is the benchmark data set for remaining useful life (RUL)
regression problems [22]. The data set is distributed into four different simulated subsets (FD001 to
FD004), provides multivariate time series data with various operational modes, and contains run-to-
failure simulated data from 218 turbofan jet engines whose readings are measured by 21 attached
sensors. Root mean squared error (RMSE) is used as an evaluation metric since it is the most
applicable evaluation metric for RUL prognosis models, according to Vollert et al., [23].

The rest of this paper is organized as follows: Section 2 highlights the research background.
Section 3 presents some related works to regression problems in LSTM, along with a deep discussion
and results. Section 4 shows our experiment about how efficient LSTM is in handling long-term
dependencies. Finally, this study is summarized in section 5.

2. Background

This section provides a background about the research problem in three sub-sections. The RNN
overall training process is highlighted in sub-section 2.1. The vanishing gradient problem is discussed
in sub-section 2.2. The LSTM cell structure and operations are covered in sub-section 2.3.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 3 (2023) 16-31

18

2.1 RNN Overall Training Process

The overall training process of RNN consists of two passes, a forward pass, and a backward pass,

and it is illustrated in Figure 1 [16].

i. Compute the “forward pass” equations using initialized weights/hidden states.
ii. Compute and evaluate the “loss/error” function using the given ground truth

targets/labels and the predicted values/labels as shown in this equation

J(W, b) =
1

n
∑  n

i=1 L(ŷi, yi)2 (1)

where W denotes the weight matrix, b denotes the bias vector, n denotes the number of inputs, �̂�𝑖

denotes the predicted value, 𝑦𝑖 denotes the true observed value, and L denotes the loss value
between the predicted and the true observed value. The cost function J, which is the square of the
difference between the true observed value and the predicted value, can be used to figure out how
much this loss is.

i. Compute the “backward pass” equations to acquire the required gradients to update the
current weights with the goal of reducing (optimizing) the loss/error function.

ii. Update the weights using the acquired gradients and repeat steps (a and b).

iii. Repeat steps (a to d) until a satisfactory loss/error threshold value is reached.

Fig. 1. Recurrent neural network overall training process

2.2 Vanishing Gradient Problem (VGP)

RNN operates by the fundamental of storing the output of a layer and sending it back to the input

to predict the output of the layer. However, RNNs suffer from a remarkable problem known as
vanishing gradient or gradient disappearance, particularly when learning long-term dependencies
(usually within 10:15 time steps) [24]. Hochreiter and Schmidhuber [4] first discovered this problem

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 3 (2023) 16-31

19

in 1991. The primary reason for this phenomenon is the decrease in gradients during
backpropagation epochs while updating the weights of the network’s prior layers [7,15]. It occurs
when the gradients become exponentially smaller and approach 0 during the training process. They
no longer contribute to finding the optimum weights needed to learn long-term data dependencies.
This problem makes the RNN unable to bridge the long-term dependencies within the data due to
infinitesimally small gradients in the previous time steps.

RNN updates its hidden state mathematically as follows by taking Xt as input at any time step t.

St = Wxt + Uht−1 (2)

ht = f(St) (3)

where W denotes the input weight, U denotes the recurrent weight of the network, and 𝑓 denotes a
non-linear activation function like tanh or sigmoid. Consider a T-length sequence with a loss of ℒ

determined when the sequence is over. To calculate the gradient of the loss function
∂ℒ

∂U𝑖𝑗
 at time t,

we must first calculate
∂ℒ

∂ht
 using this chain rule

∂ℒ

∂ht
=

∂ℒ

∂hT

∂hT

∂ht
 (4)

=
∂ℒ

∂hT
∏  T−1

k=t
∂hk+1

∂hk
 (5)

=
∂ℒ

∂hT
∏  T−1

k=t (diag [f ′(Sk)]U) (6)

For a very long sequence length T, multiplying U over and over in the last Eq. (6) during the

backpropagation through time (BPTT) process can cause the network gradients to grow or shrink at
an exponential rate causing the problem of exploding or vanishing gradient respectively.

Another cause of VGP in deep RNN is the use of saturated activation functions 𝑓, such as the
logistic function (sigmoid) σ (·) or a hyperbolic tangent (tanh) (.) [19]. The difference between the
variance of these activation functions’ inputs and outputs is extremely large because they transform
and shrink a bigger input space into a smaller output space that is between (0, 0.25) in sigmoid and
between (0,1) in tanh [25]. Also, using the normalized exponential function (softmax) can leave the
network susceptible to vanishing gradient.

Although RNNs improve predictions in many regression tasks, vanishing and exploding gradient
issues are more likely to occur when the network is deeper, which exacerbates the problem.
Moreover, VGP makes it challenging to determine in which direction the cost function parameters
should be adjusted to increase its performance. In RNNs, only a portion of the gradients at time steps
far enough from the current input may vanish, making diagnosing the problem difficult. Since
information travels through time and layers in the RNN, and the weights are shared across all time
steps, examples with longer sequences can frequently come across this problem. In the worst-case
scenario, if all the gradient terms in BPTT equations vanish or explode, the network stops learning
altogether; therefore, further improvement of the network performance becomes impossible
without changing the hyperparameters of the network. One way to diagnose both issues is to track
the norm of the temporal components of the gradients. If the norm at a given time step is

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 3 (2023) 16-31

20

substantially lower than 1, the vanishing gradient issue is present [16]. Conversely, if it is substantially
higher than 1, then the exploding gradients issue is present.

Nonetheless, with LSTM, the gradients will not exponentially decay as it does with Vanilla RNN.
There is at least one optimal approach to a combination of weights that mitigates the VGP as much
as possible and avoids the training stagnating. Bayer’s [18] observation regarding this issue in LSTM
demonstrates the importance of initializing and optimizing the network’s weights using gradient
descent or metaheuristic algorithms enhancing the model architecture, applying batch
normalization, choosing efficient activation functions or using non-saturating activation functions
such as rectified linear unit (ReLU) as all of these can help avoid vanishing gradient for longer periods
in LSTM [8,26-30] Thus, enabling more efficient learning of long-term dependencies. However, even
with these techniques, the ability of an LSTM to remember long-term dependencies will still be
limited by the specific architecture and training of the model, the data it is being applied to, and the
performance metrics being used to evaluate it [16,18].

2.3 Long Short-Term Memory

Neural network topologies such as RNNs are an excellent fit for regression problems where
sensors’ sequential data are the norm because their internal structure can analyze and process
sequential input data [4]. However, because of the VGP, RNNs have difficulty learning long-term
dependencies. In 1997, Hochreiter and Schmidhuber [4] devised the long short-term memory (LSTM)
with special hidden units whose natural tendency is to remember inputs for a longer period of time
and minimize the likelihood of VGPs in RNNs. With the invention of LSTM, two main terms were
added to the simple RNN terminologies, the cell states, and the gates. The cell states can be thought
of as a storage or long-term memory that stores past relevant information while the gates manage
and regulate the flow of information through the network. Besides, LSTM has also hidden states and
they are known as short-term memory. Therefore, many time series applications can benefit from
implementing LSTM such as network latency reduction in healthcare, autonomous negotiation, web
services [31-33] It also can be used in detection tasks such as Iron oxide nanoparticles, fatigue crack
growth prediction and gas coning detection [34-36].

LSTM may be presented as an RNN with a memory pool and two key vectors

i. Short-term state that maintains the current time-step’s output.
ii. Long-term state that handles long-term entities while travelling through the network.

Both the cell states and the hidden states flow forward through time while getting updated and

influencing each other at each time step. Unlike the hidden state, the cell state is usually not used as
an output, but it is passed and updated internally along with the hidden states at each time step and
influences the hidden state at each time step. Additionally, the flow of information in LSTM networks
is regulated by three internal gates during the learning process: the input gate, the output gate, and
the forget gate. The LSTM cell structure and operations are highlighted in the sub-sections below.

2.3.1 LSTM cell structure

The generalized single-cell LSTM structure with its gates is illustrated in Figure 2, and the LSTM

cell architecture is illustrated in Figure 3.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 3 (2023) 16-31

21

Fig. 2. A generalized single cell LSTM structure [37]

Where the input gate 𝑖𝑡 controls what relevant long-term information can be added to the cell

state 𝑐𝑡 from the new candidate state vector �̃�𝑡. The forget gate 𝑓𝑡, was introduced in 1999 by Gers
et al., [38], eliminates irrelevant data with less significance on the prediction progress to allow new
information to be processed in the cell state. Finally, the output gate 𝑜𝑡 outputs the valuable data
from the current cell state.

Fig. 3. LSTM architecture [10]

2.3.2 Single cell LSTM operations

The internal operations and activities of a single cell LSTM are explained in Algorithm 1, where 𝜎

denotes the logistic sigmoid function, tanh denotes the hyperbolic tangent function, and ⊙ denotes
the Hadamard product (element-wise product) [4,37].

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 3 (2023) 16-31

22

 Algorithm 1
 Single cell LSTM operations

Given 𝑊 Matrix of input-to-hidden weights
𝑈 Matrix of hidden-to-hidden weights
𝑏 Vector of Bias

Input 𝑥𝑡 Vector of input at time step 𝑡
𝑐𝑡−1 Vector of previous memory cell state
ℎ𝑡−1 Vector of previous hidden state

Output 𝑐𝑡 Vector of memory cell state
ℎ𝑡 Vector of hidden state

Process 1. Compute the input gate vector

𝒊𝒕 = 𝝈(𝑾(𝒊) 𝒙𝒕 + 𝑼 (𝒊) 𝒉 𝒕−𝟏 + 𝒃 (𝒊)) (7)

2. Compute the forget gate vector

𝒇𝒕 = 𝝈(𝑾 (𝒇) 𝒙𝒕 + 𝑼 (𝒇) 𝒉 𝒕−𝟏 + 𝒃(𝒇)) (8)

3. Compute the output gate vector

𝒐𝒕 = 𝝈(𝑾(𝟎) 𝒙𝒕 + 𝑼(𝟎) 𝒉 𝒕−𝟏 + 𝒃(𝟎)) (9)

4. Compute the memory cell state vector

𝒄𝒕 = 𝒊𝒕 ⊙ 𝒖𝒕 + 𝒇𝒕 ⊙ 𝒄𝒕−𝟏 (10)

where

𝒖𝒕 = 𝒕𝒂𝒏𝒉 (𝑾 (𝒖) 𝒙𝒕 + 𝑼 (𝒖) 𝒉 𝒕−𝟏 + 𝒃 (𝒖)) (11)

5. Compute the hidden state vector

𝒉𝒕 = 𝒐𝒕 ⊙ 𝒕𝒂𝒏𝒉(𝒄𝒕) (12)

Based on experimental findings, gated units outperform the Vanilla RNNs in terms of prediction

and validation accuracy. Still, they have four times as many parameters as the Vanilla RNN, and hence
they suffer from high complexity in the hidden layers [26]. LSTM has more trainable weights than
Vanilla RNN. Specifically, it features four distinct sets of trainable input weights for input data:
[𝑊𝑓 , 𝑊𝑖, 𝑊𝑜 , 𝑊𝑐] and four distinct sets of trainable recurrent weights for hidden states:

[𝑈𝑓 , 𝑈𝑖 , 𝑈𝑜, 𝑈𝑐]. In addition, there are also four distinct trainable bias terms: [𝑏𝑓 , 𝑏𝑖, 𝑏𝑜 , 𝑏𝑐].

3. Results and Discussion

This section presents some related works to regression problems in LSTM, along with a deep

discussion and results. Vollert et al., [23] published a review paper on the challenges of RUL prognosis
using machine learning-based methods. The majority of the 81 reviewed papers were based on LSTM
models. On the other hand, the C-MAPSS data set is the standard benchmark for evaluating RUL
regression problems [22]. Thus, the case studies on NASA’s turbofan engine degradation are
examined and empirically analyzed. Table 1 shows the comparison of related works.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 3 (2023) 16-31

23

 Table 1
 Related works to LSTM networks used in remaining useful life prediction

Publication Year Techniques Findings Discussion

Bae et al.,
[39]

2022 PHT - LSTM Physical health timesteps (PHT) were
introduced as an additional input
feature to the proposed LSTM
network to facilitate learning the
relationship between sensory data
and the remaining useful life. Utilizing
the LSTM model to exploit the long-
term dependencies of the temporal
information in the time series data,
this approach enhances the RUL
prediction by refining the timestep
information to be helpful.

Before estimating the RUL, they
first estimate the training and test
data PHT. The estimated PHT is
then added to the input features
for the primary goal of RUL
estimation. However, this pre-
calculation of the PHT can be time-
consuming for systems that require
rapid predictions. Besides, they
used three distinct LSTM networks
for 1) Estimating PHT for training
units, 2) Estimating PHT for test
units, and 3) Estimating RUL for the
test units with the estimated PHT.
Although the authors mentioned
that the VGP could undermine
their LSTM predictions in long-term
dependencies, their study did not
cover the problem of vanishing
gradient and its impact on their
LSTM models.

Muneer et
al., [40]

2021 LSTM with
Attention
Mechanism

They presented LSTM with an
attention mechanism to depict the
association between the selected
features and the RUL. Due to the
dimensionality reduction, their model
generated better results in terms of
improved prediction quality and
increased computing performance.

This method could not capture the
long-term dependencies entirely
because of the VGP, and it was
tested on the easiest subsets of the
data set. Besides, the researchers
used the softmax activation
function in their LSTM model with
30 neurons, which leaves the
network susceptible to vanishing
gradient.

Xie et al.,
[41]

2021 AM-
ConvFGRNET

The proposed attention convolutional
forget gate recurrent network (AM-
ConvFGRNET) has two phases. The
first one is a forget gate convolutional
recurrent network (ConvFGRNET) that
is proposed based on a one-
dimensional analogue LSTM, where
all gates except the forget gate are
removed, and chrono-initialized
biases are used. The second one is
the attention mechanism, which
assures the method captures more
particular features in order to
generate better results.

The proposed model takes longer
time to capture long-term
dependencies compared with
others (more than eight minutes in
the FD002 subset). Possible
reasons for that could be using the
raw vibration signals as input
directly without removing the
outliers. Besides, using the softmax
activation function inside their
LSTM model, which leaves the
network susceptible to VGP.

Kumar [42] 2021 CNN-LSTM A hybrid model composed of stacked
CNN layers for features extraction
and an LSTM layer to estimate the
RUL. A genetic algorithm was used for
hyperparameter selections and
optimization.

The CNN-LSTM model was
developed and compared with
numerous models, such as HDNN,
deep CNN, and deep LSTM.
However, the results indicate that
the HDNN model scored the best in
multi-operating condition subsets,
while the deep CNN model scored

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 3 (2023) 16-31

24

the best in single-operating
condition subsets. i.e., this study
gives low RUL predictions
compared with other studies.
Moreover, the computation time is
extremely long (up to 6 hours in
the FD002 subset), which proves
that this LSTM model suffers from
VGP and its consequences in long-
term dependencies.

Zhao et al.,
[43]

2020 A double-
channel hybrid
model based on
bidirectional
LSTM and CNN

The authors argued that both CNN
and LSTM have limitations and
drawbacks in RUL prediction. CNN is
well known for its capabilities for
extracting highly abstract features
according to the spatial feature
method, but it neglects the time
sequence of the data. On the
contrary, LSTM performs better with
time-series data, but it is incapable of
spatial data extraction. Thus, they
proposed a model based on CNN and
BiLSTM so that each method fulfils
the gap of the other.

The hybrid model’s first channel is
composed of 3 layers of CNN with
filter size (1*10), (1*3), and (1*3),
respectively, to obtain the spatial
features from the data, whereas
the second channel has stacked 2
BiLSTM with 16 and 8 neurons
respectively to obtain the long-
term data dependencies. All these
layers use the ReLU activation
function, and the maximum
training epoch was set as 200.
However, this hybrid model did not
completely capture the long-term
dependencies, especially in the
complex dataset FD002 and FD004.

Da Costa et
al., [44]

2019 LSTM network
with a global
attention
mechanism

An LSTM network with a global
attention mechanism was developed
for learning RUL relationships directly
from time-series data. To improve the
model results, the researchers also
focused on the hyperparameters
analysis, such as learning rate, batch
size, number of LSTM layers, number
of neurons, and time window size.
They also proposed a soft attention
mechanism for learning attention
weights at each RUL estimation
timestep.

The authors mentioned that gated
architectures reduce the VGP. They
performed 10-fold cross-validation
in order to determine the best
network architecture. Then, they
concluded that having one LSTM
layer with 100 neurons resulted in
the best performance, whereas
adding more LSTM layers only
added more complexity to the
network without enhancing the
performance.

Zheng et
al., [45]

2017 Deep LSTM The deep model that was employed
contains two LSTM layers, each with a
different number of nodes (32 and
64), followed by an (8-8-1) neural
network layer. They control the
model overfitting by utilizing dropout
and L2 regularization in addition to
the RMSprop optimizer while training
models.

This study gives low RUL prediction
results compared with other
studies in this paper, making it
impractical for real prognosis
problems. Early stopping was
utilized to stop the learning
process when there was no
improvement in the data
validation.

The findings and discussion of the literature reviewed are highlighted in Table 1 The authors have
used different architectures, techniques, and hyperparameters tunings to enhance their models and
to get more reliable and accurate RUL predictions. The RMSE results across the surveyed models, and
the four subsets of the C-MAPSS dataset (FD001 to FD004) are listed in Table 2 and plotted in Figure
4.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 3 (2023) 16-31

25

 Table 2
 RMSE results across models and subsets

Techniques RMSE

FD001 FD002 FD003 FD004

PHT – LSTM [39] 9.75 12.90 12.16 23.10
LSTM with Attention Mechanism [40] - 12.87 11.23 -
AM-ConvFGRNET [41] 12.67 16.19 12.82 19.15
CNN-LSTM [42] 15.68 22.26 16.89 26.32
A double-channel hybrid model based on bidirectional LSTM and CNN [43] 12.58 19.34 12.18 20.03
LSTM network with a global attention mechanism [44] 13.95 17.65 12.72 20.21
Deep LSTM [45] 16.14 24.49 16.18 28.17

Fig. 4. Comparison of RMSE results across models and subsets

It is clearly shown that the best result in RMSE among the literature surveyed is (9.75) by Bae et

al., [39] for the subset FD001. On the other hand, the worst result is (28.17) generated by the deep
LSTM model designed by Zheng et al., [45] for the subset FD004. Besides, the LSTM model with
attention mechanism designed by Muneer et al., [40] scored (12.87) and (11.23) for the subset FD002
and FD003, respectively. However, their models were not tested with the most complicated subset
in C-MAPSS, the FD004 subset. In that subset, the AM-ConvFGRNET model based on LSTM and
proposed by Xie et al., [41] generated a value of (19.15).

Researchers proposed numerous LSTM models with different techniques to mitigate VGP and
EGP as much as possible and to obtain better results from their designed models, such as

i. Applying weights regularization to prevent the gradients from becoming too small and to

encourage the model to learn more stable and generalizable patterns in the data.
ii. Building deeper LSTM architectures with multiple layers to help their models to learn

more complex dependencies and to better retain information over longer sequences of
inputs.

iii. Initializing and optimizing the models’ weights using gradient descent or metaheuristic
algorithms.

iv. Testing and trying different activation functions.
v. Tuning the model’s hyperparameters such as learning rate, number of LSTM layers, batch

size, number of neurons, and time window size.

However, even with these solutions, the ability of LSTM models to remember long-term

dependencies will still be limited by the specific architecture and training of the model, the data it is
being applied to, and the performance metrics being used to evaluate these models [16,18].

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 3 (2023) 16-31

26

To prove the inefficiency of LSTM on long-term dependencies, an experiment was developed
using Python programming language for building a sequential LSTM model. The idea is to train the
LSTM model on a sequence of numbers where the value of each number is determined by the
previous number, with a long-time gap between the relevant numbers to analyze the long-term
dependencies among the data. First, the length of the sequence (N) and the gap between relevant
numbers (G) are initialized. Then, the training and testing data are generated by creating two lists of
numbers from 1 to N, with some of the numbers changed according to the gap value. After that, the
developed LSTM model is trained for (100) epochs on the training data that have some missing
values. Finally, the model is evaluated on the testing data with the same missing values.

This section includes three sub-sections; the experiment setup and model configuration in sub-
section 3.1, the evaluation metrics used to evaluate the developed model in sub-section 3.2, the
experiment results and discussion in sub-section 3.3.

3.1 Experiment Setup

The developed LSTM sequential model consists of two layers: an LSTM layer and a dense layer.

The LSTM layer has 32 units and expects input with any number of time steps, where each time step
has one feature. The dense layer has one unit, which is the model’s output.

The experiment is performed on Intel (R) Core (TM) (i7-5600U) CPU @ 2.60GHz, (16.0) GB DDR3
RAM using Python (3.9.12), Anaconda (22.11.1), TensorFlow (2.11.0). Besides, the following libraries:
Pandas (1.5.2), NumPy (1.23.5), Matplotlib (3.5.3), and Keras (2.11.0).

3.2 Experiment Evaluation Metrics

Four evaluation metrics are used to evaluate the developed LSTM model: Mean Absolute Error

(MAE), Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and Root Mean Squared
Error (RMSE). These metrics are defined as

3.2.1 Mean absolute error (MAE)

It represents the average of the absolute difference between the actual and predicted values in

the dataset, and it is denoted as

1

n
∑  n

1 |yi − ŷi| (13)

3.2.2 Mean squared error (MSE)

It represents the average of the squared difference between the original and predicted values in

the dataset, and it is denoted as

1

n
∑  n

i (yi − ŷi)
2 (14)

3.2.3 Mean absolute percentage error (MAPE)

It is a measure of the prediction accuracy of a forecasting method in statistics, and it is denoted
as

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 3 (2023) 16-31

27

1

𝑛
∑  𝑛

𝑡=1
|�̂�𝑡−𝑦𝑡|

𝑦𝑡
× 100 (15)

3.2.4 Root mean squared error (RMSE)

It is defined as the standard deviation of the RUL prediction errors, and it measures how far data
points are plotted from the regression line, and it is denoted as

√
1

n
∑  n

j=1 (yj − ŷj)
2
 (16)

where 𝑛 represents the total number of predictions made, 𝑦𝑗 is the true observed value, and �̂�𝑗

represents the predicted value. When both values are equal, the plotted points lie on the regression
line, so no prediction errors occur. When the predictions errors increase, the values of the RMSE also
increase correspondingly.

3.3 Experiment Results and Discussion

This experiment is repeated multiple times to test the model on different sequence lengths (10,
20, 30, 40, 50, 60, 70, 80, 90, and 100), where the gap between the relevant numbers is set as (3). In
each sequence length, the model is evaluated, and the metrics are stored and plotted. In conclusion,
when tested on a longer sequence with a larger gap, the model had higher metrics values, indicating
that it is less efficient in making predictions for long-term dependencies. The evaluation metrics
values over an increased sequence length are shown in Table 3 and are plotted in Figure 5.

Table 3
LSTM model loss over sequence length
 Metrics
Sequence
Length

MAE MSE MAPE RMSE

10 2.32808 7.291632 56.92557 2.700302
20 6.750084 63.25161 59.2161 7.953088
30 12.46396 206.8792 67.89247 14.3833
40 18.97133 467.5989 74.83435 21.62403
50 25.95008 855.7687 81.26044 29.25352
60 31.18816 1230.381 82.7712 35.07679
70 37.78834 1789.665 86.09274 42.30444
80 43.95028 2412.183 87.8178 49.11398
90 47.4785 2843.848 85.13817 53.32774
100 55.66957 3848.653 90.10715 62.03751

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 3 (2023) 16-31

28

Fig. 5. LSTM model loss over sequence length

Moreover, the length of the input sequence can affect the performance of the LSTM model in

several ways. One way is by determining the amount of context the model has made available when
making predictions. LSTM models can remember long-term dependencies in the data, but the longer
the input sequence, the harder it is for the model to remember all the relevant information. If the
sequence length is too short, the model may not have enough context to make accurate predictions,
but if the sequence length is too long, the model may have difficulty retaining the necessary
information. Finding the optimal sequence length for a given dataset and prediction task is often a
matter of experimentation and tuning.

Another way the sequence length can affect model performance is by determining the amount
of training data needed to train the model. LSTM models may require a large amount of training data,
and the longer the input sequence, the more training data is needed to fully capture the data
dependencies. If the available training data is insufficient to train the model adequately, the model’s
performance may be poor.

4. Conclusions

RNNs, with their recurrent internal structure, can analyze and process sequential data in
regression problems for a long time. However, RNNs are prone to the problems of exploding and
vanishing gradients. Although gated units, such as LSTM and GRU, were initially created to solve these
problems, these problems remain unsolved. Gated units facing these problems, especially for long-
term inputs and outputs dependencies. Nonetheless, with LSTM, the gradients do not exponentially
degrade as they do with Vanilla RNN.

Case studies on NASA’s turbofan engine degradation are examined and empirically analyzed to
understand how VGP affects LSTM performance. Besides, to prove the inefficiency of LSTM on long-
term dependencies, an experiment is developed by using Python for a sequential LSTM model. The
results showed that the longer the input sequence, the harder it is for the LSTM model to remember
all the relevant information. Our future proposed model will be based on avoiding all causes of VGP
and proposing an optimized metaheuristic method for LSTM weight optimization. We believe that
there exists at least one ideal weight combination that mitigates the VGP as much as possible,
prevents training stagnation, and improves LSTM performance in solving the regression problems.

Acknowledgement
Universiti Teknologi PETRONAS fully support this research under the Yayasan Universiti Teknologi
PETRONAS Fundamental Research Grant (YUTP-FRG 1/2021 (015LC0-370).

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 3 (2023) 16-31

29

References
[1] Werbos, Paul J. "Generalization of backpropagation with application to a recurrent gas market model." Neural

networks 1, no. 4 (1988): 339-356. https://doi.org/10.1016/0893-6080(88)90007-X
[2] Jeffrey, L. Elman. "Finding structure in time." Cognitive science 14, no. 2 (1990): 179-211.

https://doi.org/10.1207/s15516709cog1402_1
[3] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning representations by back-propagating

errors." nature 323, no. 6088 (1986): 533-536. https://doi.org/10.1038/323533a0
[4] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9, no. 8 (1997): 1735-

1780. https://doi.org/10.1162/neco.1997.9.8.1735
[5] Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. "Learning phrase representations using RNN encoder-decoder for statistical machine
translation." arXiv preprint arXiv:1406.1078 (2014). https://doi.org/10.3115/v1/D14-1179

[6] Bengio, Yoshua, Patrice Simard, and Paolo Frasconi. "Learning long-term dependencies with gradient descent is
difficult." IEEE transactions on neural networks 5, no. 2 (1994): 157-166. https://doi.org/10.1109/72.279181

[7] Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. "On the difficulty of training recurrent neural networks."
In International conference on machine learning, pp. 1310-1318. Pmlr, 2013.

[8] Alqushaibi, Alawi, Said Jadid Abdulkadir, Helmi Md Rais, Qasem Al-Tashi, Mohammed G. Ragab, and Hitham
Alhussian. "Enhanced weight-optimized recurrent neural networks based on sine cosine algorithm for wave height
prediction." Journal of Marine Science and Engineering 9, no. 5 (2021): 524. https://doi.org/10.3390/jmse9050524

[9] Khademi, Zahra, Farideh Ebrahimi, and Hussain Montazery Kordy. "A transfer learning-based CNN and LSTM hybrid
deep learning model to classify motor imagery EEG signals." Computers in biology and medicine 143 (2022):
105288. https://doi.org/10.1016/j.compbiomed.2022.105288

[10] Wei, Xin, Lulu Zhang, Hao-Qing Yang, Limin Zhang, and Yang-Ping Yao. "Machine learning for pore-water pressure
time-series prediction: Application of recurrent neural networks." Geoscience Frontiers 12, no. 1 (2021): 453-467.
https://doi.org/10.1016/j.gsf.2020.04.011

[11] Landi, Federico, Lorenzo Baraldi, Marcella Cornia, and Rita Cucchiara. "Working memory connections for
LSTM." Neural Networks 144 (2021): 334-341. https://doi.org/10.1016/j.neunet.2021.08.030

[12] Ibrahim, Mariam, Ahmad Alsheikh, Qays Al-Hindawi, Sameer Al-Dahidi, and Hisham ElMoaqet. "Short-time wind
speed forecast using artificial learning-based algorithms." Computational Intelligence and Neuroscience 2020
(2020). https://doi.org/10.1155/2020/8439719

[13] ElSaid, AbdElRahman, Fatima El Jamiy, James Higgins, Brandon Wild, and Travis Desell. "Optimizing long short-term
memory recurrent neural networks using ant colony optimization to predict turbine engine vibration." Applied Soft
Computing 73 (2018): 969-991. https://doi.org/10.1016/j.asoc.2018.09.013

[14] Noh, Seol-Hyun. "Analysis of gradient vanishing of RNNs and performance comparison." Information 12, no. 11
(2021): 442. https://doi.org/10.3390/info12110442

[15] Rehmer, Alexander, and Andreas Kroll. "On the vanishing and exploding gradient problem in Gated Recurrent
Units." IFAC-PapersOnLine 53, no. 2 (2020): 1243-1248. https://doi.org/10.1016/j.ifacol.2020.12.1342

[16] Kocoglu, Y., and S. Gorell. "Viable solutions to overcome weaknesses of deep learning applications in production
forecasting: A comprehensive review." In Unconventional Resources Technology Conference, 20–22 June 2022, pp.
3279-3326. Unconventional Resources Technology Conference (URTeC), 2022. https://doi.org/10.15530/urtec-
2022-3721904

[17] Eskandari, Hosein, Maryam Imani, and Mohsen Parsa Moghaddam. "Convolutional and recurrent neural network
based model for short-term load forecasting." Electric Power Systems Research 195 (2021): 107173.
https://doi.org/10.1016/j.epsr.2021.107173

[18] Bayer, J. S., “Learning sequence representations,” Technische Universität München, 2015. Accessed: Apr. 08, 2022.
[Online].

[19] Chandar, Sarath, Chinnadhurai Sankar, Eugene Vorontsov, Samira Ebrahimi Kahou, and Yoshua Bengio. "Towards
non-saturating recurrent units for modelling long-term dependencies." In Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, no. 01, pp. 3280-3287. 2019. https://doi.org/10.1609/aaai.v33i01.33013280

[20] K. G. A. Saxena, “C-MAPSS Data Set, NASA Ames Prognostics Data Repository,” 2008, Accessed: Apr. 15, 2022.
[Online].

[21] D. K. Frederick, J. A. Decastro, and J. S. Litt, “User’s Guide for the Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS),” 2007. [Online].

[22] Ferreira, Carlos, and Gil Gonçalves. "Remaining Useful Life prediction and challenges: A literature review on the use
of Machine Learning Methods." Journal of Manufacturing Systems 63 (2022): 550-562.
https://doi.org/10.1016/j.jmsy.2022.05.010

https://doi.org/10.1016/0893-6080(88)90007-X
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1038/323533a0
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1109/72.279181
https://doi.org/10.3390/jmse9050524
https://doi.org/10.1016/j.compbiomed.2022.105288
https://doi.org/10.1016/j.gsf.2020.04.011
https://doi.org/10.1016/j.neunet.2021.08.030
https://doi.org/10.1155/2020/8439719
https://doi.org/10.1016/j.asoc.2018.09.013
https://doi.org/10.3390/info12110442
https://doi.org/10.1016/j.ifacol.2020.12.1342
https://doi.org/10.15530/urtec-2022-3721904
https://doi.org/10.15530/urtec-2022-3721904
https://doi.org/10.1016/j.epsr.2021.107173
https://doi.org/10.1609/aaai.v33i01.33013280
https://doi.org/10.1016/j.jmsy.2022.05.010

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 3 (2023) 16-31

30

[23] Vollert, Simon, and Andreas Theissler. "Challenges of machine learning-based RUL prognosis: A review on NASA's
C-MAPSS data set." In 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), pp. 1-8. IEEE, 2021. https://doi.org/10.1109/ETFA45728.2021.9613682

[24] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
[25] Tan, Hong Hui, and King Hann Lim. "Vanishing gradient mitigation with deep learning neural network optimization."

In 2019 7th international conference on smart computing & communications (ICSCC), pp. 1-4. IEEE, 2019.
https://doi.org/10.1109/ICSCC.2019.8843652

[26] Rashid, Tarik A., Polla Fattah, and Delan K. Awla. "Using accuracy measure for improving the training of LSTM with
metaheuristic algorithms." Procedia computer science 140 (2018): 324-333.
https://doi.org/10.1016/j.procs.2018.10.307

[27] Sharifi, Aboosaleh Mohammad, Kaveh Khalili Damghani, Farshid Abdi, and Soheila Sardar. "A hybrid model for
predicting bitcoin price using machine learning and metaheuristic algorithms." Journal of applied research on
industrial engineering 9, no. 1 (2022): 134-150. https://doi.org/10.22105/jarie.2021.291175.1343

[28] Lu, Peng, Lin Ye, Yongning Zhao, Binhua Dai, Ming Pei, and Yong Tang. "Review of meta-heuristic algorithms for
wind power prediction: Methodologies, applications and challenges." Applied Energy 301 (2021): 117446.
https://doi.org/10.1016/j.apenergy.2021.117446

[29] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal
covariate shift." In International conference on machine learning, pp. 448-456. pmlr, 2015.

[30] Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted boltzmann machines." In Proceedings
of the 27th international conference on machine learning (ICML-10), pp. 807-814. 2010.

[31] Shukla, Saurabh, Mohd Fadzil Hassan, Low Tang Jung, Azlan Awang, and Muhammad Khalid Khan. "A 3-tier
architecture for network latency reduction in healthcare internet-of-things using fog computing and machine
learning." In Proceedings of the 2019 8th International Conference on Software and Computer Applications, pp. 522-
528. 2019. https://doi.org/10.1145/3316615.3318222

[32] Adnan, Muhamad Hariz Muhamad, Mohd Fadzil Hassan, Izzatdin Aziz, and Irving V. Paputungan. "Protocols for
agent-based autonomous negotiations: a review." In 2016 3rd International Conference on Computer and
information sciences (ICCOINS), pp. 622-626. IEEE, 2016. https://doi.org/10.1109/ICCOINS.2016.7783287

[33] Beer, Mohamed Ibrahim, and Mohd Fadzil Hassan. "Adaptive security architecture for protecting RESTful web
services in enterprise computing environment." Service Oriented Computing and Applications 12, no. 2 (2018): 111-
121. https://doi.org/10.1007/s11761-017-0221-1

[34] Kiew, Peck Loo, Nur Ainaa Mohd Fauzi, Shania Aufaa Firdiani, Man Kee Lam, Lian See Tan, and Wei Ming Yeoh. "Iron
oxide nanoparticles derived from Chlorella vulgaris extract: Characterization and crystal violet photodegradation
studies." Progress in Energy and Environment 24 (2023): 1-10. https://doi.org/10.37934/progee.24.1.110

[35] Venugopal, Arvinthan, Roslina Mohammad, and Md Fuad Shah Koslan. "Fatigue Crack Growth Prediction on Su-
30MKM Horizontal Stabilizer Lug Using Static Analysis." Journal of Advanced Research in Applied Mechanics 99, no.
1 (2022): 10-23.

[36] Kanaani, Osamah Othman, Sami Abdelrahman Musa Yagoub, Shabir Habib, Akmal Aulia, and Bonavian Hasiholan.
"Prediction of gas coning in hydrocarbon reservoir using tNavigator." Progress in Energy and Environment 18
(2021): 1-22. https://doi.org/10.37934/progee.18.1.122

[37] Thakkar, Ankit, and Kinjal Chaudhari. "A comprehensive survey on deep neural networks for stock market: The
need, challenges, and future directions." Expert Systems with Applications 177 (2021): 114800.
https://doi.org/10.1016/j.eswa.2021.114800

[38] Gers, Felix A., Jürgen Schmidhuber, and Fred Cummins. "Learning to forget: Continual prediction with
LSTM." Neural computation 12, no. 10 (2000): 2451-2471. https://doi.org/10.1162/089976600300015015

[39] Bae, Jinwoo, and Zhimin Xi. "Learning of physical health timestep using the LSTM network for remaining useful life
estimation." Reliability Engineering & System Safety 226 (2022): 108717.
https://doi.org/10.1016/j.ress.2022.108717

[40] Muneer, Amgad, Shakirah Mohd Taib, Sheraz Naseer, Rao Faizan Ali, and Izzatdin Abdul Aziz. "Data-driven deep
learning-based attention mechanism for remaining useful life prediction: Case study application to turbofan engine
analysis." Electronics 10, no. 20 (2021): 2453. https://doi.org/10.3390/electronics10202453

[41] Xie, Zhiyuan, Shichang Du, Jun Lv, Yafei Deng, and Shiyao Jia. "A hybrid prognostics deep learning model for
remaining useful life prediction." Electronics 10, no. 1 (2020): 39. https://doi.org/10.3390/electronics10010039

[42] Kumar, Krishna D. "Remaining useful life prediction of aircraft engines using hybrid model based on artificial
intelligence techniques." In 2021 IEEE International Conference on Prognostics and Health Management (ICPHM),
pp. 1-10. IEEE, 2021. https://doi.org/10.1109/ICPHM51084.2021.9486500

https://doi.org/10.1109/ETFA45728.2021.9613682
https://doi.org/10.1109/ICSCC.2019.8843652
https://doi.org/10.1016/j.procs.2018.10.307
https://doi.org/10.22105/jarie.2021.291175.1343
https://doi.org/10.1016/j.apenergy.2021.117446
https://doi.org/10.1145/3316615.3318222
https://doi.org/10.1109/ICCOINS.2016.7783287
https://doi.org/10.1007/s11761-017-0221-1
https://doi.org/10.37934/progee.24.1.110
https://doi.org/10.37934/progee.18.1.122
https://doi.org/10.1016/j.eswa.2021.114800
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1016/j.ress.2022.108717
https://doi.org/10.3390/electronics10202453
https://doi.org/10.3390/electronics10010039
https://doi.org/10.1109/ICPHM51084.2021.9486500

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 3 (2023) 16-31

31

[43] Zhao, Chengying, Xianzhen Huang, Yuxiong Li, and Muhammad Yousaf Iqbal. "A double-channel hybrid deep neural
network based on CNN and BiLSTM for remaining useful life prediction." Sensors 20, no. 24 (2020): 7109.
https://doi.org/10.3390/s20247109

[44] Da Costa, Paulo Roberto De Oliveira, Alp Akcay, Yingqian Zhang, and Uzay Kaymak. "Attention and long short-term
memory network for remaining useful lifetime predictions of turbofan engine degradation." International journal
of prognostics and health management 10, no. 4 (2019).

[45] Zheng, Shuai, Kosta Ristovski, Ahmed Farahat, and Chetan Gupta. "Long short-term memory network for remaining
useful life estimation." In 2017 IEEE international conference on prognostics and health management (ICPHM), pp.
88-95. IEEE, 2017. https://doi.org/10.1109/ICPHM.2017.7998311

https://doi.org/10.3390/s20247109
https://doi.org/10.1109/ICPHM.2017.7998311

