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ARTICLE INFO ABSTRACT 

 
Banking domain is interested in customer churn prediction applications due to the 
rising competition with financial technologies (FinTech). This fierce competition is 
impacting banks market share, and it was found that it’s much easier and less costly to 
keep existing customer rather than acquiring new customers to the bank. Secure 
privacy preserving Customer Churn Prediction is a challenging and interesting area for 
research. Federated Machine Learning (FedML) has been proposed to resolve privacy 
problem, by using federated learning (FL) to apply Machine Learning (ML) prediction at 
banks locally and was proven to be one of the most effective solutions for this 
challenge. However, some gaps are identified for using federated machine learning 
(FedML) like the security attacks targeting the aggregation server or communication 
with the clients. Accordingly, this research proposes securing FedML vulnerabilities 
using Fully Homomorphic Encryption (FHE) encryption through a secure privacy 
preserving framework for customer churn prediction. The proposed framework 
guarantees the privacy preserving of customer data using Federated Machine Learning 
(FedML) while securing the aggregation and communication against vulnerabilities by 
a (FHE) provably secure algorithm. The proposed solution is demonstrated using a 
public dataset to predict the customer churn of 3 bank clients in different locations. 
FedML is applied to ensure data privacy for each client by training the model locally 
while only sharing the updates. FHE is used to encrypt all the updates, model 
aggregation and model prediction. Prediction accuracy is compared for the global 
model, the FedML without encryption and the FedML with FHE encryption using neural 
network binary classifiers. The proposed framework achieved high prediction accuracy, 
very close to the baseline, in addition to providing privacy and security safeguards that 
are mandated in banking domain. 
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1. Introduction 
1.1 Background 
 

The rise of financial technologies (FinTech) has intensified competition within the banking sector, 
transforming the industry landscape. FinTech innovations, fuelled by vast amounts of data, have 
fundamentally altered customer interactions and expectations. In this dynamic environment, 
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customer retention has emerged as a strategic imperative for banks. Research demonstrates that 
even modest reductions in customer churn, such as a 5% improvement, can translate to substantial 
gains in customer-related profitability as shown by J. Brito et al., [1]. 

Consequently, banks must harness advanced analytical tools to gain understanding of the factors 
driving customer defection and implement proactive countermeasures. Beyond immediate revenue 
loss, customer churn has cascading effects on a bank's financial health, reputation, and competitive 
standing. Attrition erodes the lifetime value of customers, hindering long-term profitability. 
Moreover, high churn rates signal potential weaknesses in customer experience, product offerings, 
or operational efficiency factors that can damage a bank's brand perception and reputation as shown 
by P. Singh et al., [2]. Therefore, churn analytics offer a window into the bank-customer relationship, 
empowering institutions to tailor strategies that foster loyalty and differentiation within an 
increasingly crowded marketplace. 

Artificial Intelligence (AI), particularly machine learning (ML), has revolutionized numerous 
industries, including finance. Yet, the success of Deep Learning (DL) models and the sensitivity of 
banking data raise legitimate privacy concerns. Traditional centralized cloud models necessitate the 
aggregation of client information, increasing vulnerability to data breaches and potential misuse 
which is a significant risk in the financial sector. Furthermore, centralized architectures face 
bottlenecks in latency, bandwidth, and computational scalability, particularly as datasets and model 
complexity grow. Cross-device federated machine learning (FedML) offers an elegant solution, 
enabling collaborative model training without compromising data privacy. By training local models 
on-device and aggregating encrypted updates at a central server, FL preserves confidentiality while 
allowing for the development of robust global models avoiding disadvantages of the centralised 
model architecture such as high latency, long learning time, greater server load and expensive 
transmission time as explained further in several research [3-5]. 

While FedML offers compelling benefits, it's essential to acknowledge the unique security 
considerations it presents. The decentralized nature of federated learning (FL) introduces potential 
attack vectors through malicious clients, compromised aggregators, or external adversaries. A robust 
churn prediction solution within this framework necessitates a thorough analysis of these threat 
models and the development of appropriate countermeasures as shown by C. Zhang et al., [6]. 

Encryption is one of the countermeasures that are proposed to further strengthen security. 
Within this paradigm, Fully Homomorphic Encryption (FHE) enables computations directly on 
encrypted data. This unlocks the potential for even greater privacy in FL systems, vital in the risk-
sensitive financial domains. 
 
1.2 Problem Statement & Research Objective 
 

The primary objective of customer churn prediction is to minimize attrition by enhancing the 
accuracy, privacy, and security of prediction models. High-confidence, secure machine learning 
models allow banks to leverage these technologies to gain competitive advantages over FinTech 
companies by offering quicker and more personalized services, supported by secure decision-making 
processes due to the sensitive nature of customer data. 
 
1.2.1 Research contribution 
 

This research addresses securing customer sensitive data in prediction models by proposing a 
framework that resolves privacy concerns by applying FL, and addresses the FL security concerns by 
applying encryption, FHE. The proposed framework for secure and privacy preserving prediction 
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mode is applied for Customer churn prediction in the banking industry. Our approach aims to address 
the limitations of centralized models, offering a collaborative learning solution that safeguards 
sensitive customer data while enhancing predictive accuracy. 
 
1.3 Related Work 
1.3.1 Homomorphic encryption in federated settings  
 

HE has gained power in FL to safeguard model privacy without sacrificing training efficiency. Key 
implementations include: 
 

i. H. Fang et al., used Paillier Federated Multi-Layer Perceptron (PFMLP), in 2021 [5] to implement 
a secure privacy preserving framework based on partially HE and FL where gradients are 
encrypted to secure the model against attacks, also the computation issue is considered where 
Paillier algorithm is used to speed up the training by around 25%. 

ii. Zhang et al., proposed BatchCrypt [6], this system utilizes a quantization scheme for secure FL 
in cross-silo settings, encoding weight updates as a batch of gradients processed using SIMD 
techniques. This method, supported by the Paillier scheme, enhances training efficiency with 
minimal accuracy loss. 

iii. In Truex et al., [7] and POSEIDON [8]: Both employ differential privacy and additive HE in 
federated settings. However, their approach of encrypting the entire FL process, including local 
training, results in significant computational burdens. 

iv. Ma et al., [9] They leverage the CKKS scheme through a multi-key approach (xMK-CKKS) that 
uses an aggregated public key, enabling model decryption only after clients exchange secret 
key information. 

v. B. Wang et al., proposed PPFLHE: A privacy-preserving federated learning scheme with HE & FL 
for health care data in 2023 [11] Where to encrypt the training model shared by users to ensure 
its security and privacy, HE is used. In addition, Access Control (AC) technology is used to 
prevent access attacks by confirming the user’s identity and removing the dropped or 
unresponsive users temporarily to reduce the waiting delay and communication overhead. high 
data utility and classification accuracy (81.53%), and low communication delay is shown by 
achieved results while achieving privacy preserving. 

vi. M. Arrazi et al., in 2023 proposed a global behavioural fingerprinting model for a target object, 
by analysing its interactions with different peers in the network using FL in addition to using HE 
and blockchain to guarantee the privacy of both the target object and the different workers 
achieving a secure privacy preserving framework with good prediction accuracy [12]. 

 
1.3.2 Using homomorphic encryption in federating setting for banking 
 

i. PV4FAD, by S. Kadhe et al., in 2023, proposed as a solution for privacy preserving training and 
inference of a predictor for financial anomaly detection. PNS and Banks train collaboratively 
using random decision tree where banks obtain encrypted leaf node labels using HE. 
Differential privacy is used to prevent inference threats [13]. 

ii. HYFL by H. Zhang et al., in 2023, proposed a hybrid federated learning system that offers secure 
and privacy-aware learning and inference for financial crime detection. The server only has the 
model of feature extractors, but no features from the account clients while, the transaction 
client only has the extracted features but not the encoders, so it cannot recover the data from 
the features. Also to tackle privacy risks sources DP and HE are used [14]. 
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1.3.3 Research Gap 
 

The sensitive nature of banking customer data is the main challenge for using ML prediction 
models. The need for privacy preserving models is rising and FL is one of the main solutions that are 
proposed to resolve the privacy issue. However, applying FedML in banking domain still has a lot of 
security concerns and limitations due to the security vulnerabilities and attacks over FedML 
framework main components which are: the aggregation server, clients, and the communications 
between them. 
 
1.4 Methods and Algorithms 
1.4.1 Machine learning prediction models 
 

Artificial Neural Network (ANN): Multilayer perceptron feedforward ANN with 2 hidden layers 
and a single sigmoid output for binary classification. The Multi-Layer Perceptron consists of millions 
of neurons patterned in layers and connected via weights. The first layer is called the input layer, 
followed by three hidden layers (3 layers) - input size 9 *36 features. Finally, the output layer exists, 
as shown in Figure 1. The significant benefit of increasing the hidden layers is increasing the ability of 
the network to extract the non-linearity of data.  
 

 
Fig. 1. Deep neural network 

 
Convolutional Neural Network (CNN): In fully feed-forward neural networks, each neuron has a 

weighted connection to all neurons in the next layer. CNNs are a specific type of feed-forward neural 
networks in which the connectivity pattern between its neurons is inspired by the organization of the 
animal visual cortex. They have proven to be very effective in areas such as image recognition and 
classification. Neurons in different layers are of different types. Neurons in the input layer only get 
one input and output which is the same value. Neurons in hidden layers are more complex; they get 
inputs, compute the weighted summation of inputs, operate a function on the summation and then 
output the value of the function. These functions could be Sigmoid, Max, or Mean functions and are 
called activation functions (or transfer functions). CNN model used in proposed solution is 1 
dimensional for classification, and it has three layers: convolutional layer, Pooling Layer, Fully 
Connected Layers, and activation functions.  The learning rate 0.005 works well for CNN. A neuron 
represents a computational node in a layer. Each neuron takes input from previous layer and applies 
a transformation involving weights and biases to produce an output. Figure 2 shows 1 Dimensional 
CNN. 
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Fig. 2. 1 Dimensional CNN 

 
1.4.2 Federated learning (FL) 
 

Introduced by McMahan et al., in 2017 [15], FL enables model training across mobile devices 
using private data that remains on-device. The Federated Average (FedAvg) algorithm, commonly 
employed in FL, involves training models locally, aggregating them periodically to form a new global 
model, and distributing it for further training rounds. FL originated from Google as a solution for 
multi-party ML, aiming to enhance data privacy and collaborative learning. Initially intended for local 
model updates on Android devices, its scope has expanded to include applications in medical data 
privacy, natural language processing, and recommendation systems. Recent advancements include 
integrating differential privacy to mitigate privacy risks and deploying vertical federated learning with 
homomorphic encryption. 
 
1.4.3 Cross-device federated machine learning (FedML) 
 

Decentralised approach to centralised machine learning. In FL, clients have their own local ML 
model, whereas the global ML model resides in a central server. Each client uses its private data to 
train its local model then send all its calculated model parameter to the central server. The central 
server then aggregates all the model parameters received from the edge devices to develop the 
global model. Thus, the central server builds a joint global ML model without collecting any personal 
data as described by C. Jagad et al., [3]. 

In proposed solution, we applied FedML, however it introduced new threat models, resulting in 
unique vulnerabilities and bear three potential adversaries: in clients, the aggregator server and 
outsiders or eavesdroppers. An adversary may hold a mixture of different capabilities and defining 
them is necessary to understand how different attacks work and provide defence mechanisms 
accordingly. More details are provided in research by C. Zhang et al., [6]. FedML advantages are 
privacy, where data remains on the device while only parameter weights and gradient updates are 
transmitted from edge devices to the server. And reduced server load since most computations occur 
on client devices. While its main disadvantage is its vulnerability to attacks: like data and model 
poisoning. 
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As introduced by N. Buacida et al., [10] FL has several vulnerabilities & defense mechanisms: 
Sharing FL model parameters and frequent communication expose the system to new risks and 
potential privacy breaches. Adversaries may exploit these to manipulate model outputs or access 
sensitive information. Researchers explored these unique security concerns with FL adoption and 
discussed mitigative strategies like employing FHE to safeguard against these risks. 

Sources of vulnerabilities in FL: 
 

i. Communication Security: Leakage during communication between server and clients 
ii. Gradient Leakage: Adversaries can infer sensitive information from gradients. 

iii. Compromised Clients: Clients in FL have potential to manipulate the model by altering data or 
parameters. 

iv. Server Security: in cloud-based setups, central servers are susceptible to hacking. 
v. Aggregation Algorithm: Essential for detecting and mitigating malicious updates from clients, 

maintaining the global model’s integrity. 
 
Defenses in FL:  Are critical for mitigating a range of attacks and reducing risk exposure. These 

defenses ensure the integrity of the global model by promoting adherence to the true statistical 
distribution of the training data, while minimizing the impact of any malicious updates. 

 
i. Secure Aggregation and communication: Uses cryptographic methods like HE to protect 

individual model updates during aggregation and prevents eavesdropping when servers 
compute on encrypted model updates. 

ii. Differential Privacy: Applies noise to updates to obscure individual data points, protecting 
against data inference from aggregated information. Byzantine Fault-Tolerant Aggregation 
(BFT): Addresses the challenge of nodes behaving maliciously or becoming compromised by 
maintaining system functionality despite a subset of faulty nodes. Anomaly Detection: 
Identifies deviations from normal operation, crucial for spotting compromised nodes. However, 
in our research we used FHE encryption since it is the most compatible to secure the federated 
framework in terms of its clients and server aggregation. Federated Learning Technologies: As 
shown by B. Soudan et al., [4] FL frameworks have evolved significantly through academic and 
industry efforts. In our proposed solution we and used the following technologies: 

iii. Flower: An open-source FL framework built on Python, Flower facilitates decentralized model 
training across devices or servers. Compatible with leading deep learning libraries such as 
TensorFlow and PyTorch, it supports scalable client-server interactions. 

iv. FedML: A research-oriented open library and benchmark, FedML offers support for various FL 
configurations, including on-device training for edge devices, distributed computing, and 
simulations on single machines. It is a flexible API and provides robust baseline 
implementations FedML employs virtual nodes and central server architecture. 

 
Also in our proposed framework, Federated aggregation is used as an optimization algorithm that 

is different from distributed ML and it has several key properties that differentiate it from a typical 
distributed optimization: non-IID. The training data on local dataset will not be representative of the 
population distribution, Unbalanced Similarly, varying amounts of local training data. And Limited 
communication where Clients are frequently offline or on slow or expensive connections. Weighted 
averaging of model parameters in FL is shown in Eq. (1) 

 

wt+1 ← ∑
nk

n
wt+1

kK
k=1                                                                                                                     (1) 
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K is the number of participants, 𝑛𝑘 is the number of samples of participants k, n is the number of 

samples of all participants. 𝑤𝑡+1
𝑘  is the local model parameter of participant k. 

 
1.4.4 Fully homomorphic encryption 
 

HE facilitates computation on encrypted data without decryption, preserving data structure. 
Essential for federated learning, it allows secure model updates aggregation. HE types vary by the 
operations they support: Partially Homomorphic (PHE), Somewhat Homomorphic (SHE), and Fully 
Homomorphic (FHE), with FHE supporting unlimited operations essential for federated contexts. 
Additionally, HE, is used in cross-silo FL applications to ensure privacy without compromising 
accuracy, allowing secure, encrypted data aggregation without prior decryption. 

 In 2009, Craig Gentry first proposed a fully homomorphic encryption (FHE) algorithm based on 
ideal lattices which satisfied both additive homomorphism and multiplicative homomorphism [16]. 
Since FHE has extremely high security, it has been widely used and it made great contributions to 
privacy protection [17-20]. 

In proposed solution, we used CKKS algorithm which is a fully homomorphic encryption (HE) 
scheme used for encrypted computation. Its full name is "Cheon-Kim-Kim-Song" and was proposed 
by Cheon et al., (2017) [21]. The CKKS algorithm can support encrypted computation for complex and 
real number data and can achieve relatively high encryption computation accuracy and small 
ciphertext expansion factors. Unlike other HE schemes, the CKKS scheme supports approximate 
arithmetic over complex numbers. The CKKS scheme basically consists of those algorithms: key 
Generation, encryption, decryption, homomorphic addition and multiplication, and rescaling. For a 
positive integer 𝑞, let 𝑅𝑞: =𝑅/𝑞𝑅 be the quotient ring of 𝑅 modulo 𝑞. Let 𝜒𝑠, 𝜒𝑟 and 𝜒𝑒 be 
distributions over 𝑅 which output polynomials with small coefficients. These distributions, the initial 
modulus 𝑄, and the ring dimension 𝑛 are predetermined before the key generation phase. The key 
generation algorithm is following and represented in Eq. (2,3,4). 
 
i. Sample a secret polynomial 𝑠←𝜒𝑠. Then Sample 𝑎a (resp. 𝑎′) uniform randomly from 𝑅𝑄 (resp. 

𝑅𝑃𝑄), and 𝑒, 𝑒′←𝜒𝑒. 

 
ii. Output a secret key: 
 
𝑠𝑘← (1, 𝑠) ∈𝑅𝑄

2                                                      (2) 

 
iii. Output a public key 
 
𝑝𝑘← (𝑏=−𝑎⋅𝑠+𝑒, 𝑎)∈ 𝑅𝑄

2                                                                                                        (3) 

 
iv. Output an evaluation key  
 
𝑒𝑣𝑘←(𝑏′=−𝑎′⋅𝑠+𝑒′+𝑃⋅𝑠2, 𝑎′)∈ 𝑅𝑃𝑄

2                                                                                       (4) 

 
The encryption algorithm is following and represented in Eq. (5) 
 

i. Sample an ephemeral secret polynomial 𝑟←𝜒𝑟. 
ii. For a given message polynomial 𝑚∈𝑅, output a ciphertext  
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𝑐𝑡← (𝑐0=𝑟⋅𝑏+𝑒0+𝑚, 𝑐1=𝑟⋅𝑎+𝑒1) ∈𝑅𝑄
2                                                          (5) 

                                                                                                                                   
The decryption algorithm is following and represented in Eq. (6,7). 

 
i. For a given ciphertext 𝑐𝑡∈𝑅𝑄

2 , output a message: 

 
 𝑚′←⟨𝑐𝑡, 𝑠𝑘⟩</𝑚𝑎𝑡ℎ><𝑚𝑎𝑡ℎ> (mod 𝑞)                                                                            (6) 
 
ii. The decryption outputs an approximate value of the original message . 
 
Dec (𝑠𝑘, (𝑝𝑘, 𝑚)) ≈𝑚Dec(sk, Enc(pk,m))≈m                                                                      (7) 
                                                                                                           

The homomorphic addition algorithm is following and represented in Eq. (8,9). 
 

i. Given two ciphertexts 𝑐𝑡 and 𝑐𝑡′ in 𝑅𝑄
2 , output addition: 

 
𝑐𝑡𝑎𝑑𝑑←𝑐𝑡+𝑐𝑡′∈𝑅𝑄

2                                                                                                                    (8) 

 
ii. The correctness holds as: 
 
Dec(𝑠𝑘,𝑐𝑡𝑎𝑑𝑑)≈Dec (𝑠𝑘, 𝑐𝑡) +Dec (𝑠𝑘, 𝑐𝑡′)                                                                          (9) 
 

The homomorphic multiplication algorithm is following and represented in Eq. (10,11). 
  

i. Given two ciphertext 𝑐𝑡= (𝑐0, 𝑐1) and 𝑐𝑡′= (𝑐0′, 𝑐1′) in 𝑅𝑄
2 ,  

 
compute (𝑑0, 𝑑1, 𝑑2) =(𝑐0𝑐0′,𝑐0𝑐1′+𝑐1𝑐0′,𝑐1𝑐1′)(mod q). 𝒄𝒕𝒎𝒖𝒍𝒕← (𝑑0, 𝑑1) 

+⌊𝑷−𝟏⋅𝑑2⋅𝑒𝑣𝑘⌉∈𝑹𝑸
𝟐                                                                                                                

                                          
(10) 

                                                         
ii. The correctness holds: 
 
Dec (𝑠𝑘, 𝑐𝑡𝑚𝑢𝑙𝑡←) ≈Dec(𝑠𝑘, 𝑐𝑡)⋅Dec(𝑠𝑘,𝑐𝑡′)                                                                               (11) 
 
All equations are proposed by Cheon et al., in [21]. 
 
2. Methodology  
2.1 Proposed Architecture 

 
This research aims to develop a secure, privacy-preserving deep learning model for predicting 

customer churn in the banking sector. The proposed architecture employs Artificial Neural Networks 
(ANN) and Convolutional Neural Networks (CNN) to enhance prediction accuracy. To safeguard the 
sensitive customer data inherent in the banking domain, the model incorporates Federated Learning 
(FL) and Fully Homomorphic Encryption (FHE), enabling operations on encrypted data without 
compromising data privacy. The architecture integrates FHE with FL to maintain data privacy and 
security across distributed computing environments. This dual approach ensures that all machine 
learning operations are performed on encrypted data (ciphertext), thereby enhancing the security of 
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the federated learning model. Figure 3 shows the architecture of the proposed framework and 
demonstrates the steps performed at each party. 

 

 
Fig. 3. Secure, Privacy Preserving ML for CCP 

 
2.2 Method and Algorithm 
2.2.1 Data preprocessing and federation 

 
The model's objective is to predict bank customer churn using a federated learning framework 

that integrates ANN and CNN with FHE. The process is structured as follows: 
 
Data Distribution and Preprocessing: 

Data is allocated among three clients based on geographical location. 

Each client performs the following preprocessing steps: 

 

i. Loading the dataset. 
ii. Removing irrelevant columns such as 'Exited', 'RowNumber', 'CustomerId', and 'Surname'. 

iii. Encoding categorical variables (e.g., 'Gender'). 
iv. Normalizing all numerical values to a [0,1] range. 
v. Partitioning data into training and testing subsets with an 80%-20% split. 

vi. Organizing training data into batches to facilitate model training. 

 

Federated Training Process: 

Each client conducts the following operations in parallel for each training round: 

i. Training the local model on a batch of data using both CNN and ANN techniques. 

ii. Generating corresponding secret and public cryptographic keys. 

iii. Encrypting model parameters using the CKKS encryption scheme. 

iv. Transmitting the encrypted parameters and the public key to a central server. 
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The central server performs the following: 

i. Aggregating all received encrypted parameters using the Federated Averaging (FedAVG) 
method. 

ii. Sending the aggregated encrypted parameters back to the clients. 

 

Each client then: 

i. Decrypts the received parameters using their private key. 

ii. Updates the local model parameters with the decrypted values. 

iii. Proceeds to retrain the model with new data. 

 

Hence, this architecture aims to demonstrate that integrating FHE with FL can effectively secure 
data privacy while maintaining high levels of predictive accuracy in a sensitive domain such as 
banking. The detailed methodology ensures a systematic approach to training and evaluating the 
model, emphasizing the feasibility of secure, distributed deep learning applications. 
 
2.2.2 Federated learning with homomorphic encryption 
 

In a centralized federated learning (FL) environment enhanced with Homomorphic Encryption 
(HE), the training process involves each participant training a local model on private data, followed 
by secure aggregation of these models to update the global model without compromising data 
privacy. The process within an encrypted centralized federation incorporates critical steps of 
encryption, encrypted aggregation, and decryption, ensuring data privacy throughout the model 
training and aggregation phases. 
 

i. Encryption: 

• Each participant, referred to as a learner, encrypts their locally trained model using an 
HE schemes. This is achieved through the equation: 

 

Encrypted Model N=HE public key (Model N) Encrypted Modeli=HE public key (Modeli) 

 

• The model parameters are treated as vectors of ciphertext objects, each representing 
an array of the model. The encrypted data from each learner is aggregated into a 
concatenated collection of flattened data-vectors. 

 

ii. Encrypted Weighted Aggregation: 

• Upon receiving the encrypted models, the federation controller performs a secure, 
weighted aggregation to compute the new encrypted global model. This step is 
crucial as it prevents the decryption or exposure of individual models. 

• The weight proportional to the dataset size of the client, aligning with the Federated 
Averaging (FedAvg) algorithm. This method ensures that models trained on larger 
datasets have a proportionally greater influence on the global model. 
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iii. Decryption and Local Training: 

• The aggregated encrypted global model is then sent back to all clients. Each client 
decrypts it using their private key. 

• Clients then proceed to train the decrypted global model on their local datasets, 
further refining the model based on new local data. 

 
2.3 Diagrammatic and Algorithmic Representation 
 

Proposed Framework is illustrated in Figure 4 and Algorithm 1 providing a visual and procedural 
depiction of the encrypted FL process. 

 

 
Fig. 4. Schematic representation of proposed framework 

 
Algorithm 1: Federated Learning with Homomorphic Encryption 

Encrypted global model 𝑊𝑐
𝑒 is computed with N clients, each indexed by k; β is the batch 

size ƞ is the learning rate. E are the local epochs 

Initialize 𝑊𝑐𝜂𝑆𝑒𝑟𝑣𝑒𝑟: 

𝑊𝑐
𝑒 = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑟 𝑡 = 0, … , 𝑇 − 1 𝑑𝑜 

 For each client K 𝜖 𝑁 in parallel do 

 Send encrypted global model 𝑊𝑐
𝑒 

 𝑊𝐾 = 𝐶𝑙𝑖𝑒𝑛𝑡 𝑂𝑝𝑡(𝑊𝑐
𝑒) 

 𝑊𝑐
𝑒= encrypted aggregation of all 𝑊𝑘 

𝑊𝑡 = 𝑑𝑒𝑐𝑟𝑦𝑝𝑡  𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 𝑊𝑡
𝑒𝐵

− 𝑆𝑝𝑙𝑖𝑡 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝐷𝑘
 𝑇𝑖𝑛𝑡𝑜 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 𝛽 𝑓𝑜𝑟 𝑖 𝜖 𝐸 𝑑𝑜  

For b ϵ B do 

𝑊𝑡+1
𝑒 = encrypt 𝑊𝑡+1send 𝑊𝑡+1

𝑒 to controller 
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3. Results 
3.1 Experimental Dataset and Environment 

 
In this research we face a very strong challenge which is getting real banking dataset for 

implementing proposed solution experiment. This challenge is due to the sensitivity of customer data 
and the sacristy of customer churn datasets for banking applications. In our experiment we wanted 
to have a various number of clients, where model can be run separately at each client. Which is the 
main concept of running FedML model. A publicly available dataset is used to rum our experiment 
and provide a proof of concept for the proposed solution, which is a public churn modelling data set, 
downloaded from Kaggle website, specifically for banking domain, where customer churn selected 
features are used for prediction. The training data has: 
 

i. Data of 10,000 customer 
ii. 10 selected features. 

iii. Classified: with a decision (Exited or not) 
iv. Divided into 3 different locations countries. (France, Spain & Germany) 
v. Features are mentioned below: 

vi. For each client, 80% of the dataset is used for training. 20 % is used for testing.  
 

Table 1  
Dataset features 
Feature Discerption 

Credit Score Can influence customer churn since a customer with a higher credit score is less likely to leave 
the bank. 

Geography A customer’s location can affect their decision to leave the bank. 

Gender It’s interesting to explore whether gender plays a role in a customer leaving the bank. 

Age Older customers are less likely to leave their bank than younger ones. 

Tenure Refers to the number of years that the customer has been a client of the bank. Normally, older 
clients are more loyal and less likely to leave a bank. 

Balance People with a higher balance in their accounts are less likely to leave the bank compared to 
those with lower balances 

Num Of Products Refers to the number of products that a customer has purchased through the bank  

Has Credit Card Denotes whether a customer has a credit card. This column is also relevant since people with 
a credit card are less likely to leave the bank 

Is Active Member Active customers are less likely to leave the bank 

Estimated Salary As with balance, people with lower salaries are more likely to leave the bank compared to 
those with higher salaries 

 
3.2 Accuracy Comparison 
 

For comparison, the FedML framework and Encrypted FedML with FHE algorithms are compared 
using the same network structure for model training while learning the same dataset. Supposing that 
we have 3 learning clients, we split the dataset into 3 subsets, for each geographical location and 
distribute them to 3 learning clients: France, Spain & Germany. The experiment is repeated using 2 
different DL methodologies to ensure results accuracy using the top 2 prediction techniques with 
highest prediction results obtained. The first DL methodology that is used is ANN where we run the 
experiment with FEDML without FHE, then we run it again using FHE. Table 2 shows the results for 
ANN model. 
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Table 2 
ANN model results comparison 

Model ANN (3 layers)  

Encryption Non-FHE FHE 

Client France Germany Spain France Germany Spain 

Accuracy 85.34 73.1075 87.7 85.54 73.7051 86.3 

Time in Sec. 119.6 80.1078 44.9 98.76 72.5189 50.2 

Average Memory per 
vector 480 1728 

 
The second DL methodology that is used is CNN where we run the experiment with FEDML 

without FHE, then we run it again using FHE as shown in Table 3. 
 

Table 3 
CNN Model results comparison 

Model CNN  

Encryption Non-FHE FHE 

Client France Germany Spain France Germany Spain 

Accuracy 85.515 76.545 87.384 88.818 76.545 84.539 

Time in Sec. 254.48 203.23 152.008 234.38 203.62 172.665 

Average Memory per 
vector 480 1728 

 
The experiments on the CCP dataset show that the model trained by ANN / Non FHE can reach 

an accuracy rate of 0.820 on the testing set, while the model trained by ANN & FHE can reach an 
accuracy rate of 0.818, just 0.002 lower than that of the non-encrypted FedML. For CNN model, since 
models on each client learned from the same FedML, we perform a weighted average of the results 
of the two experiments based on the amount of the testing set and get a final prediction accuracy 
rate of 0.831. Compared with the FEDML & FHE model with an accuracy rate of 0.833 after learning 
all the data, the accuracy rate has only increased by 0.002. Therefore, from the experimental results 
on the same dataset using the 2 different DL algorithms, it shows that the encrypted FedML (With 
FHE) algorithm can train a model with almost the same accuracy rate as the non-encrypted FedML 
on all data from multiple clients and using different algorithms. 
 
3.3 Comparison of Model Training Time for Different Algorithms with & without encryption 

 
Due to the threat of membership inference attacks, transmitting gradient data in plain text may 

be exploited by a malicious user to train his own shadow models. The privacy related data security 
of other clients will be violated. Here, we use FHE. In addition, the encryption is operated during the 
gradient data transmission, and homomorphic operations are performed in the computing server to 
ensure that the encrypted gradient data will not be leaked, even if the server has security 
vulnerabilities. From the above experiment, it shows that, under 2 different models, very close 
prediction accuracy takes different time in seconds., where average time taken by ANN is 82.5 
seconds, while average time taken by CNN is 203.2 seconds. However, there is no big difference 
between time taken while running non-encrypted model and encrypted model using FHE, where for 
example time taken for CNN before encryption is 203.23 seconds while the time taken after using 
FHE is 203.55 seconds. Thus, it says that the time overhead is positively related to the model that is 
being used for prediction (ANN or CNN)/ While when we use the encrypted FedML solution to 
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conduct experiments on the dataset and compare the time costs of encryption and decryption with 
the same gradient data in the same round of iteration, it shows very close results ensuring that the 
time cost of encryption is relatively not high and acceptable. 

 
4. Conclusion 

 
The integration of HE within FL presents a robust mechanism for maintaining comprehensive data 

privacy while enabling collaborative model training. By encrypting model parameters before 
aggregation and only decrypting them at the learner's end, this approach effectively shields sensitive 
data during the learning process enabling bank to compete with the rising power of FinTech’s & 
entrepreneurship, where a study shows that 12 countries have examined the importance of 
entrepreneurial interest and the role of entrepreneurship education in developing a culture of 
innovation, risk-taking, and business creation among university students showing that he potential 
impact of fintech’s on economic development is significant [22]. 

 The use of weighted aggregation based on local dataset sizes optimizes the learning process, 
ensuring that all data contributions are appropriately valued in the global model's development. This 
secure framework is vital for sensitive sectors such as healthcare and finance, where data 
confidentiality is paramount. 
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