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ARTICLE INFO ABSTRACT 

 
The fifth-generation (5G) mobile network has been positioned to be a critical part of 
wireless communication networks. Decreasing receiver complexity and reducing power 
consumption are essential 5G communication systems design targets. One approach for 
achieving these goals is to employ sampling methods at sub-Nyquist rates that reduce 
the burden on hardware devices while enabling accurate reconstruction.  Modulated 
Wideband Converter (MWC) is a system that uses a multichannel sampling method at a 
low sub-Nyquist rate, which leads to simple hardware. This paper investigates the 
application of multichannel sub-Nyquist sampling to high-frequency multiband signals 
in a 5G network. We sample and reconstruct multiband signals using the method based 
on MWC technology utilizing the concept of compressed sensing, which can prevent the 
difficulties of signal sampling caused by wide bandwidth and high frequencies. The 
signal is mixed with a pseudorandom sign waveform in each channel during the 
sampling stage. A lowpass filter filters the mixed signal before applying a low sampling 
rate. For the reconstruction of the signal, the system estimates spectrum support and 
then reconstructs the active bands of the signal. The experimental results indicate that 
the MWC system is an effective sampling method for multiband signals in both 
frequency ranges, sub-6 GHz frequencies and millimeter-wave frequencies, in 5G 
mobile communication networks, and its reconstruction performance is acceptable. 
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1. Introduction 
 

Fifth-generation mobile communication networks operate across a broad range of frequencies, 
utilizing both sub-6 GHz frequencies that are lower than 6 GHz, and millimeter-wave (mm-wave) 
frequencies that range from 24 to 100 GHz and provide extremely high data rates [1].  Fifth-
generation wireless networks employ higher carrier frequencies to support rising peak data rates and 
area capacity [1-2]. There are growing demands for mm-wave technologies. There have been 
substantial improvements in millimeter-wave (mm-wave) technologies. These growths are due to 
their attractive properties, which make them useful in a variety of practical applications [23]. 
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Millimeter-wave (mm-wave) communications are indeed a crucial component of 5G mobile 
communication networks [3-4]. The use of millimeter-wave communications is expected to present 
additional challenges. Many nations have opened to the 60 GHz millimeter-wave frequency band, 
including South Korea, Japan, and the United States, because the area around 60 GHz has an 
abundance of usable spectrum to allow high-rate wireless communications [5]. 

When developing sampling methods, periodic nonuniform sampling is considered [6].  Uniform 
sampling is a strategy where samples are dispersed equally across time, with no significant reduction 
in the sampling rate.  Because they cannot reduce rates more than Nyquist approaches, nonuniform 
sampling methods are more frequently used [7-8]. One technique for nonuniform sampling is random 
sampling [9]. If the original signal is sparse in the frequency domain, it can be very accurately 
reconstructed from the signal recorded using random sampling [9]. There is a close relationship 
between compressive sensing and this random sampling feature [10]. Novel ideas for multiband 
signal processing [11-12] were introduced by the quick development of compressed sensing (CS) 
theory, which helped address the issues of big data and large bandwidths. Furthermore, 
demodulation, which lowers the sampling rate below the Nyquist rate, is the most widely utilized 
sub-Nyquist sampling method for multiband signals [13]. The MWC is a system that employs the idea 
of the random demodulator [12] to sample a signal at a compressed rate, namely, far beneath the 
Nyquist rate, and then uses compressed sensing algorithms to reconstruct the signal [14]. 

The Internet has become a vital global connection tool that people use every day through 
different devices like phones, computers, and smart TVs for different activities such as online 
shopping, and online meetings. This results in an increased demand for faster speeds and the need 
for higher transmission capacities [24]. In contrast to 4G and previous generations, 5G will alter the 
physical layer, which will impact the receiver's needs.  It must receive a high-frequency signal to 
reassemble the transmitted data [15]. The transmission signal will transform into a wideband signal 
to transmit data faster.  As a result, it will put additional strain on storage and sampling devices, 
especially regarding hardware implementation.  Consequently, the wideband multiband signal 
sampled at the sub-Nyquist rate is receiving increasing attention. Due to its ability to process 
broadband signals, the modulated wideband converter system appears to be the best choice for 
processing multiband signals with sparse spectrum structures. For millimeter-wave systems, it can 
circumvent the difficulties in signal sampling that arise at high frequencies and large bandwidths [16]. 

Wideband spectrum sensing has been accomplished in the field of cognitive radio through the 
widespread use of the MWC system [17-18]. While the MWC technique uses compressed sensing to 
reconstruct signals [14], several drawbacks degrade the reconstruction performance and prevent it 
from operating at optimal levels.  Current studies cannot provide a clear solution, which causes the 
signal reconstruction to function inconsistently and unacceptably. The millimeter wavelength 
spectrum has recently garnered attention in the wireless communication world. Utilizing the vast, 
unused bandwidth to support upcoming multi-gigabit-per-second mobile, imaging, and multimedia 
applications is the concept underlying millimeter-wave communications [3]. However, there have 
been efforts to enhance mobile network performance, but there is still an important gap between 
the capabilities promised by the networks and the users’ experiences, and it causes an increasing 
demand for fast internet [22]. Regarding improved quality and higher data rates for internal users, 
millimeter-wave communication technologies offer a bright future [2]. For attaining a greater 
transmission rate, the transmission signal is transformed into a broadband signal. Thus, sampling and 
storage devices will be under increased pressure, particularly regarding hardware implementation. 
This outcome leads to more attention being paid to the broadband multiband signal sampled at the 
sub-Nyquist rate. Because of its capacity to process broadband signals, the MWC system appears to 
be the optimal option for processing multiband signals with sparse spectrum structures. The MWC 
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method lessens the strain on storage devices. It lowers the hardware complexity brought on by the 
high frequencies and large bandwidth of 5G network transmissions by using spectrum aliasing to 
obtain a low sub-Nyquist rate for signal sampling.  This paper elucidates that the MWC technology 
can sample multiband signals in both frequency ranges (mm-wave frequencies and sub-6 GHz 
frequencies) in 5G mobile networks at rates far below the Nyquist rate, and then reconstruct them 
successfully. 
 
2. The Modulated Wideband Converter System 
 

Because high rates of sampling in Nyquist systems present challenges, sub-Nyquist methods are 
receiving more attention from academic and industrial sectors. The sub-Nyquist system, known as 
the MWC, is a system that has made it possible for multiband signals to be sampled at low sub-
Nyquist rates. MWC consists of two parts: the sampling and the reconstruction.  For sampling the 
signal, the input signal simultaneously enters multiple channels. Next, a periodic function is 
multiplied by the signal in each channel. The idea behind the mixing stage is to disperse the spectrum 
in a way that a piece of energy of each band emerges in the baseband. Following the mixing stage, a 
lowpass filter is used to filter the signal spectrum before it is sampled at a low rate that corresponds 
to the lowpass cutoff. For reconstruction of the signal, the system estimates spectrum support. After 
determining the unknown spectrum support, digital processing is used to reconstruct the input 
signal's active bands [14]. 
 
2.1 The Sampling Method  
 

The signal 𝑥(𝑡) simultaneously enters 𝑚 channels during the sampling phase. In the 𝑖th channel, 
𝑥(𝑡) is subsequently multiplied by a periodic waveform, 𝑝𝑖(𝑡) . The piecewise constant function 𝑝𝑖(𝑡) 
has a period of Tp  and alternates between +1 and -1 [20]. After the multiplication step, it is filtered 
using a lowpass filter with a cut-off frequency of 1/(2Ts), then the output is uniformly sampled at a 
rate of 1/Ts . The sampling interval Ts is equal to Tp (the period of 𝑝𝑖(𝑡)).  The sampling part of the 
MWC system is illustrated in Figure 1. 
 

 
Fig. 1.  The sampling part of MWC 

  
The total sampling frequency of the MWC is 𝑚(1/Ts ). It is assumed that the input 𝑥(𝑡) is a 

wideband signal with a Nyquist frequency (𝑓nyq), which can be significantly bigger than the sampling 

frequency 𝑚/Ts. The support of 𝑥(𝑡) resides within 𝑁 bands and the width of each band does not go 
beyond 𝐵 Hz. The band locations are arbitrary and particularly unidentified beforehand. 
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Baseband frequencies that are below the cut-off frequency of the filter have a combination of 
the spectral components from the whole Nyquist range due to the alteration of the spectrum of 𝑥(𝑡) 
caused by the mixing process. By mixing the signal with the periodic function 𝑝𝑖(𝑡), the spectrum is 
spread so that a part of each band’s energy is visible in the baseband. This is the crucial phase that 
makes the MWC capable of sub-Nyquist rate signal sampling. For instance, imagine a single channel, 
and let 𝑃𝑖(𝑓) be the spectrum of 𝑝𝑖(𝑡) (the mixing function). Because 𝑝𝑖(𝑡) is Tp - periodic, 𝑃𝑖(𝑓) can 
be stated as:   

 

𝑃𝑖(𝑓) = ∑ 𝑐𝑖𝑙δ(𝑓 − 𝑙𝑓𝑃)                      ∞
𝑙=−∞                                                                                                           (1) 

 
where 𝑓𝑃 = 1/Tp, 𝑐𝑖𝑙 are arbitrary coefficients, and δ() is the Dirac delta function. In this way, the 
spectrum of the mixed signal 𝑥̃𝑖(𝑡) = 𝑥(𝑡)𝑝𝑖(𝑡) is:  
 

  𝑋̃𝑖(𝑓) = 𝑃𝑖(𝑓) ∗  𝑋(𝑓) = ∑ 𝑐𝑖𝑙X(𝑓 − 𝑙𝑓𝑃).                      ∞
𝑙=−∞                                                                       (2)  

 
𝑋(𝑓) is the spectrum of 𝑥(𝑡). After lowpass filtering with a filter function 𝐻(𝑓), the result will be 

a signal 𝑦𝑖(𝑡) with a spectrum as below: 
 
 𝑌𝑖(𝑓) = ∑ 𝑐𝑖𝑙𝑋(𝑓 − 𝑙𝑓𝑃)𝐻(𝑓)∞

𝑙=−∞ .                                                                                                                (3)  
 

We sample the signal 𝑦𝑖(𝑡) at rate 𝑓s = 1/Ts, then take the discrete-time Fourier transform (DTFT) 
of the samples 𝑦𝑖[𝑛] as: 
 

𝑌𝑖(ⅇ𝑗𝜔) = ∑ 𝑌 (
𝑓s

2π
(𝑤 − 2𝑘π))  ∞

𝑘=−∞ = ∑ 𝑐𝑖𝑙𝑋 (
𝑓s

2π
𝑤 − 𝑙𝑓𝑃 − 𝑘𝑓s) 𝐻(

𝑓𝑠

2π
𝑤 − 𝑘𝑓s)∞

𝑙,𝑘=−∞                      (4) 

 
for 𝜔 ∈ [−π, π]. In the standard modulated wideband converter, 𝐻(𝑓) is considered an ideal 𝑟ⅇ𝑐𝑡 

function with a cutoff 𝑓s/2. Therefore, 𝐻(
𝑓s

2π
𝑤 − 𝑘𝑓s), 𝜔 ∈ [−π, π], is nonzero only if 𝑘 = 0. To ease 

the explanation, we select Ts = Tp. Then, Eq. (4) can be rewritten as:  
 

𝑌𝑖(ⅇ𝑗𝜔)  =  ∑ 𝑐𝑖𝑙𝑋 (
𝑓𝑝

2π
𝑤 − 𝑙𝑓𝑃)

𝐿0
𝑙=−𝐿0

                𝜔 ∈  [−π, π]                                                                        (5) 

 
𝐿0 is the smallest integer satisfying 2𝐿0  +  1 > 𝑓nyq/𝑓𝑃. It's more practical to write down Eq. (5) 

in matrix form as stated below: 
 

 𝑦(ⅇ𝑗𝜔)  =  Az(𝜔)                                                                                                                                                 (6) 
 

𝑦(ⅇ𝑗𝜔) is an 𝑚 × 1 vector with the 𝑖th element 𝑌𝑖(ⅇ𝑗𝜔), 𝑧(𝜔) is an unknown vector of length 

𝐿 = 1 + 2𝐿0 with the 𝑖th element 𝑧𝑖(𝜔) =  𝑋 (
𝑓𝑝

2π
𝑤 − (𝑖 − 𝐿0  − 1)𝑓𝑃). Also, A is an 𝑚 × 𝐿 matrix 

holding the coefficients 𝑐𝑖𝑙. It can be seen that  𝑋 (
𝑓𝑝

2π
𝑤 − 𝑙𝑓𝑃), for |𝑙| ≤ 𝐿0, contains all the spectral 

information of 𝑥(𝑡). Hence, to regain 𝑥(𝑡), it is enough to establish 𝑧(𝜔) for every 𝜔 ∈ [−π, π].  
Because of the sparse nature of the spectrum of 𝑥(𝑡), the vector 𝑧(𝜔) is sparse for each 𝜔 ∈

[−π, π]. The sparsity of 𝑧(𝜔) makes MWC able to recover 𝑥(𝑡) with a few channels, which means 
sub-Nyquist sampling.  
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2.2 Reconstruction Method 
 

In the reconstruction part that is fully executed in the time domain, the spectral support is initially 
established. The signal is then reconstructed from the samples.  

The process of spectral support recovery is based on ideas developed in compressed sensing [19]. 
It involves a series of digital calculations grouped under the Continuous-to-Finite (CTF) block [20–21]. 
In order to recover the support of active bands, we utilize the CTF block. We can reconstruct each 
signal band using a direct pseudoinverse operation once the support is provided.  The signal bands 
are then modulated to their related carrier frequencies. Consider the support of 𝑧(𝜔) to be 𝑆 =
⋃𝑤∈[−π,π] supp (𝑧(𝜔)), where supp() is the set of indices of the nonzero entries of a vector. It means 

if 𝑖 ∉ 𝑆 then 𝑧𝑖(𝜔) = 0 for all 𝜔 ∈ [−π, π]. By using the sparsity of 𝑧(𝜔), the CTF effectively infers the 
support 𝑆 from a low-complexity finite program.  

When the support 𝑆 is concluded, it follows from Eq. (6) that: 
 

 𝑧𝑆[𝑛] = A𝑠
†𝑦[𝑛],                                                                     𝑧𝑖[𝑛] = 0,     𝑖 ∉ 𝑆                                              (7) 

 
where 𝑧[𝑛] = (𝑧1[𝑛], … , 𝑧𝐿[𝑛])𝑇 and 𝑧𝑖[𝑛] is the inverse discrete-time Fourier transform of 𝑧𝑖(𝜔). 
𝑧𝑆[𝑛] and A𝑆  mean the subvector and submatrix comprised of the rows of 𝑧[𝑛] and A indexed by 𝑆, 
in turn. The notation () † states the pseudoinverse. Eq. (7) permits 𝑧𝑖[𝑛] to be made at the input rate 
𝑓s. Then, every 𝑧𝑖[𝑛] is interpolated to a baseband signal at the rate 𝑓s yielding 𝑧𝑖(𝑡):  
 
𝑧𝑖(𝑡) = ∑ 𝑍𝑖[𝑛]ℎ(𝑡 − 𝑛𝑇s),∞

𝑛=−∞                                                                                                                     (8)  
 
where ℎ(𝑡)  =  sinc(π𝑡/𝑇s). In the end, modulating 𝑧𝑖(𝑡) to the appropriate bands reconstructs 𝑥(𝑡): 
 
𝑥̂(t) = ∑ Re {𝑧𝑖(𝑡)} cos(2π𝑖𝑓𝑃𝑡)𝑖∈𝑠,𝑖>𝐿0

+ Im{𝑧𝑖(𝑡)} sin(2π𝑖𝑓𝑃𝑡)                                                             (9) 

 
The real and imaginary parts of their argument are denoted by Re() and Im().     

 
3. Simulation Results  
 

To assess the MWC system's effectiveness for multiband signals in 5G mobile communication 
networks, we perform the simulations. We consider a model, as explained below, for a multiband 
signal in 5G mobile communication networks. 

 

𝑥 (𝑡)  =  ∑ √𝐸𝑖𝐵 sinc (𝐵 (𝑡 − 𝜏𝑖)) cos(2π𝑓𝑖 (𝑡 −  𝜏𝑖
𝑁/2
𝑖=1 )).                                                                   (10) 

 
The signal model describes a multiband signal with 𝑁 bands that are symmetrical pairs.  Each 

band is of width 𝐵, and 𝐸𝑖 represents the energy of each pair of bands. The time offsets shown by 𝜏𝑖 
and the carrier frequencies 𝑓𝑖 for each pair of bands are chosen to be smaller than 𝑓nyq /2 [14], [20] 

at random in the desired range in 5G networks. In addition, we generate white Gaussian noise so that 
its spectrum is in [-𝑓nyq /2, 𝑓nyq /2], and add it to the input signal. We assess the system’s performance 

in two ranges of frequencies (sub-6 GHz and mm-wave) by altering the carrier frequency and the 
bandwidth of the signal model. Parameters of 𝜏𝑖 , 𝐸𝑖, 𝑁, 𝑀 remain unchanged during the evaluation 
process. 𝑀 is a parameter in the MWC system that presents the compression ratio, and its value in 
this paper is considered 195 [14]. 
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First, we investigate the performance of the system by changing the carrier frequency 𝑓𝑖 which is 
selected at random in the range of sub-6 GHz frequencies in 5G networks [1] as shown in Table 1. 
The values of 𝐵 and 𝑁 are considered as 45 MHz and 2, respectively. The sampling frequency of each 
channel 𝑓s is equal to 𝑓nyq/𝑀, and the total sampling rate is equal to 𝑓s × channel number [14], [20]. 

As Table 1 depicts, the reconstruction performance of the system is not successful for 𝑓𝑖 = 2 GHz, but 
when 𝑓nyq is 8 GHz, MWC can reconstruct the input successfully. For the other two randomly chosen 

carrier frequencies, the MWC can sample the signal far below the Nyquist rate and then reconstruct 
them successfully.  
   

Table 1 
Performance of MWC for different sub-6 GHz carrier frequencies  
𝑓𝑖  𝑓nyq  Total sampling rate Number of channels Reconstruction 

2 GHz 5 GHz 769,230,770 Hz 30 Unsuccessful 
1.55 GHz 5 GHz 769,230,770 Hz 30 Successful 
2 GHz 8 GHz 1,230,769,231 Hz 30 Successful 
3 GHz 8 GHz 1,230,769,231 Hz 30 Successful 

 
In Table 2, we select the 𝑓𝑖  in the range [30 GHz, 60 GHz] (millimeter-wave frequencies) randomly 

and put the values of 𝐵 and 𝑁 at 100 MHz and 2, respectively. It shows that the MWC can reconstruct 
three signals out of the four randomly chosen signals successfully with a sampling rate far below the 
Nyquist rate.   

 
 Table 2 
 Performance of MWC for different millimeter-wave carrier frequencies  
𝑓𝑖  𝑓nyq  Total sampling rate Number of channels Reconstruction 

30 GHz 70 GHz 10,769,230,770 Hz 30 Successful 
40 GHz 90 GHz 13,846,153,847 Hz 30 Successful 
60 GHz 130 GHz 20,000,000,000 Hz 30 Successful 
60 GHz 120 GHz 18,461,538,461 Hz 30 Unsuccessful 

 
As Figure 2 shows, the MWC can reconstruct the input signal successfully despite the presence of 

noise. In this case, the sampling rate of the system is approximately six times lower than the Nyquist 
rate. 

 

 
                                              (a)                                                                                          (b) 
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(c) 

Fig. 2.  Reconstruction performance of the MWC (a) The original signal (b) The signal with 
the presence of noise (c) Reconstructed signal, when 𝑓𝑖  and 𝑓nyq are 40 GHz and 90 GHz, 

respectively. 

 
Table 3 shows the results of our evaluation of MWC's performance in 5G networks when we vary 

the bandwidth in the sub-6 GHz frequency range. The 𝑓𝑖 and 𝑓nyq are chosen randomly as 2 GHz and 

10 GHz, while 𝑁 is considered at 2. Sampling frequencies (𝑓s) for each channel is 𝑓nyq/𝑀 (10GHz/195) 

for the four bandwidths shown in Table 3. So, the total sampling rate for 30 channels is 
30×(10GHz/195). As we can see in Table 3, with the same sample rate, the reconstruction 
performance of the signal is successful for bandwidths of 20 MHz and 50 MHz and is unsuccessful for 
bandwidths of 60 MHz and 80 MHz due to the system’s inability to establish the spectral support. 

                 
Table 3  
Performance of MWC for different bandwidths at sub-6 GHz carrier frequency range 

Bandwidth Total sampling rate Number of channels Reconstruction 

20 MHz 1,538,461,539 Hz 30 Successful 
50 MHz 1,538,461,539 Hz 30 Successful 
60 MHz 1,538,461,539 Hz 30 Unsuccessful 
80 MHz 1,538,461,539 Hz 30 Unsuccessful 

 
The original signal, the signal with noise, and the reconstructed signal are shown in Figure 3 when 

𝑁 and 𝐵 are 2 and 60 MHz, respectively.   
 

 
(a)                                                                                                  (b) 
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(c) 

Fig. 3.  Reconstruction performance of the MWC (a) The original signal (b) The signal with 
the presence of noise (c) reconstructed signal, when 𝑓𝑖  and 𝑓nyq are 2 GHz and 10 GHz, 

respectively. 

  
Table 4 shows the results of our evaluation of MWC's performance with various bandwidth 

values. But, in this step, 𝑓𝑖 is chosen from the range of [30 GHz-60 GHz] (mm-wave frequency range) 
with larger bandwidths. The values of 𝑓𝑖, 𝑓nyq, and 𝑁 are 40 GHz, 90 GHz, and 2, respectively. The 

sampling frequency for each channel is 90GHz/195. The reconstruction performance of MWC is 
successful for bandwidths of 100 MHz, 300 MHz, and 500 MHz.  

 
Table 4 
Performance of MWC for different bandwidths at millimeter-wave carrier frequency range 
Bandwidth Total Sampling rate Number of channels Reconstruction 

100 MHz 13,846,153,847 Hz 30 Successful 
300 MHz 13,846,153,847 Hz 30 Successful 
500 MHz 13,846,153,847 Hz 30 Successful 

 
4.  Conclusion 
 

The simulation results show that the MWC with 30 channels using a multichannel sub-Nyquist 
sampling method can successfully reconstruct multiband signals in 5G mobile networks. These 
channels and its sampling method reduce the total sampling rate and make the MWC capable of 
reconstructing multiband signals at a rate far below the Nyquist rate in 5G mobile communication 
networks in both frequency ranges. It shows that the system's performance can be affected 
negatively by bandwidth changes and the signal's carrier frequency. However, the results show that 
we can change the unsuccessful performance of the system to successful reconstruction by selecting 
the right carrier frequency for a Nyquist frequency. Moreover, findings indicate that in the sub-6 GHz 
frequency range, the reconstruction performance of the MWC can be more vulnerable to bandwidth 
changes compared to its performance in the frequency range from 30 GHz to 60 GHz. 
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