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ARTICLE INFO ABSTRACT 

 
The advancement of silicon photonics modulators is vital for achieving high-speed 
optical communications. However, designing optical modulators is a complex and 
resource-intensive task due to the large number of design parameters. Traditionally, the 
design of silicon photonics modulator depends on electrical and optical simulations.  
This work introduces employing machine learning models as a powerful design 
approach for MOS-like Mach-Zehnder Modulators to overcome the traditional design 
complexity. The proposed design and methodology build upon prior successful efforts 
in developing electro-optic modulators at the device level. The RandomForestRegressor 
model is developed to predict the effective refractive index (n_e) and a 
HistGradientBoostingRegressor for the absorption coefficient (k). These models show 
high prediction accuracy, with a mean absolute percentage error (MAPE) of 0.02% for 
the effective refractive index (n_e) and 0.80% for the absorption coefficient (k) for the 
test dataset. The developed models can predict the performance of MOS-like Mach-
Zehnder Modulators within a few milliseconds, exhibiting a minimal margin of error. 
These results highlight the potential of integrating machine learning in photonic device 
design to simplify optimization, reduce the high computational and enable efficient 
exploration of new design spaces. 
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1. Introduction 
 

The recent developments in the Internet of Things (IoT) and the fifth generation (5G) of telecom 
mobile networks require ultra-high-speed modulation Given the advanced technology available, it is 
necessary for several devices used in everyday life to be connected to the network, both wireless and 
wired. The backbone circuits of such networks necessitate a substantial amount of bandwidth. Ref. 
[1] states that the required speeds for different types of transport in 2020 are as follows: 1 𝑃𝑏𝑝𝑠 for 
core transport, one 1 𝑇𝑏𝑝𝑠 for metro transport, 100 Gbps for backhaul truck, and 1 −  10 𝐺𝑏𝑝𝑠 for 
end-user devices. 
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Integrated photonics has attracted significant attention in this particular environment in recent 
years [2] Specifically, silicon photonics (SiP) has become a promising platform for creating affordable, 
high speed and low power optical modulators. This is because it can be easily integrated with 
complementary metal-oxide-semiconductor (CMOS) technology [3], allowing the integration with 
the electronic components. Additionally, silicon photonics benefits from existing fabrication 
expertise and a well-established manufacturing infrastructure. Unlike polymers, used in traditional 
photonics, such as LiNbO3, Si possesses a centrosymmetric crystalline structure, resulting in limited 
parametric electro-optic effects such as the Pockels and Kerr effects [4]. However, the 
semiconducting properties of silicon (Si) enable the introduction and removal of unbound charge 
carriers, and this phenomenon is called the plasma dispersion effect (PDE). PDE enables the control 
of the distribution and the concentration of the free charge carriers with the applied voltage enabling 
the implementation of Silicon phase shifters. Silicon phase shifters can be utilized to manipulate the 
interferometric patterns in several interferometer setups, including micro-ring resonators (MRR), 
Michelson modulators, and Mach–Zehnder modulators (MZM) [5-7]. 

When comparing these various types of modulators, it can be observed that MRRs and Michelson 
interferometer modulators (MIM) possess characteristics such as small footprint, low power 
consumption, and good modulation efficiency. However, these modulators are constrained by 
limited bandwidth [6-9]. In contrast, Mach-Zehnder modulators (MZMs) offer a favorable balance 
between bandwidth, power consumption, and insertion loss, rendering them appropriate for high-
speed systems. Mach-Zehnder modulators (MZMs) also demonstrate superior thermal resistance 
and minimize signal distortion known as chirp. High-performance Mach-Zehnder Modulators (MZMs) 
employ two-phase shifters to minimize the 𝑉𝜋 values. These MZMs incorporate several innovations, 
such as resistance and capacitance (𝑅𝐶) equalizers, traveling-wave electrodes (TWEs) with 'T'-shaped 
extensions, and serial push-pull (SPP) driving topologies, to improve both modulation efficiency and 
bandwidth [10]. 

Recent developments in silicon photonic phase shifters have brought attention to three main 
mechanisms: carrier injection, carrier depletion, and carrier accumulation. Carrier injection, 
accomplished by applying a forward bias to 𝑃𝑁 junctions, can generate substantial phase shifts of up 
to 𝜋 radians. However, this method is hindered by its high-power consumption, which can reach 
several milliwatts, and its slower operating speeds, which are below 16 𝐺𝑏𝑝𝑠 [11-14]. These 
limitations arise from the process of electron-hole recombination, as described by Soref and Bennett 
in 1987 [12]. Carrier depletion utilizes reverse-biased 𝑃𝑁 junctions to provide high-speed modulation 
(> 40 𝐺𝐻𝑧) while consuming reduced power (in the sub-milliwatt range). However, it only offers 
small phase shifts (0.3 − 0.5 𝜋 𝑟𝑎𝑑𝑖𝑎𝑛𝑠) [5]. Carrier accumulation, utilizing MOS capacitor 
topologies, enables the attainment of high efficiency with speeds exceeding 100 𝐺𝐻𝑧 and low signal 
degradation [15]. When comparing these options, it is important to note that carrier injection is 
restricted by both power and speed. On the other hand, carrier depletion strikes a compromise 
between speed and power, while maintaining reasonable efficiency. Lastly, MOS capacitor topologies 
have shown significant potential as carrier accumulation modulators, achieving high-speed operation 
with decreased power consumption. Consequently, it is necessary to conduct further research on the 
design and optimization of MOS-based modulators in order to optimize and improve their 
performance. This will make them more suitable for large-scale, high-speed applications [16-20]. 

The design process of an electro-optical modulator involves two main stages: simulating the 
electronic side to determine the change in charge concentration or current due to the modulating 
signal and simulating the optical side to observe how these electronic variations affect optical 
parameters, such as phase and losses, impacting the optical carrier signal. This process demands 
significant memory, processing power, and time, often requiring multiple programs. This complex 
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simulation process, alongside many design parameters (including dimensions, doping 
concentrations, and bias voltage) makes the optimization process of the electro-optical modulators 
challenging and computationally expensive; thus, finding alternatives to save computing resources is 
desirable [21]. 

Over the last decade, numerous researchers have carried out studies with different approaches 
for designing silicon photonics components in order to address the challenges posed by conventional 
design techniques [22]. Heuristic optimization algorithms, such as the genetic algorithm (GA), are 
extensively employed for optimizing the parameters of components [23-24]. Artificial intelligence 
(AI) is a potential option to overcome the complexity of the design and optimization of silicon 
photonic devices. AI models can be trained to achieve high accuracy in predicting the performance 
of an optical modulator [21]. The work of Gandhi Alagappan and Ching Eng Png [25] is among the 
first articles to utilize deep learning models for classifying optical waveguide geometries as either 
single-mode or multi-modal. Ma et al., conducted a detailed evaluation of the achievements in deep 
learning-based photonic design in [21]. The authors explore the potential of deep learning as a very 
effective methodology for designing photonic structures. The researchers highlight that deep 
learning offers data-driven methodologies that complement traditional physics and rule-based 
techniques. The paper discusses the drawbacks of conventional numerical simulations, emphasizes 
different model structures for certain photonic tasks, and provides insights into the problems and 
prospects of this new research field.  

In 2023, RA de Paula Jr et al., [10] demonstrated the integration of artificial neural networks with 
the differential evolution optimization technique to enhance the performance of silicon-based Mach-
Zehnder modulators. The authors implemented an Artificial Neural Network (ANN) model and used 
a numerically produced dataset from their previous research to train the ANN model.  The model, 
which had undergone training, successfully predicts the performance of the examined MZM. 
Subsequently, the researchers integrated the model within the optimization procedure to optimize 
the modulator bandwidth, optical losses and operating voltage. In this work, machine learning 
models are developed to accurately predict the performance of MOS-Like Mach-Zehnder modulator. 
The modulator structure is based on our former research [17]. We picked the data for this modulator 
to train and evaluate the machine learning models. The implemented models are tested on data from 
the same research, where the testing data is unseen for the models during the training phase. This 
model can be used to study new design space. 

The rest of the paper is organized as follows:  
 

 i. Section 2 reviews the selected modulator structure and its principle of work. In addition, data 
preparation and preprocessing are reviewed. Moreover, the selection and training of the 
machine learning model are explained.  

 ii. Section 3 discusses the results of the implemented models.  
 iii. Finally, Section 4 provides the conclusion, summarizing the findings. 
 

2. Methodology  
 
The main objective of this study is to improve the efficiency of MOS-Like Mach-Zehnder 

modulators (MZMs) by developing a machine-learning model(s). Initially, a dataset is gathered from 
our formed research [17]. This dataset contains the results of numerical simulation for such 
modulator. The dataset has been cleansed and preprocessed to ensure its suitability for the models. 
Next, a machine learning model has been trained and evaluated. The data preprocessing and the 
machine learning model are implemented using Python programming language [26] in the Google 
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Colab platform [27]. Following these steps, we will have a fully functional model ready for the MZM 
optimization.  

 
2.1 MOS-Like Mach-Zehnder Modulators (MZMs) 

 
In a previous work [17], a MOS-like Mach-Zehnder modulator that has low optical loss with the 

highest reported this-time operation speed to our knowledge has been presented. The modulator 
employs the plasma dispersion effect in changing the free charge carrier concentration in a silicon 
waveguide core, resulting in a phase shift in the optical signal. The modulator cross-section consists 
of a silicon waveguide core with a rectangular cross-section of height H and width W as shown in 
Figure 1. Two metallic electrodes, with dimensions equal to the core waveguide, are placed on the 
left and the right sides of the waveguide. The structure is encapsulated in silica (𝑆𝑖𝑂2). Four different 
rectangular waveguide sizes, as shown in Table 1, were studied, with dimensions chosen to realize 
single-mode conditions and ensure maximum mode confinement factor. 

 

 
Fig. 1. A schematic cross section for the MOS-Like MZM 

 
Table 1 
Different waveguide configuration 
Configuration Height (nm) Width (nm) 

A 100 750 
B 150 600 
C 220 450 
D 300 400 

 
The electrodes are placed at distances 𝑦0 and 𝑧0 away from the core in the vertical and horizontal 

directions, respectively. 𝑧0 = 0, means that the electrodes are aligned horizontally with the core. As 
𝑧0 increases, the right electrode moves upwards, and the left electrode moves downwards. Similarly, 
as 𝑦0 increases, the right electrode moves to the right and the left electrode moves to the left. The 
electrodes were moved away the core by changing 𝑦0 from 100 to 500 𝑛𝑚 and 𝑧0 from 0 to 500 𝑛𝑚 
in steps of 100 𝑛𝑚, creating 30 different combinations of electrode positions. 

The right electrode is connected to the control signal and named Anode. The left electrode is 
grounded and is named Cathode. The same configuration applies to the other arm of the MZI, with 
the anode of one arm having a voltage equal to the negative of the other. In the ‘ON’ state, the anode 
voltage is zero, causing the optical signals to be in phase and the output to be high. In the ‘OFF’ state, 
different anode voltages induce a phase difference, minimizing the output signal. The design 
parameters of the modulator are shown in Table 2. 
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Table 2 
MOS-Like Mach-Zehnder modulators design parameters 
Parameter Start value End value Step 

Applied voltage −20 𝑉 20 𝑉 1 𝑉 
Concentration 1𝑥1016 𝑐𝑚−3 1𝑥1017 𝑐𝑚−3 1𝑥1016 𝑐𝑚−3 
Electrode horizontal 
separation distance 𝒚𝟎 

100 𝑛𝑚 500 𝑛𝑚 100 𝑛𝑚 

Electrode vertical separation 
distance 𝒛𝟎 

0 𝑛𝑚 500 𝑛𝑚 100 𝑛𝑚 

 
Before delving into the detailed process of the design, it is important to review the performance 

metric of that symmetric MZM. One of the key metrics is the switching voltage 𝑉𝜋 , which is the 
voltage required to switch the output optical power between its maximum and minimum values. The 
output power switching is dependent on the phase difference between the two arms: when the 
waves in the two arms are in phase, the output is maximum; when the waves are completely out of 
phase, the output is minimum. The switching voltage induces this phase difference by altering the 
charge distribution and consequently changing the effective refractive index (𝑛𝑒) of the propagating 
modes inside the waveguides forming the MZM arms. The phase shifter length 𝐿𝜋, is a design metrics 
that is calculated by dividing the wavelength of the propagated light by (2𝑥Δ𝑛𝑒) , where Δ𝑛𝑒 is the 
change in effective refractive index (𝑛𝑒), and is the length of the phase shifter that is required to give 
phase shift between the two phases by 𝜋. The switching voltage 𝑉𝜋 and the phase shifter length 𝐿𝜋 
metrics are driven from the effective refractive index (𝑛𝑒), which is the real part of the complex 
refractive index [16].  

The efficiency of the modulator in terms of optical losses is assessed using insertion loss (IL) and 
extinction ratio (ER). Insertion loss is calculated from Eq. (1), where I₀ is the input optical intensity 
and 𝐼𝐻 is the maximum output optical intensity. The extinction ratio is calculated from Eq. (2), where 
𝐼𝐿 is the minimum output optical intensity [16]. These metrics are essential for evaluating the 
efficiency and performance of the MZM-based modulator. The insertion loss (IL) and extinction ratio 
(ER) of an optical modulator can be influenced by the absorption coefficient (𝑘), which represents 
the material's absorption losses. Therefore, in this work, we will use the effective refractive index 
(𝑛𝑒) and the absorption coefficient (𝑘) as optimization parameters for the optical modulator. 

 

𝐼𝐿 =  10 𝑙𝑜𝑔 (𝐼₀/𝐼𝐻)              (1) 

 

𝐸𝑅 =  10 𝑙𝑜𝑔 (𝐼H/𝐼𝐿)           (2) 

 
2.2 Data Preparation and Preprocessing  

 
The dataset used in this study results from a numerical simulation of the reported MOS-like 

modulator in [17] Table 3 displays a representative sample (first 10 rows) extracted from the dataset 
used for training the models. The dataset is determined through the traditional design methodology 
which consists of two basic stages. Initially, the modulator wase simulated by a charge solver to 
calculate the charge density change inside the waveguide due to changing the applied voltage. Next, 
the waveguide section was analyzed by solving Maxwell's equations using a Finite-Difference 
Eigenmode (FDE) numerical simulation [28]. This allowed for the calculation of the effective refractive 
index (𝑛𝑒) and the absorption coefficient (𝑘) for the modulator.  
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Table 3 
Sample data from the training dataset for MOS-Like Mach-Zehnder Modulators 
Waveguide 
height (m) 

Doping 
concentration 

(𝒄𝒎−𝟑) 

𝒛𝟎 (m) 𝒚𝟎 (m) Applied 
voltage (V) 

Effective 
refractive 
index (𝒏𝒆) 

Absorption 
coefficient (𝒌) 

0.0000001 2E+22 0 0.0000001 -20 2.015784458 0.001701962943 

0.0000001 2E+22 0 0.0000001 -19 2.015789768 0.001701740686 

0.0000001 2E+22 0 0.0000001 -18 2.015795151 0.001701517474 

0.0000001 2E+22 0 0.0000001 -17 2.015800611 0.001701293238 

0.0000001 2E+22 0 0.0000001 -16 2.015806152 0.001701067904 

0.0000001 2E+22 0 0.0000001 -15 2.015811782 0.001700841387 

0.0000001 2E+22 0 0.0000001 -14 2.015817507 0.001700613594 

0.0000001 2E+22 0 0.0000001 -13 2.015823335 0.001700384417 

0.0000001 2E+22 0 0.0000001 -12 2.015829274 0.001700153734 

0.0000001 2E+22 0 0.0000001 -11 2.015835334 0.001699921405 

 
The data set includes the waveguide's height, describing the waveguide cross-section area, 

doping concentration, separation distance between the electrodes and the waveguide in both 
horizontal and vertical directions, applied voltage, the effective refractive index (𝑛𝑒) and the 
absorption coefficient (𝑘). Each row in the dataset represents a single run at a specific voltage step, 
with every 41 rows corresponding to one modulator configuration. The dataset contains 49200 
rows, which equates to 1200 unique modulator configurations.  

The descriptive statistics of the dataset, that is used for the training and evaluation of the model, 
provide essential information about the range and distribution of the parameters, as shown in Table 
4. During the data preprocessing step, the input features are normalized to provide consistency 
across the different scales of the parameters. Normalization is required in order to prevent any 
individual feature from dominating the learning process due to its magnitude. The technique of Min-
Max scaling was utilized to normalize all feature values within the range of [0, 1], enabling rapid and 
precise training and evaluation of the machine learning model. The histogram of the effective 
refractive index (𝑛𝑒), Figure 2(a), shows that its values is uniformly distributed in groups along the 
range. This distribution shows that this output objective can be processed without more 
preprocessing. While the histogram of the absorption coefficient (𝑘), Figure 2(b), shows a highly 
skewed distribution towards the lower end of the scale with more than 7000 occurrences at 𝑘 ≈ 0. 
To manage this discrepancy, the log transformation technique is used to improve the efficiency of 
the machine learning models for this output. 
 

Table 4 
Statistical data for the MOS-Like Mach-Zehnder Modulators training dataset (post-cleaning) 
 Waveguide 

height (m) 
Doping 
concentration 

(𝒄𝒎−𝟑) 

𝒛𝟎 (m) 𝒚𝟎 (m) Applied 
voltage (V) 

Effective 
refractive index 
(𝒏𝒆) 

Absorption 
coefficient 
(𝒌) 

count 39155 39155 39155 39155 39155 39155 39155 

mean 2.09E-07 5.38E+22 2.49E-07 2.99E-07 0 2.3163 1.21E-04 

std 6.79E-08 2.78E+22 1.70E-07 1.42E-07 11.832311 0.141446 2.66E-04 

min 1.00E-07 1.00E+22 0.00E+00 1.00E-07 -20 1.976813 1.69E-07 

25% 1.50E-07 3.00E+22 1.00E-07 2.00E-07 -10 2.233821 6.92E-06 

50% 2.20E-07 5.00E+22 2.00E-07 3.00E-07 0 2.353751 1.54E-05 

75% 3.00E-07 8.00E+22 4.00E-07 4.00E-07 10 2.464247 6.93E-05 

max 3.00E-07 1.00E+23 5.00E-07 5.00E-07 20 2.518619 1.70E+00 
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(a) (b) 

Fig. 2. Histogram for (a) Effective refractive index (𝑛𝑒) (b) Absorption coefficient (𝑘) 

 
2.3 Machine Learning Model Development 
2.3.1 Machine learning model selection 
 

The selection of the appropriate machine learning model in this study depends on the 
characteristics of the selected dataset. As discussed in the previous section, the dataset consists of 
numerical features and variables related to the performance of the modulator. The correlation 
matrix, Figure 3, highlights the connections between these features, indicating potential non-linear 
interactions that need to be effectively captured by the models. The correlation matrix indicates a 
strong correlation between the waveguide height and the effective refractive index (𝑛𝑒). This 
correlation can be explained physically by the fact that the height of the waveguide determines the 
cross-sectional area, which in turn affects the number of free charge carriers inside the waveguide. 
This, in turn, impacts the refractive index (𝑛𝑒)  of the waveguide. The other noticeable relation is a 
moderately negative correlation between the electrode’s separation, and the absorption coefficient 
(𝑘). The physical meaning of this is that the long distance that separates the electrodes from the 
waveguide leads to low absorption loss for the propagated light. Other features show weak 
correlations with the output objectives. One more critical relation between the two output objectives 
is that there is a very weak correlation with the output objectives. This relation enables us to use two 
separate models, one for each output. 
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Fig. 3. The correlation matrix for the training dataset 

 

Considering the attributes and correlations of the dataset, the RandomForestRegressor model 
[29] is used for predicting the effective refractive index (𝑛𝑒) because of its ability to manage linear 
and nonlinear data and capability to manage a large and complex relationships. This ability makes it 
well-suited to the large correlation between the height of the waveguide and the effective refractive 
index (𝑛𝑒). The ensemble technique of such a model generates multiple decision trees throughout 
the training process and combines their predictions, resulting in improved accuracy and reduces the 
risk of overfitting. The feature importance ranking capability of this model provides vital insights into 
the features that have the greatest impact on the effective refractive index (𝑛𝑒).  

The highly skewed histogram of the absorption coefficient (𝑘), Figure 2(b), leads to increase the 
error when using the RandomForestRegressor model. The HistGradientBoostingRegressor model [29] 
belongs to the gradient boosting family, which sequentially builds an ensemble of trees to minimize 
the remaining errors from previous steps. This advantage enables the use of this model with 
absorption coefficient (𝑘). 
 
2.3.2 Machine learning model training and evaluation 
 

The model training procedure involved splitting the dataset into training and testing sets. The 
dataset is divided into three different sets. First, a 10% of the primary dataset is pickad to test the 
developed model after training it. This dataset has been manually selected from the original dataset 
and deliberately excluded from both the training and validation steps of the machine learning 
models. As a result, the models have not been exposed to this dataset during either the training or 
validation processes. This testing dataset is employed following the training and validation of the 
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models. The remaining 90% of the primary dataset is split as 80% for training and 20% for validation 
during the training phase. Each dataset is split into input features and output objectives. The input 
features are the waveguide height, the doping concentration, 𝑦0, 𝑧0  and the applied voltage, and 
the output objectives are the effective refractive index (𝑛𝑒) and the absorption coefficient (𝑘). 

The RandomForestRegressor model is utilized to predict the effective refractive index (𝑛𝑒), while 
the HistGradientBoostingRegressor model was implemented to predict the absorption coefficient 
(𝑘). Both models were incorporated into preprocessing pipelines to standardize the characteristics 
using Min-Max scaling. RandomForestRegressor was built with 100 trees, while 
HistGradientBoostingRegressor is initialized with a learning rate of 0.01 and 10,000 iterations, as 
shown in Table 5. The model parameters are selected after many trials, considering the trade-off 
between accuracy and computational time. The performance of models is evaluated by predicting 
the output objectives and subsequently computing the Mean Square Error (MSE) and Mean Absolute 
Percentage Error (MAPE) to verify their accuracy. Table 6 comprehensively explains how the models 
are trained and evaluated.  
 

Table 5 
Parameters and values for RandomForestRegressor and 
HistGradientBoosting Regressor models 
Model Parameter Value 

RandomForestRegressor 
 
 
 

n_estimators (number 
of trees) 

100 

min_samples_split 2 
min_samples_leaf 1 
loss 'Squared error' 

HistGradientBoostingRegressor learning_rate 0.01 
max_iter 10000 
min_samples_split 2  
min_samples_leaf 1  
loss 'Squared error' 

 
Table 6 
Steps to train the machine learning models 
Algorithm  

Input: 
 X, y1, y2   #training features and target output objectives 
 
1. y2_train←log10(y2_train)    #Log transformation 
2. Split data into training and validation sets 
3. Create preprocessing pipeline 
4. Initialize and fit models 
5. Evaluate models (X_test, y1_test, y2_test) 
6. Calculate and print metrics 

 
The evaluation of the performance of the machine learning models in this study is conducted by 

employing Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). These metrics 
are chosen for their widespread use in regression analysis and their ability to provide a 
comprehensive view of the model's prediction accuracy and reliability. During the training phase the 
Mean Squared Error (MSE) was set as an error validation parameter for both models as shown in 
Table 5. This parameter is used to measure the average of the squared difference between the actual 
and predicted values. MSE is chosen due to its ability to apply higher penalty on large variances, 
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making it support variance reduction as a feature selection criterion and helps to reduce the least 
squares error [30].  

Mean Absolute Percentage Error (MAPE) is used to evaluate the trained model with the validation 
dataset. MAPE expresses the error as percentage and is defined by Eq. (3). Where 𝑦𝑖 is the actual 
value, 𝑦𝑖̂ is the predicted value, and 𝑛 is the number of observations. MAPE helped us evaluate our 
models' performance parameter prediction by explaining the prediction error in relative terms, 
regardless of data scale. The trained models are tested by using the testing dataset, which is 
considered a new dataset for the model since it is picked before the training phase.  

 

𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑ |

𝑦𝑖−𝑦𝑖̂

𝑦𝑖
|  𝑥 100𝑛

𝑖=1             (3) 

 
3. Results  
 

Assessing the performance of machine learning models with new, unseen datasets is crucial for 
evaluating its generalization. While the models realize exceptionally low MAPE with the training and 
validation dataset. It still provides a very low MAPE with the testing dataset. Table 7 shows the MAPE 
for the models in the evaluation and the testing stages. 
 

Table 7 
Mean absolute percentage error for the evaluation and testing datasets 
Model MAPE for evaluation phase MAPE for testing phase 

RandomForestRegressor 0.00000016 % 0.02 % 
HistGradientBoostingRegressor 0.13 % 0.80 % 

 
The testing dataset, after removing the outliers, contains twenty different modulators 

configuration with 820 sample rows. The developed machine learning models, after the training and 
evaluation, are used to predict the effective refractive index (𝑛𝑒) index and the absorption coefficient 
(𝑘) for a testing dataset. The absolute error between the predicted and the numerically simulated 
values, as reported in [17], is calculated for both outputs. The results are displayed in Figure 4 and 
Figure 5 where the x-axis represents the index of the observations, while the y-axis represents the 
absolute error (e). For the effective refractive index (𝑛𝑒) output, Figure 4 highlights that most of the 
data samples show an exceptionally low absolute error, close to 0 %, indicating high accuracy in the 
predictions for most of the observations, while all the data range experience absolute error below 
0.01 %. For the absorption coefficient (𝑘), Figure 5 displays that for a massive portion of the data 
points, the absolute error is again close to 0 %, indicating that the model performs well in predicting 
the absorption coefficient (𝑘) with the whole range of the absolute error which is less than 0.00025 
%. These error ranges are considered a great for most of the physics applications for the machine 
learning, and it is acceptable in silicon photonics field which mean that the developed models can be 
ralied upon and employed in an optimization algorithm to search the unvisited design space for the 
MOS-like MZM.  
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Fig. 4. Absolute error for the effective refractive index (𝑛𝑒) for the testing 
dataset 

 

 
Fig. 5. Absolute error for the absorption coefficient (𝑘) for the testing 
dataset 

 

All the good results are for the whole dataset, but it needs to be examined from the silicon 
photonics point of view. So, we chose randomly one of the modulator configurations from the testing 
dataset and used the developed models to predict its performance. For this sample modulator 
configuration with parameters as listed in Table 8, a comparison between the simulated and 
predicted outputs is illustrated in Figure 6. The effective refractive index (𝑛𝑒) as a function of applied 
voltage (V) is illustrated in Figure 6(a). The x-axis represents the voltage in volts (V), while the y-axis 
represents the effective refractive index (𝑛𝑒). Both the predicted and simulated curves follow the 
same increasing behavior as the voltage increases. This indicates that the RandomForestRegressor 
model can capture the overall relationship between applied voltage and the effective refractive index 
(𝑛𝑒). The deviation between predicted and the simulated curves is considering the model error and 
is shown in Figure 6(b) as an absolute error. 

 
Table 8 
Sample MOS-Like Mach-Zehnder modulator parameters 
Parameter Value 

Waveguide height   220 nm 
Waveguide width  450 nm 
Doping concentration  1𝑥1023  𝑐𝑚−3 
Electrode horizontal separation distance 𝒚𝟎 400 nm 
Electrode vertical separation distance 𝒛𝟎 500 nm 
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(a) (b) 

Fig. 6. Effective refractive index (𝑛𝑒) modelling results (a) Simulated vs predicted (b) Absolute error 

 
Figure 7(a) displays the predicted and simulated curves for absorption coefficient (𝑘) for the same 

modulator. The x-axis represents the voltage in volts (V), while the y-axis represents the absorption 
coefficient (𝑘𝑒). The two curves have the same decreasing trend with the voltage increase, indicating 
that the HistGradientBoostingRegressor model can capture the relationship between applied voltage 
and the absorption coefficient (𝑘). The absolute error between the predicted curve and the 
simulated curve is shown in Figure 7(b). The error curves show that most of the data points for the 
sample modulator utilize absolute error below 2𝑥10−5 for effective refractive index (𝑛𝑒) and below 
2.5𝑥10−7 for the absorption coefficient (𝑘). 
 

  
(a) (b) 

Fig. 7. Absorption coefficient (𝑘) modelling results (a) Simulated vs predicted (b) Absolute error 
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In comparison, the previously used numerical simulation for the Mach-Zehnder Modulator 
(MZM) design realizes high accuracy but is time-consuming and resource-intensive. Simulating a 
single modulator takes approximately 20 minutes. In contrast, While the training process for machine 
learning models can take nearly one hour, these models can predict device performance in almost a 
few milliseconds after training. ML models have good accuracy; however, more research is needed 
to reduce prediction errors. The ML technique is efficient, allowing rapid examinations and 
exploration of large design spaces. It supports optimization algorithms like genetic algorithms for fast 
configuration discovery, making it a valuable tool in silicon photonics developments. 

 
4. Conclusions 
 

In this study the application of machine learning models is demonstrated for predicting the 
performance characteristics of MOS-like Mach-Zehnder Modulators (MZMs) in silicon photonics. We 
built on our former work to find out a dataset for training and evaluation these models. Using the 
RandomForestRegressor model, we accurately predicted the effective refractive index (𝑛𝑒). 
Additionally, we used the HistGradientBoostingRegressor model for predicting the absorption 
coefficient (𝑘). Our predictions had a mean absolute percentage error (MAPE) of 0.02% for the 
effective refractive index (𝑛𝑒) and 0.80% for the absorption coefficient (𝑘). These findings 
demonstrate the ability of machine learning to greatly decrease the computational complexity and 
time needed for the development and improvement of photonic devices. 
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