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ARTICLE INFO ABSTRACT 

 
White blood cells are the immune system components that combat infections. White 
blood cells or WBCs, are blood cells that are present in the bone marrow are 
responsible for protecting against pathogens that kill healthy cells. Finding the 
immature cell formations early on will help to lessen the severity of this problem and 
eventually reduce the patients' rate of modality. In this study, an entirely new deep 
Convolutional Neural Network (CNN) model is presented inside this paradigm. The 
deep CNN model is pre-trained on medical imaging datasets to improve its 
performance. In preprocessing, K-Mean Clustering is utilized to highlight the region of 
interest (ROI). Post clustering, the updated dataset is used for feature extraction using 
a novel proposed CNN model with 33 layers. Moreover, the Entropy-Coded Genetic 
Algorithm is another significant contribution which is used for feature selection to 
choose the most optimal features. These selected features are subsequently classified 
using a Support Vector Machine (SVM). The results show that with 2025 features, the 
proposed model achieved 97.59% accuracy, 96.0% sensitivity and 97.91% specificity 
using the cubic-SVM classifier. 
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1. Introduction 
 

Blood is the most important element of the human body, consisting primarily of liquid named 
plasma (55% of total volume) to allow blood to easily flow through a blood vessel [1]. The biological 
components of blood are classified into three main cells based on their colour, shape, size, texture 
and composition. RBCs are the red blood cells (Erythrocytes) [2], WBCs (Leukocytes) [3] and platelets 
[4]. Normal RBC counts in the blood vary from 4 to 6 million per microliter, with RBCs accounting for 
40 to 45 percent of total blood volume [5,6], WBCs combat germs and protect humans from harmful 
illnesses, which is why they are sometimes referred to as "Defender cells". The number of WBCs per 
microliter of blood has fluctuated from 4,500 to 11,000, depending on the individual [7,8], since white 
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blood cells (WBCs) account for just 1% of total blood volume, even a small alteration can make a 
significant effect since the human immune system is dependent on WBCs [9,10]. WBCs are 
significantly larger than other blood cells due to the presence of nuclei and cytoplasm and because 
of this distinguishing characteristic, WBCs are divided into two categories: granulocytes and 
agranulocytes. Compared to agranulocytes, which include bulky cytoplasm in their nucleus due to 
the lack of distinct granules, granulocytes have a nucleus with a 2-5 lobed shape and granules in the 
cytoplasm. In addition to these two groups, there are five major subcategories of immune cells: 
basophils, eosinophils, neutrophils, monocytes and lymphocytes. Basophils are the most common 
kind of immune cell [11].  

Neutrophils are the most prevalent type of blood leukocyte; they account for 55-70 percent of all 
white blood cells and are capable of fighting fungal and bacterial infections; their nucleus is located 
close to the C, S and U, resulting in a multilobed appearance [12]. Eosinophils are produced in the 
bone marrow and are therefore primarily used in the immune system; they account for 2-4 percent 
of total white blood cell volume and fight in response to allergies, collagen disease, parasitic 
infections and infections of the central nervous system; their nuclei are shaped like two or three lobes 
[13]. Basophils account for 0-1 percent of total white blood cell volume and are primarily responsible 
for allergy and antigen responses as well as improving blood vessel dilatation. Their nuclei are bi or 
trilobed in form and they are responsible for allergic and antigen responses [14]. Lymphocytes are 
also the most important component of the immune system, accounting for 30% of its total volume. 
They are located in the spleen, lymph ducts and lymph nodes, among other places. Its nucleus is 
spherical and appears to be made of a single piece [15]. Approximately 5-8 percent of white blood 
cell volume is made up of monocytes, which generate macrophage tissues that travel through the 
circulation to eliminate dead cells, combat pathogens and release inflammatory mediators. The 
nucleus of the monocyte has an uneven structure inside the cytoplasm [16]. In this paper, the BCCD 
(Blood Cell Count and Detection) Dataset [17] is used for blood cell classification that is publicly 
available as Shown in Figure 1. 

 

 
Fig. 1. The blood cell classification dataset 
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The significant contributions are as follows: 
 

i. In this framework, a new deep CNN model is proposed and pre-trained using a medical 
imaging dataset. 

ii. K-Mean Clustering is performed as pre-processing for Blood Cell Classification. The newly 
proposed deep CNN is used for feature extraction. 

iii. The Entropy-Coded GA is used for features selection for selecting the core features. These 
selected features are given to the SVM Classifier for classification. 

 
The rest of this paper is organized as follows: Section 2 highlights the related works. Section 3 

discusses the material and methods used to conduct the experiments. Section 4 shows the achieved 
results. Section 5 provides a discussion of the results. Finally, this paper is concluded in Section 5.  

 
2. Related Works 

 
In the following section, we provide a comprehensive review of literature pertinent to our study. 

Through this exploration, we aim to elucidate the current landscape of research surrounding blood 
cell classification methodologies, particularly focusing on approaches involving convolutional neural 
networks (CNNs) augmented with Entropy and Genetic Algorithm (GA). By synthesizing existing 
works, we aim to underscore the innovative contributions and distinctiveness of our proposed model 
within this domain.  

In the realm of white blood cell subtype classification, traditional methods rely heavily on feature 
design, while machine learning (ML) approaches demand extensive labelled data. The study by Song 
et al., [18] presents a semi-supervised CNN, offering high accuracy with minimal labelling. This 
pioneering work lays the foundation for advancing diagnostic solutions in blood disease detection. 
On the other hand, Rahat et al., [19] evaluate five deep learning models for automating blood cell 
classification in haematology, finding VGG19 as the top performer with positive accuracy. This 
highlights the potential of deep learning in enhancing medical diagnostics, particularly in 
haematology, with the practical implementation of VGG19 recommended. However, further 
investigation is needed for performance variations and generalization to unseen data. Moreover, the 
study by Liang et al., [20] introduces an image-based RBC deformability assessment (IRIS), which 
sensitively detects differences in 0.001% glutaraldehyde-treated (Red Blood Cells) RBCs from 
controls.  

Eshel et al., [21] present a novel approach using infrared spectroscopy and ML to diagnose 
bacterial infections and monitor antibiotic therapy in febrile paediatric oncology patients with 
bacteraemia. The logistic regression classifier achieved over 95% success in distinguishing bacterial 
samples within an hour, while infrared spectroscopy coupled with ML demonstrated an 87.5% 
accuracy in assessing antibiotic treatment effectiveness. Also, ML models were applied by 
Pullakhandam et al., [22] to classify Iron Deficiency Anemia (IDA) from CBC data, achieving a PR AUC 
of 0.87 and high recall/sensitivity across datasets. Feature importance analysis [23,24] highlighted 
critical factors such as low haemoglobin levels and higher age. The approach demonstrates the 
potential for enhancing current automated CBC analysers, supported by its high performance and 
consistency. In contrast, Gu et al., [25] propose an improved YOLOv5 model, termed AYOLOv5, 
utilizing an attention mechanism to enhance cell detection in dense and complex distributions. 
Integrating convolutional block attention modules (CBAM) and transformer encoder blocks, 
AYOLOv5 enhances feature extraction in dense regions and improves network capacity for cell 
property recognition. Evaluation on the BCCD dataset yields a mean Average Precision (mAP) of 
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93.3%, outperforming prior methods, with validation set recognition accuracy rising from 89% to 
98%. AYOLOv5 effectively extracts cell feature information, significantly enhancing cell picture quality 
and recognition performance.  

Moreover, Zeng et al., [26] propose a portable AI-based leukocyte detection system for rapid and 
cost-effective WBC analysis. It simplifies operations, integrates functions and achieves reliable results 
with less than 1% error rate in WBC counting and about 2% in classification, with a detection time of 
under 20 seconds. This system promises to standardize disease diagnosis in point-of-care testing 
(POCT) with its portability and scalability. To improve malaria parasite detection in microscopic 
images, a deep-CNN model combined with Random Forest is proposed by Murmu et al., [27] which 
integrates domain-specific expertise, incorporates Global Average-Pooling layer (GAP) for enhanced 
parasite area visualization and employs Canny edge detection for precise boundary detection. 
Evaluation of diverse datasets showcases superior performance compared to existing models. Uzen 
et al., [28] propose a novel approach for WBC classification, leveraging ConvMixer and Swin 
transformer models in a hybrid network termed SC-MP-Mixer. This model effectively extracts spatial 
details using ConvMixer and applies self-attention mechanisms via a Swin transformer, with a 
multipath structure enhancing patch representations.  

Our literature review urges the study of methodologies of classifying human blood cells using 
deep CNN with different techniques such as entropy, GAs and attention mechanisms. These diverse 
methods, established to overcome the problem of blood cell classification and identification of the 
disease, have subsequently developed a spectrum of innovative approaches targeting different 
elements of blood cell analysis. Our proposed model combines various methodologies to improve 
the efficiency and applicability of blood cell classification systems. 

 
3. Material and Method 

 
In this proposed method, the K-Mean Clustering is used as preprocessing of the blood cells 

dataset. The new 33-layer deep CNN is proposed to extract the deep features. Entropy-Coded GA is 
used for feature selection. These selected features are given to SVM for the classification of Blood 
Cells. The detailed flow diagram of the proposed method is shown in Figure 2. 

 

 
Fig. 2. The detail about proposed methodology 
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3.1 Preprocessing 
 
In this preprocessing, K-Mean Clustering [29] is used to enhance the image as shown in Figure 3. 

Since there are fewer data points in K-Mean than there are clusters, we place each data point on the 
graph at the location of the cluster's centroid. Every centroid will be given a cluster number. If the 
number of data points exceeds the number of clusters, we find the smallest distance feasible by 
calculating the separation between each data point and each centroid. The cluster that this data 
sample belongs to is said to be the one that is closest to it. 

 

 
Fig. 3. Preprocessing using K-Mean clustering 

. 
3.2 Proposed Deep CNN 

 
The proposed Deep CNN has thirty-three total layers, eight of which are convolutional layers and 

three of which are fully connected. In this architecture, Rectified Linear Units (ReLU) are used as an 
alternative to the tanh function. It was standard at this time [30]. The Proposed Deep CNN used the 
dropout layer for reducing the overfitting in fully connected layers. Two-dimensional convolution 
layers utilized trainable filters, frequently through optional trainable bias in each kernel [31]. Another 
major component of the CNN is a pooling layer. Maximum pooling is a pooling method wherein each 
of the patches on the map determines the maximum or the largest value. The Proposed Deep CNN 
model contains the following architecture shown in Figure 4 and Table 1. 
 

 
Fig. 4. The architectures of deep CNN 
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In Deep CNN the model architecture is based on eight convolutions layers and 3 fully connected 
layers. The input size of Deep CNN is “227 X 227 X 3” and the layer name is Input. Convolution layer 
1 filters the image with 64 kernels-based size “9 X 9 X 3” and in convolution layer 2 filters the input 
of convolution layer 1 with 96 kernels-based size “9 X 9 X 3”. The input of convolution layer 2 is 
filtered by the convolution layer 3 with the 96 kernels-based size of “7 X 7 X 3”. Moreover, the 
outcomes from convolution layer 3 with 128 kernels-based size “5 X 5 X 3”, in the same way, the last 
convolution layer based on 128 kernel sizes based on 3 X 3 X 3. Deep CNN also has 3 features layer 
known as “Fully Connected”, where FC1 has “4096” features, FC2 consists of 1000 features and the 
FC layer contains the class labels. The detailed architecture is described in Table 1. 

 
Table 1  
Detail architecture of deep CNN model 
Deep CNN 

Layers Name Properties 

1 Input  227 X 227 X 3 
2 C1 9 X 9, 64, BiasLearnRateFactor = 2, Stride = 4 
3 R1 Relu 
4 N1 5, K = 1 
5 P1 3 X 3, Stride = 2 
6 C2 9 X 9,96, BiasLearnRateFactor = 2, Padding = 4 
7 R2 Relu 
8 N2 5, K = 1 
9 C3 7 X 7, 96, BiasLearnRateFactor = 2, Padding = 3 
10 R3 Relu 
11 N3 5, K = 1 
12 P2 3 X 3, Stride = 2 
13 C4 5 X 5, 128, BiasLearnRateFactor = 2, Padding = 2 
14 R4 Relu 
15 C5 3 X 3, 256, BiasLearnRateFactor = 2, Stride = 4, Padding = 1 
16 R5 Relu 
17 N4 5, K = 1 
18 C6 3 X 3, 128,2, BiasLearnRateFactor = 2, Padding = 1 
19 R6 Relu 
20 C7 3 X 3, 256, BiasLearnRateFactor = 2, Stride = 4 
21 R7 Relu 
22 N5 5, K = 1 
23 C8 3 X 3, 128, 2, BiasLearnRateFactor = 2, Padding = 1 
24 R8 Relu 
25 FC1 Features = 4096, BiasLearnRateFactor = 2 
26 R9 Relu 
27 D1 D = 0.5 
28 FC2 Features = 1000, BiasLearnRateFactor = 2 
29 R10 Relu 
30 D2 D = 0.5 
31 FC Class label = 18, BiasLearnRateFactor = 2 
32 PROB Softmax 
33 OUTPUT Classification 

 
Initially, the proposed CNN model is pre-trained using the Medical Imaging Dataset. The Medical 

Imaging Dataset has 18 categories. Each category has 1400 training and 100 testing images. This 
research uses 1500 images per category for training and assessment. The Fully Connected layer offers 
dataset image properties (a total of 27000 images). After pretraining, the proposed deep CNN is used 
for feature extraction. 
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3.3 Entropy Coded Genetic Algorithm 
 
Entropy [32], when applied to feature selection, assesses the unpredictability of data and the 

effectiveness of a feature in grouping data. High entropy implies that data is amalgamated and harder 
to separate, while low entropy suggests that a feature provides informative characteristics that lead 
to more precise classification [33]. Consider 𝑞1, 𝑞2, … , 𝑞𝑁 denote the number of features gathered by 
the deep network. The subsequent Eq. (4) computes the entropy 𝐸𝑃 value for each feature [34]: 

 
𝐸𝑃(𝑞1, 𝑞2, … , 𝑞) = − ∑  𝑓1

… ∑  𝑓𝑁
𝜃(𝑦1, … , 𝑦𝑁) log 𝜃(𝑦1, … , 𝑦𝑁)        (1) 

 
Here, 𝑦1, … , 𝑦𝑁 represents the values of the core random variable and 𝜃(𝑦, … , 𝑦𝑁) indicates their 

probabilities.  
GA is a stochastic optimization technique inspired by the process of natural selection and genetics 

[35]. It operates by evolving a population of potential solutions over multiple generations to find an 
optimal solution [36]. In feature selection, GA mimics the process of natural selection by iteratively 
selecting the most promising features from one generation to the next, combining and mutating 
them to explore the solution space efficiently. GA has demonstrated effectiveness in various 
optimization tasks and problem domains due to its ability to handle complex search spaces and find 
near-optimal solutions [37]. 

In this paper, we propose an approach that combines Entropy ranking with a GA for feature 
selection. First, features are ranked based on their Entropy values, indicating their informativeness. 
Then, the GA is employed to iteratively select and refine a subset of features that maximizes 
classification accuracy or minimizes error. The feature selection process based on the GA is outlined 
in the following Algorithm 1 [37]: 

 
Algorithm 1 
Entropy-Coded Genetic Algorithm for feature selection 
Given 𝑓𝑒𝑎𝑡 feature vector (instances x features) 

𝑙𝑎𝑏𝑒𝑙 label vector (instance x 1) 
𝑁 Number of chromosomes 
𝑚𝑎𝑥𝐼𝑡𝑒𝑟 Maximum number of generations 
𝐶𝑅 Crossover rate 
𝑀𝑅 Mutation rates 
𝐻𝑂 Hold-Out partition object for cross-validation 

Output 𝑠𝑓𝑒𝑎𝑡 Selected features (instances x features) 

𝑆𝐹 Selected feature index 
𝑁𝐹 Number of selected features 
𝐹𝑟 Ranked features  

Process # Initialization 
1. Load the benchmark dataset and set aside a validation set. 
2. Set algorithm parameters 𝑁, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟, 𝐶𝑅 and 𝑀𝑅. 
3. Initialize solution matrix X with binary values (0 or 1) randomly. 
4. Initialize global best fitness 𝑓𝑖𝑡𝐺 = ∞ and fitness vector 𝑓𝑖𝑡 with zeros. 
# Iterations 
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Return 
Selected features 𝑆𝐹 where 𝑋𝑔𝑏 > thres 

Extracted selected features matrix 𝑠𝑓𝑒𝑎𝑡 from 𝑓𝑒𝑎𝑡 

Number of selected features 𝑁𝐹 
 

3.4 Images Classification 
 
These selected features are passed to SVM for classification. In this study, the different variants 

of Support Vector Machine (SVM) are used for classification, which included the linear SVM (L-SVM), 
the quadratic SVM (Q-SVM), the fine Gaussian (FG-SVM), the medium Gaussian (MG-SVM) and the 
coarse Gaussian (CG-SVM), as well as the cubic SVM (C-SVM) [38,39]. 

 
3.5 Performance Evaluation 

 
Five metrics were used to evaluate the generated model's performance: accuracy, sensitivity, 

specificity, training time and prediction speed. The following is the explanation of certain 
performance measures [40,41]: 

 
i. Accuracy: is related to the proximity of a measure to its recognized values and is defined 

as "the amount to which the outcome of a measurement correlates to an appropriate 
value or norm." 

 

Acc =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
            (2) 

 
ii. Sensitivity: also referred to as recall, is a test's capacity to accurately identify patients who 

have an illness. Sensitivity is the measure of how well a test yields a positive result for 
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those who have tested positive for the illness (sometimes referred to as the "true positive" 
rate). 

 

Sen =
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
               (3) 

 
iii. Specificity: also referred to as the "true negative" rate, is the ability of a test to 

consistently generate a negative result for individuals who do not have the health problem 
under assessment. 

 

Spe =
𝑇𝑁

𝑇𝑁+ 𝐹𝑃
               (4) 

 
iv. Training time: it refers to the time duration required to train the model on a dataset until 

it achieves the desired performance. 
 

𝑇𝑡𝑖𝑚𝑒 = 𝐸 × 
𝑁

𝐵
 × 𝑇𝑖             (5) 

 
Where 𝐸 is the number of epochs, 𝑁 is the number of training samples, 𝐵 is the batch size 
and 𝑇𝑖 is the average time per iteration. 

 
v. Prediction Speed: it is the amount of time it takes a trained model to make predictions 

based on a new set of data. This performance parameter is crucial, especially for high-
throughput or real-time applications where quick predictions are necessary. 

 

𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =
𝑇𝑡𝑜𝑡𝑎𝑙_𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
            (6) 

 
Whereas 𝑇𝑡𝑜𝑡𝑎𝑙_𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is the total time taken to make predictions on a batch of 

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 . 

 
4. Results 

 
The results of the tests and trials that were conducted to demonstrate a rigorous approach are 

detailed in this section. Both of these tests were performed on a Lenovo T440s personal computer 
equipped with an i7 processor, 8 GB of RAM and a 500 GB SSD. For modifying performance, the 
number of trials with a distinct collection of characteristics is carried out in a controlled environment. 
This paper demonstrates the efficacy of the proposed contribution/technique through the results 
presented. In Computer Vision and Machine Learning, there are many performance measures which 
are used for checking how the proposed work is robust and efficient. Some of these measures are 
Accuracy (ACC), Sensitivity (SEN), Specificity (SPE), training time and prediction speed. 

The proposed Deep CNN is pre-trained using a medical imaging dataset. This medical imaging 
dataset contains multiple different medical datasets known as the Brain CT-Scan Dataset [42], kvasir 
Dataset [43], Tumorslices Dataset, Tuberculosis Dataset [44], Pneumonia [45] and COVID-19 
radiology dataset. This medical imaging dataset contains 27000 images having 3 channels. The 
proposed WebCNNNet deep model was first pretrained using the above medical imaging dataset. 
The dataset for training and validation in medical imaging is shown below in Figure 5. 
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Fig. 5. The medical imaging dataset for training and validation 

 
In the experiment setup, 250, 550, 750 and 2025 features are selected using Entropy-coded GA. 

The 5-fold cross-validation is applied which splits the data into 50 – 50 random training and testing 
sets. Then the labels are generated from this feature matrix by using multiple variants of SVM 
classifiers. The results of the experiments are shown in Table 2, Table 3, Table 4 and Table 5. 

 
Table 2 
The results of experiment setup 250 
Features 
Classifier ACC SEN SPE 

L-SVM 79.0% 77.28% 79.99% 
Q-SVM 89.0% 89.26% 88.26% 
C-SVM 91.1% 90.99% 90.0 % 
MG-SVM 89.6% 81.05% 82.56% 
CG-SVM 74.2% 78.53% 79.65% 

 
Table 3 
The results of experiment setup 550 
features 
Classifier ACC SEN SPE 

L-SVM 83.0% 83.28% 82.99% 
Q-SVM 91.7% 90.26% 91.76% 
C-SVM 93.2% 93.96% 92.99 % 
MG-SVM 91.6% 90.01% 90.26% 
CG-SVM 75.7% 75.03% 74.75% 
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Table 4 
The results of experiment setup 750 
features 
Classifier ACC SEN SPE 

L-SVM 83.3% 83.18% 83.91% 
Q-SVM 92.3% 91.99% 92.0% 
C-SVM 95.7% 94.0% 94.99 % 
MG-SVM 92.9% 92.01% 91.26% 
CG-SVM 93.9% 93.03% 93.75% 

 
Table 5 
The results of experiment setup 2025 
features 
Classifier ACC SEN SPE 

L-SVM 91.11% 91.0% 91.93 % 
Q-SVM 92.66% 91.99% 92.0% 
C-SVM 97.59% 96.0% 97.91 % 
MG-SVM 93.59% 92.99% 93.16% 
CG-SVM 94.79% 93.99% 93.95% 

 
The training time of the best outcomes is shown in Figure 6 and the prediction speed of the best 

outcomes is shown in Figure 7. 
 

 
Fig. 6. Training time 

 

 
Fig. 7. Prediction speed 
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5. Discussion  
 
This section discusses the detailed analysis of the experimental results obtained from various 

feature sets (250, 550, 750 and 2025 features) using different SVM classifiers (L-SVM, Q-SVM, FG-
SVM, MG-SVM, CG-SVM and C-SVM). Each experiment was conducted to evaluate the performance 
of the proposed Deep CNN model combined with the Entropy-Coded Genetic Algorithm for feature 
selection in blood cell classification. The results highlight how the proposed model performs across 
different feature sets and classifiers, providing insights into the optimal configuration for achieving 
the best classification outcomes. 

To start with the results of the experimental setup with 250 features (Table 2). The cubic SVM (C-
SVM) achieved the highest accuracy of 91.1%, with a sensitivity of 90.99% and specificity of 90.0%. 
The quadratic SVM (Q-SVM) also performed well, with an accuracy of 89.0%, sensitivity of 89.26% 
and specificity of 88.26%. The linear SVM (L-SVM) had lower performance metrics, with an accuracy 
of 79.0%, sensitivity of 77.28% and specificity of 79.99%. The medium Gaussian SVM (MG-SVM) and 
coarse Gaussian SVM (CG-SVM) showed moderate performance, with accuracies of 89.6% and 74.2%, 
respectively. These results indicate that with 250 features, C-SVM and Q-SVM are more effective 
classifiers. 

For the experimental setup with 550 features (Table 3), the C-SVM again outperformed other 
classifiers, achieving an accuracy of 93.2%, sensitivity of 93.96% and specificity of 92.99%. The Q-SVM 
followed closely with an accuracy of 91.7%, sensitivity of 90.26% and specificity of 91.76%. The L-
SVM improved slightly compared to the 250 features setup, with an accuracy of 83.0%, sensitivity of 
83.28% and specificity of 82.99%. The MG-SVM and CG-SVM showed better results than in the 
previous setup, with accuracies of 91.6% and 75.7%, respectively. These findings suggest that 
increasing the feature set to 550 enhances the performance of the classifiers, especially the C-SVM 
and Q-SVM. 

In the setup with 750 features (Table 4), the C-SVM reached an impressive accuracy of 95.7%, 
sensitivity of 94.0% and specificity of 94.99%. The Q-SVM also showed strong performance, with an 
accuracy of 92.3%, sensitivity of 91.99% and specificity of 92.0%. The L-SVM maintained a steady 
performance with an accuracy of 83.3%, sensitivity of 83.18% and specificity of 83.91%. The MG-SVM 
and CG-SVM achieved accuracies of 92.9% and 93.9%, respectively. This setup highlights that further 
increasing the number of features continues to benefit classifier performance, particularly for the C-
SVM. 

Finally, in the results for the setup with 2025 features (Table 5), the C-SVM achieved the highest 
accuracy of 97.59%, with a sensitivity of 96.0% and specificity of 97.91%. The Q-SVM also performed 
well, with an accuracy of 92.66%, sensitivity of 91.99% and specificity of 92.0%. The L-SVM showed a 
marked improvement with an accuracy of 91.11%, sensitivity of 91.0% and specificity of 91.93%. The 
MG-SVM and CG-SVM had accuracies of 93.59% and 94.79%, respectively. These results demonstrate 
that using 2025 features significantly enhances the performance of the classifiers, with the C-SVM 
providing the most robust and efficient outcomes. 

Moreover, from the training time (Figure 6) and prediction speed (Figure 7) of the C-SVM classifier 
across these different feature sets, the training time peaks at 25.85 seconds for 550 features, 
decreases to 18.15 seconds for 750 features and rises again to 21.12 seconds for 2025 features, 
indicating a non-linear relationship. Conversely, the prediction speed increases from 880 obs/sec 
with 250 features to 1015 obs/sec with 2025 features, with a slight dip at 750 features. This analysis 
demonstrates that while training time fluctuates with more features, prediction speed generally 
improves, highlighting the trade-off between training complexity and prediction efficiency. 
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In conclusion, the findings from our test cases indicate that the overall experimental arrangement 
produces the best results with 2025 features. Across all setups, the C-SVM consistently delivered 
superior and acceptable outcomes. The performance improvements with increasing feature sets 
validate the efficacy of the proposed Deep CNN model combined with the Entropy-Coded Genetic 
Algorithm for feature selection. Overall, the results demonstrated that the proposed model is highly 
effective for blood cell classification, particularly when using a large number of features. 

 
6. Conclusion 

 
In this paper, we proposed a novel deep CNN model with thirty-three layers, including eight 

convolutional layers and two feature map layers, specifically designed for blood cell classification. 
The model was pre-trained using a comprehensive medical imaging dataset containing 27,000 images 
from multiple sources, such as Brain CT-Scan, kvasir, Tumorslices, Tuberculosis, Pneumonia and 
COVID-19 radiology datasets. To enhance the focus on regions of interest (ROI), K-means clustering 
was employed during preprocessing. 

The processed blood cell datasets were then utilized for classification. Feature extraction was 
conducted using the proposed Deep CNN model, which effectively captured critical features from the 
medical images. Subsequently, the Entropy-Coded Genetic Algorithm (GA) was applied for feature 
selection, where entropy assessed the randomness and grouping efficiency of the data. The GA 
iteratively evolved a population of potential solutions over multiple generations to identify the 
optimal set of features. 

These selected features were then passed to various SVM classifiers (L-SVM, Q-SVM, FG-SVM, 
MG-SVM, CG-SVM and C-SVM) for the final classification task. The experimental results 
demonstrated that the proposed model achieved the highest performance with 2025 features, where 
the C-SVM classifier achieved an accuracy of 97.59%, sensitivity of 96.0% and specificity of 97.91%. 
This study highlights the effectiveness of combining a deep CNN model with an Entropy-Coded 
Genetic Algorithm for feature selection, providing a robust and efficient approach to blood cell 
classification. This method has the potential to significantly aid in early diagnosis and treatment by 
improving the accuracy and efficiency of blood cell classification. 
 
Acknowledgment 
Universiti Teknologi PETRONAS fully supports this research. 
 
References 
[1] Kuan, Da-Han, Chia-Chien Wu, Wei-Yu Su and Nien-Tsu Huang. "A microfluidic device for simultaneous extraction 

of plasma, red blood cells and on-chip white blood cell trapping." Scientific reports 8, no. 1 (2018): 15345. 
https://doi.org/10.1038/s41598-018-33738-8 

[2] Farag, Mayada Ragab and Mahmoud Alagawany. "Erythrocytes as a biological model for screening of xenobiotics 
toxicity." Chemico-biological interactions 279 (2018): 73-83. https://doi.org/10.1016/j.cbi.2017.11.007 

[3] Rezatofighi, Seyed Hamid and Hamid Soltanian-Zadeh. "Automatic recognition of five types of white blood cells in 
peripheral blood." Computerized Medical Imaging and Graphics 35, no. 4 (2011): 333-343. 
https://doi.org/10.1016/j.compmedimag.2011.01.003 

[4] Faggio, Caterina, Antoni Sureda, Silvia Morabito, Ana Sanches-Silva andrei Mocan, Seyed Fazel Nabavi and Seyed 
Mohammad Nabavi. "Flavonoids and platelet aggregation: A brief review." European journal of pharmacology 807 
(2017): 91-101. https://doi.org/10.1016/j.ejphar.2017.04.009 

[5] Pandit, Amruta, Shrikrishna Kolhar and Pragati Patil. "Survey on automatic rbc detection and 
counting." International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 4, 
no. 1 (2015): 128-131. https://doi.org/10.15662/ijareeie.2015.0401012 

[6] Al-Hafiz, Fatimah, Shiroq Al-Megren and Heba Kurdi. "Red blood cell segmentation by thresholding and Canny 
detector." Procedia Computer Science 141 (2018): 327-334. https://doi.org/10.1016/j.procs.2018.10.193 

https://doi.org/10.1038/s41598-018-33738-8
https://doi.org/10.1016/j.cbi.2017.11.007
https://doi.org/10.1016/j.compmedimag.2011.01.003
https://doi.org/10.1016/j.ejphar.2017.04.009
https://doi.org/10.15662/ijareeie.2015.0401012
https://doi.org/10.1016/j.procs.2018.10.193


Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 63, Issue 3 (2026) 134-148 

147 
 

[7] Al-Dulaimi, Khamael Abbas Khudhair, Jasmine Banks, Vinod Chandran, Inmaculada Tomeo-Reyes and Kien Nguyen 
Thanh. "Classification of white blood cell types from microscope images: Techniques and challenges." Microscopy 
science: Last approaches on educational programs and applied research (Microscopy Book Series, 8) (2018): 17-25. 

[8] Rahadi, Irwan, Meechoke Choodoung and Arunsri Choodoung. "Red blood cells and white blood cells detection by 
image processing." In Journal of Physics: Conference Series, vol. 1539, no. 1, p. 012025. IOP Publishing, 2020. 
https://doi.org/10.1088/1742-6596/1539/1/012025 

[9] van der Meijden, Paola EJ and Johan WM Heemskerk. "Platelet biology and functions: new concepts and clinical 
perspectives." Nature Reviews Cardiology 16, no. 3 (2019): 166-179. https://doi.org/10.1038/s41569-018-0110-0 

[10] Dhurat, Rachita and MS25722595 Sukesh. "Principles and methods of preparation of platelet-rich plasma: a review 
and author's perspective." Journal of cutaneous and aesthetic surgery 7, no. 4 (2014): 189-197. 
https://doi.org/10.4103/0974-2077.150734 

[11] Hegde, Roopa B., Keerthana Prasad, Harishchandra Hebbar and Brij Mohan Kumar Singh. "Comparison of 
traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood 
smear images." Biocybernetics and Biomedical Engineering 39, no. 2 (2019): 382-392. 
https://doi.org/10.1016/j.bbe.2019.01.005 

[12] Burn, Garth Lawrence, Alessandro Foti, Gerben Marsman, Dhiren Ferise Patel and Arturo Zychlinsky. "The 
neutrophil." Immunity 54, no. 7 (2021): 1377-1391. https://doi.org/10.1016/j.immuni.2021.06.006 

[13] Robinson, Douglas S., A. Barry Kay and Andrew J. Wardlaw. "Eosinophils." Inflammatory Mechanisms in Allergic 
Diseases (2023): 43-75. https://doi.org/10.1201/9780429134432-5 

[14] RP Siraganian. "Basophils." Encyclopedia of Immunology (Second Edition), P. J. Delves Ed. Oxford: Elsevier, (1998): 
332-334. https://doi.org/10.1006/rwei.1999.0086 

[15] Al-Shura, Anika Niambi. Advanced Hematology in Integrated Cardiovascular Chinese Medicine: Volume 3. Academic 
Press, 2019. https://doi.org/10.1016/B978-0-12-817572-9.00001-X 

[16] Daskalopoulos, Evangelos P., Kevin CM Hermans, Lieke van Delft, Raffaele Altara and W. Matthijs Blankesteijn. "The 
role of inflammation in myocardial infarction." In Inflammation in Heart Failure, pp. 39-65. Academic Press, 2015. 
https://doi.org/10.1016/B978-0-12-800039-7.00003-7 

[17] Mooney, P. “Blood Cell Count and Detection (BCCD).” 
https://www.kaggle.com/datasets/paultimothymooney/blood-cells  

[18] Song, Huihui and Zheng Wang. "Automatic Classification of White Blood Cells Using a Semi-Supervised 
Convolutional Neural Network." IEEE Access (2024). https://doi.org/10.1109/ACCESS.2024.3380896 

[19] Rahat, Irfan Sadiq, Mohammed Altaf Ahmed, Donepudi Rohini, A. Manjula, Hritwik Ghosh and Abdus Sobur. "A Step 
Towards Automated Haematology: DL Models for Blood Cell Detection and Classification." EAI Endorsed 
Transactions on Pervasive Health and Technology 10 (2024). https://doi.org/10.4108/eetpht.10.5477 

[20] Liang, Minhui, Jianwei Zhong, Choo Sheriel Shannon, Rupesh Agrawal and Ye Ai. "Intelligent image-based 
deformability assessment of red blood cells via dynamic shape classification." Sensors and Actuators B: 
Chemical 401 (2024): 135056. https://doi.org/10.1016/j.snb.2023.135056 

[21] Eshel, Yotam D., Uraib Sharaha, Guy Beck, Gal Cohen-Logasi, Itshak Lapidot, Mahmoud Huleihel, Shaul Mordechai, 
Joseph Kapelushnik and Ahmad Salman. "Monitoring the efficacy of antibiotic therapy in febrile pediatric oncology 
patients with bacteremia using infrared spectroscopy of white blood cells-based machine learning." Talanta 270 
(2024): 125619. https://doi.org/10.1016/j.talanta.2023.125619 

[22] Pullakhandam, Siddartha and Susan McRoy. "Classification and Explanation of Iron Deficiency Anemia from 
Complete Blood Count Data Using Machine Learning." BioMedInformatics 4, no. 1 (2024): 661-672. 
https://doi.org/10.3390/biomedinformatics4010036 

[23] Mohamad, Muhammad Arif and Muhammad Aliif Ahmad. "Handwritten Character Recognition using Enhanced 
Artificial Neural Network." Journal of Advanced Research in Computing and Applications 36, no. 1 (2024): 1-9. 
https://doi.org/10.37934/arca.36.1.19 

[24] Zhahir, Amirul Asyraf, Siti Munirah Mohd, Mohd Ilias M. Shuhud, Bahari Idrus, Hishamuddin Zainuddin, Nurhidaya 
Mohd Jan and Mohamed Ridza Wahiddin. "Enhancing Quantum Information Processing–SU (2) Operator Model 
Development for Three-Qubit Quantum Systems Entanglement Classification." International Journal of 
Computational Thinking and Data Science 3, no. 1 (2024): 1-19. https://doi.org/10.37934/ctds.3.1.119 

[25] Gu, Wencheng and Kexue Sun. "AYOLOv5: Improved YOLOv5 based on attention mechanism for blood cell 
detection." Biomedical Signal Processing and Control 88 (2024): 105034. 
https://doi.org/10.1016/j.bspc.2023.105034 

[26] Zeng, Lanqing, Yusheng Fu, Jiuchuan Guo, Honghua Hu, Hongyu Li, Ning Wang, Xiwei Huang and Jinhong Guo. "AI-
Based Portable White Blood Cells Classification and Counting System in POCT." IEEE Sensors Journal (2024). 
https://doi.org/10.1109/JSEN.2023.3348979 

https://doi.org/10.1088/1742-6596/1539/1/012025
https://doi.org/10.1038/s41569-018-0110-0
https://doi.org/10.4103/0974-2077.150734
https://doi.org/10.1016/j.bbe.2019.01.005
https://doi.org/10.1016/j.immuni.2021.06.006
https://doi.org/10.1201/9780429134432-5
https://doi.org/10.1006/rwei.1999.0086
https://doi.org/10.1016/B978-0-12-817572-9.00001-X
https://doi.org/10.1016/B978-0-12-800039-7.00003-7
https://www.kaggle.com/datasets/paultimothymooney/blood-cells
https://doi.org/10.1109/ACCESS.2024.3380896
https://doi.org/10.4108/eetpht.10.5477
https://doi.org/10.1016/j.snb.2023.135056
https://doi.org/10.1016/j.talanta.2023.125619
https://doi.org/10.3390/biomedinformatics4010036
https://doi.org/10.37934/arca.36.1.19
https://doi.org/10.37934/ctds.3.1.119
https://doi.org/10.1016/j.bspc.2023.105034
https://doi.org/10.1109/JSEN.2023.3348979


Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 63, Issue 3 (2026) 134-148 

148 
 

[27] Murmu, Anita and Piyush Kumar. "Dlrfnet: deep learning with random forest network for classification and 
detection of malaria parasite in blood smear." Multimedia Tools and Applications (2024): 1-23. 
https://doi.org/10.1007/s11042-023-17866-6 

[28] Üzen, Hüseyin and Hüseyin Fırat. "A hybrid approach based on multipath Swin transformer and ConvMixer for 
white blood cells classification." Health Information Science and Systems 12, no. 1 (2024): 33. 
https://doi.org/10.1007/s13755-024-00291-w 

[29] Arthur, David and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Stanford, 2006. 
[30] Krizhevsky, Alex, Ilya Sutskever and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural 

networks." Advances in neural information processing systems 25 (2012). 
[31] Muhammad, Taseer and Hamayoon Ghafory. "Sql injection attack detection using machine learning 

algorithm." Mesopotamian journal of cybersecurity 2022 (2022): 5-17. https://doi.org/10.58496/MJCS/2022/002 
[32] Fayyaz, Abdul Muiz, Mudassar Raza, Muhammad Sharif, Jamal Hussain Shah, Seifedine Kadry and Oscar Sanjuán 

Martínez. "An integrated framework for COVID-19 classification based on ensembles of deep features and entropy 
coded GLEO feature selection." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 31, 
no. 01 (2023): 163-185. https://doi.org/10.1142/S0218488523500101 

[33] Bein, Berthold. "Entropy." Best Practice & Research Clinical Anaesthesiology 20, no. 1 (2006): 101-109. 
https://doi.org/10.1016/j.bpa.2005.07.009 

[34] Muiz Fayyaz, Abdul, Mahyar Kolivand, Jaber Alyami, Sudipta Roy and Amjad Rehman. "Computer Vision-Based 
Prognostic Modelling of COVID-19 from Medical Imaging." In Prognostic Models in Healthcare: AI and Statistical 
Approaches, pp. 25-45. Singapore: Springer Nature Singapore, 2022. https://doi.org/10.1007/978-981-19-2057-
8_2 

[35] Holland, John H. "Genetic algorithms." Scientific american 267, no. 1 (1992): 66-73. 
https://doi.org/10.1038/scientificamerican0792-66 

[36] Mirjalili, Seyedali. "Evolutionary algorithms and neural networks." Studies in computational intelligence 780 (2019): 
43-53. https://doi.org/10.1007/978-3-319-93025-1_4 

[37] Halim, Zahid, Muhammad Nadeem Yousaf, Muhammad Waqas, Muhammad Sulaiman, Ghulam Abbas, Masroor 
Hussain, Iftekhar Ahmad and Muhammad Hanif. "An effective genetic algorithm-based feature selection method 
for intrusion detection systems." Computers & Security 110 (2021): 102448. 
https://doi.org/10.1016/j.cose.2021.102448 

[38] Yue, Shihong, Ping Li and Peiyi Hao. "SVM classification: Its contents and challenges." Applied Mathematics-A 
Journal of Chinese Universities 18 (2003): 332-342. https://doi.org/10.1007/s11766-003-0059-5 

[39] Fayyaz, Abdul Muiz, Muhammad Imran Sharif, Sami Azam, Asif Karim and Jamal El-Den. "Analysis of diabetic 
retinopathy (DR) based on the deep learning." Information 14, no. 1 (2023): 30. 
https://doi.org/10.3390/info14010030 

[40] Suhaili, Shamsiah, Joyce Shing Yii Huong, Asrani Lit, Kuryati Kipli, Maimun Huja Husin, Mohamad Faizrizwan Mohd 
Sabri and Norhuzaimin Julai. "Development of digital image processing algorithms via fpga 
implementation." Semarak International Journal of Electronic System Engineering 3, no. 1 (2024): 28-45. 
https://doi.org/10.37934/sijese.3.1.2845 

[41] Malik, Mehak Mushtaq, Abdul Muiz Fayyaz, Mussarat Yasmin, Said Jadid Abdulkadir, Safwan Mahmood Al-Selwi, 
Mudassar Raza and Sadia Waheed. "A novel deep CNN model with entropy coded sine cosine for corn disease 
classification." Journal of King Saud University-Computer and Information Sciences 36, no. 7 (2024): 102126. 
https://doi.org/10.1016/j.jksuci.2024.102126 

[42] Singh, Amarjot, Shivesh Bajpai, Srikrishna Karanam, Akash Choubey and Thaluru Raviteja. "Malignant brain tumor 
detection." International Journal of Computer Theory and Engineering 4, no. 6 (2012): 1002-1006. 
https://doi.org/10.7763/IJCTE.2012.V4.626 

[43] Pogorelov, Konstantin, Kristin Ranheim Randel, Carsten Griwodz, Sigrun Losada Eskeland, Thomas de Lange, Dag 
Johansen, Concetto Spampinato et al., "Kvasir: A multi-class image dataset for computer aided gastrointestinal 
disease detection." In Proceedings of the 8th ACM on Multimedia Systems Conference, pp. 164-169. 2017. 
https://doi.org/10.1145/3083187.3083212 

[44] Er orhan, Feyzullah Temurtas and A. Çetin Tanrıkulu. "Tuberculosis disease diagnosis using artificial neural 
networks." Journal of medical systems 34 (2010): 299-302. https://doi.org/10.1007/s10916-008-9241-x 

[45] Rahman, Tawsifur, Muhammad EH Chowdhury, Amith Khandakar, Khandaker R. Islam, Khandaker F. Islam, Zaid B. 
Mahbub, Muhammad A. Kadir and Saad Kashem. "Transfer learning with deep convolutional neural network (CNN) 
for pneumonia detection using chest X-ray." Applied Sciences 10, no. 9 (2020): 3233. 
https://doi.org/10.3390/app10093233 

 

https://doi.org/10.1007/s11042-023-17866-6
https://doi.org/10.1007/s13755-024-00291-w
https://doi.org/10.58496/MJCS/2022/002
https://doi.org/10.1142/S0218488523500101
https://doi.org/10.1016/j.bpa.2005.07.009
https://doi.org/10.1007/978-981-19-2057-8_2
https://doi.org/10.1007/978-981-19-2057-8_2
https://doi.org/10.1038/scientificamerican0792-66
https://doi.org/10.1007/978-3-319-93025-1_4
https://doi.org/10.1016/j.cose.2021.102448
https://doi.org/10.1007/s11766-003-0059-5
https://doi.org/10.3390/info14010030
https://doi.org/10.37934/sijese.3.1.2845
https://doi.org/10.1016/j.jksuci.2024.102126
https://doi.org/10.7763/IJCTE.2012.V4.626
https://doi.org/10.1145/3083187.3083212
https://doi.org/10.1007/s10916-008-9241-x
https://doi.org/10.3390/app10093233

