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This study introduces a new single-agent metaheuristic algorithm, named cubature 
Kalman optimizer (CKO). The CKO is inspired by the estimation ability of the cubature 
Kalman filter (CKF). In control system, the CKF algorithm is used to estimate the true 
value of a hidden quantity from an observation signal that contain an uncertainty. As 
an optimizer, the CKO agent works as individual CKF to estimate an optimal or a near-
optimal solution. The agent performs four main tasks: solution prediction, 
measurement prediction, and solution update phases, which are adopted from the CKF. 
The proposed CKO is validated on CEC 2014 test suite on 30 benchmark functions. To 
further validate the performance, the proposed CKO is compared with well-known 
algorithms, including single-agent finite impulse response optimizer (SAFIRO), single-
solution simulated Kalman filter (ssSKF), simulated Kalman filter (SKF), asynchronous 
simulated Kalman filter (ASKF), particle swarm optimization algorithm (PSO), genetic 
algorithm (GA), grey wolf optimization algorithm (GWO), and black hole algorithm (BH). 
Friedman's test for multiple algorithm comparison with 5% of significant level shows 
that the CKO offers better performance than the benchmark algorithms. 
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1. Introduction 
 

Optimization is seen in many fields such as engineering, social science, economics, and business. 
It is a process of achieving an optimal solution to the problem. The optimal solution can be either a 
minimum or a maximum solution. In general, optimization methods can be divided into exact 
methods and approximate methods [1]. The exact methods may not be suitable for some complex 
optimization problems. Thus, approximate methods are the other option to solve these problems. 
Approximation algorithms and heuristic algorithms are subcomponents of approximate methods. 
Heuristic algorithms can be further classified into two classes: problem specific heuristics and 
metaheuristics [1]. Problem-specific heuristics are problems-dependent algorithms whereas 
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metaheuristics are more general algorithms and can be used to solve various types of optimization 
problems with minimum modification. 

Metaheuristic algorithms have gained huge popularity and attracted researcher’s attention 
because of its flexibility and ability in solving large scale and variety of optimization problems. These 
algorithms have iterative and stochastic behavior. Metaheuristic algorithms can be classified into five 
source of inspiration which are evolution algorithms, swarm intelligence algorithms, physics inspired 
algorithms, human and animal lifestyle algorithms, and estimation-based algorithms as shown in 
Figure 1. The first category, “Evolutionary Algorithms,” represents the algorithms that are developed 
based on biological reproduction and evolution. The most popular evolution-inspired technique is 
the genetic algorithm (GA), which simulates Darwinian evolution [2] The GA have also been applied 
to solve engineering problems search as light-shelves and solar flat plate collector [3,4]. Other 
algorithms are differential evolution (DE), evolution strategy (ES), and Bayesian evolutionary 
algorithm (BEA) [5-7]. The second category is “Swarm Intelligence algorithms,” which mimics the 
social behavior of groups of animals. The most popular algorithm is particle swarm optimization (PSO) 
that inspired by the social behavior of bird flocking and gray wolf optimization (GWO) inspired by 
grey wolves [8,9] Other algorithms are rat swarm optimizer, and Chameleon swarm algorithm 
[10,11]. The third category is “Physics-Inspired Algorithms” which imitate the physical rules of the 
universe. The most popular algorithms are the black hole (BH) algorithm based on the observable 
fact of black hole phenomena [12]. Other algorithms are sine cosine algorithm (SCA) and atomic 
orbital search [13,14]. The fourth category is “Human and Animal Lifestyle Algorithms”. Some of the 
most popular algorithms are colliding bodies optimization (CBO), interior search algorithm (ISA), and 
mine blast algorithm (MBA) [15-17]. In the last category, “Estimation-based Algorithms” represents 
the algorithms that are developed based on estimation system. Some of the algorithms inspired by 
the estimation system are listed in Table 1. The heuristic Kalman algorithm (HKA) is the first algorithm 
inspired by Kalman filter [18]. Other algorithms are simulated Kalman filter (SKF), single solution 
simulated Kalman filter (ssSKF), asynchronous simulated Kalman filter (ASKF), and single agent finite 
impulse response optimizer (SAFIRO) [19-22]. 

The estimation-based algorithms are not very popular and lacking in number compared to others 
type under metaheuristic algorithms. Hence, it is always interesting and beneficial to discover the 
source of inspiration by looking away from nature. As stated by Wolpert and Macready [23], there is 
no optimization algorithm that is better than other algorithms in solving all optimization problems. 
Thus, there is room for exploring and developing new and effective optimization algorithms for 
solving several types of problems. However, the challenge in this field is how to get a good source of 
inspiration from the existing knowledge either to improve the existing algorithms or develop a new 
algorithm. 
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Fig. 1. Categorization of meta-heuristic algorithms 

 
Table 1 
Metaheuristic algorithm inspired by estimation system 
Algorithm Inspiration Number of solutions Year of 

proposal Individual-
based 

Population-
based 

Heuristic Kalman Algorithm (HKA) [18] Kalman filter (KF)  / 2009 
Simulated Kalman Filter (SKF) 
algorithm [19-21] 

Kalman filter (KF)  / 2016 

Single-agent Finite Impulse Response 
Optimizer (SAFIRO) algorithm [22] 

Unbiased finite impulse 
response (UFIR) filter 

/  2018 

 
Therefore, in this paper, a new metaheuristic optimization algorithm inspired by the estimation 

ability of the cubature Kalman filter (CKF) called cubature Kalman optimizer (CKO) is proposed. The 
CKO works with only one agent to find the best solution for solving a numerical optimization 
algorithm. Similar to the concept of the estimation system, the CKO algorithm adopt four-step from 
CKF: (1) solution prediction step, (2) simulated measurement (simulate observation signal), (3) 
measurement prediction step, and (4) solution update.  

The rest of the paper is organized as follows: section 2 presents the inspiration source and section 
3 presents step-by-step framework of the proposed CKO algorithm. In section 4, the empirical 
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evaluation is carried out and in section 5, simulation results are compared with other metaheuristic 
algorithms. Finally, the summary and conclusions of the study are presented in section 6. 
 
2. The Cubature Kalman Filter (CKF) Algorithm 
 

In the control system, an estimation system is used to estimate the true state value of a hidden 
quantity from an observation signal that contains process and measurement uncertainties. The 
estimation process is done by minimizing the uncertainty in the observation signal. The overview of 
the (upper area) ‘real system’ and (lower area) ‘CKF estimation’ is shown in Figure 2. In this real 
system, the actual value of the state variable 𝑥𝑎𝑐𝑡(𝑡) of the process is unknown. Therefore, the sensor 
is used to measure the state value. However, the observation signal 𝑧(𝑡), is not present the actual 
state value because it usually contains the process noise 𝑄(𝑡) and measurement noise 𝑅(𝑡). As the 
solution, the CKF is used to estimate the actual value by minimizing the error of measurement. The 
CKF estimator is a closed-loop system developed with the feedback of the previous state updated. 
The CKF has a complete estimation process: (1) state prediction step (obtain 𝑥𝑘|𝑘−1 and 𝑃𝑘|𝑘−1), (2) 

measurement prediction step (obtain 𝑧𝑘|𝑘−1, 𝑃𝑧𝑧𝑘|𝑘−1, and 𝑃𝑥𝑧𝑘|𝑘−1), and (3) state update step 

(obtain 𝑥𝑘|𝑘 and 𝑃𝑘|𝑘), to obtain the hidden quantities from the observation signal. A cubature 

transformation technique (CTT) is embedded in both state and measurement prediction stages. The 
CTT process included (1) generate cubature point, (2) propagated cubature point, and (3) mean 
cubature point. The CTT able to increase stability and accuracy by capturing the mean and error 
accurately [24]. 

Firstly, in the state prediction step, the process starts with generating two cubature points 
[𝑋1, 𝑋2] closest to the previous state's position 𝑥𝑘−1|𝑘−1. The first cubature point 𝑋1, is given the 

positive weight of the square root of the error, √𝑃𝑘−1|𝑘−1, while the second cubature point 𝑋2 is 

given the negative weight of the square root of error, −√𝑃𝑘−1|𝑘−1. The process continues by 

propagating cubature points to a new position [𝑋1
∗, 𝑋2

∗] by using the state prediction function 𝑓(. , . ). 
Lastly, the predicted state position, 𝑥𝑘|𝑘−1, is produced by calculating the mean value of propagated 

cubature point.  
Secondly, the measurement prediction step shows a similar process as the state prediction step, 

except for the use of the square root of the predicted error √𝑃𝑘|𝑘−1 as the weight of cubature points 

generation and the measurement prediction function ℎ(. , . ) as the propagation of the cubature 
points. 

Finally, in the state update step, the estimated state is updated by using all amounts of predicted 
state value and some amount of innovation, where the percentage of innovation amount is 
determined by estimation gain. 
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Fig. 2. The ‘real system’ and ‘CKF estimation’ 

The detailed process of the scalar model CKF is derived as follows: 
 
2.1 State Prediction 
 

In the state prediction step, the predicted state variable,  𝑥𝑘|𝑘−1, is acquired through the following 

equations: 
 

𝑋𝑗𝑘−1|𝑘−1
= 𝑥𝑘−1|𝑘−1 + [√𝑃𝑘−1|𝑘−1 −√𝑃𝑘−1|𝑘−1]    𝑗 = 1 , 2        (1) 

 
𝑋𝑗

∗

𝑘|𝑘−1
= 𝑓  ( 𝑋𝑗𝑘−1|𝑘−1

, 𝑢(𝑘 − 1) )           (2) 

 

𝑥𝑘|𝑘−1 =
1

2
 ∑ (𝑋𝑗

∗

𝑘|𝑘−1
)2

𝑗=1             (3) 

 
where the generated two cubature points are represented by 𝑋𝑗𝑘−1|𝑘−1

= [𝑋1𝑘−1|𝑘−1
, 𝑋2𝑘−1|𝑘−1

] 

and the propagated two cubature points are represented by 𝑋𝑗
∗

𝑘|𝑘−1
= [𝑋1

∗
𝑘|𝑘−1

, 𝑋2
∗

𝑘|𝑘−1
]. The  

√𝑃𝑘−1|𝑘−1 is the positive cubature point weight and −√𝑃𝑘−1|𝑘−1 is the negative cubature point 

weight.  The predicted state variable, 𝑥𝑘|𝑘−1, is acquire by calculating the mean of two propagated 

cubature points. 
The predicted state error 𝑃𝑘|𝑘−1, is generated by implementing Eq. (4), as follows: 

 
𝑃𝑘|𝑘−1 = ( (𝑋1

∗
𝑘|𝑘−1

− 𝑥𝑘|𝑘−1) × (𝑋2
∗

𝑘|𝑘−1
− 𝑥𝑘|𝑘−1))   + 𝑄𝑘       (4) 

 

where the (𝑋1
∗

𝑘|𝑘−1
− 𝑥𝑘|𝑘−1) is used to collect the square root of state error, √𝑃 for the first 

cubature point (𝑗 = 1), while (𝑋2
∗

𝑘|𝑘−1
− 𝑥𝑘|𝑘−1) is used to collect the square root of state error, √𝑃, 

for the second cubature point (𝑗 = 2). Then the predicted state error, 𝑃𝑘|𝑘−1, is computed by 

multiplying between two square root state errors (𝑃 = √𝑃 × √𝑃) along with system noise, 𝑄𝑘.  
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2.2 Measurement Prediction 
 

In the measurement prediction step, the predicted measurement variable, 𝑧𝑘|𝑘−1, is acquired 

through the following equations: 
 

𝑋𝑗𝑘|𝑘−1
= 𝑥𝑘|𝑘−1 + [√𝑃𝑘|𝑘−1 −√𝑃𝑘|𝑘−1]    𝑗 = 1 , 2         (5) 

 
𝑍𝑗𝑘|𝑘−1

= ℎ  ( 𝑋𝑗𝑘|𝑘−1
, 𝑢𝑘−1 )            (6) 

 

𝑧𝑘|𝑘−1 =
1

2
 ∑ (𝑍𝑗𝑘|𝑘−1

)2
𝑗=1              (7) 

 
where the generated cubature point and the propagated cubature point are represented by 

𝑋𝑗𝑘|𝑘−1
= [𝑋1𝑘|𝑘−1

, 𝑋2𝑘|𝑘−1
] 𝑋𝑗𝑘|𝑘−1

=  [𝑋1𝑘|𝑘−1
, 𝑋2𝑘|𝑘−1

] and 𝑍𝑗𝑘|𝑘−1
=  [𝑍1𝑘|𝑘−1

, 𝑍2𝑘|𝑘−1
], 

respectively. The  √𝑃𝑘|𝑘−1 is the positive cubature point weight and −√𝑃𝑘|𝑘−1 is the negative 

cubature point weight.  The predicted measurement variable, 𝑧𝑘|𝑘−1, is acquired by calculating the 

mean of two propagated cubature points. 
The measurement error, 𝑃𝑧𝑧𝑘|𝑘−1, and cross-error, 𝑃𝑥𝑧𝑘|𝑘−1, are generated by using the 

following equation: 
 
𝑃𝑧𝑧𝑘|𝑘−1 = ((𝑍1𝑘|𝑘−1

− 𝑧𝑘|𝑘−1) × (𝑍2𝑘|𝑘−1
− 𝑧𝑘|𝑘−1)) + 𝑅𝑘       (8) 

 
𝑃𝑥𝑧𝑘|𝑘−1 = ((𝑋1

∗
𝑘|𝑘−1

− 𝑥𝑘|𝑘−1) × (𝑍2𝑘|𝑘−1
− 𝑧𝑘|𝑘−1))        (9) 

 

where  (𝑍1𝑘|𝑘−1
− 𝑧𝑘|𝑘−1) is used to collect the square root of measurement error, √𝑃𝑧𝑧, for the 

first cubature point (𝑗 = 1), while (𝑍2𝑘|𝑘−1
− 𝑧𝑘|𝑘−1) is used to collect the square root of 

measurement error, √𝑃𝑧𝑧, for the second cubature point (𝑗 = 2). Then the measurement error, 
𝑃𝑧𝑧𝑘|𝑘−1, is computed by multiplying between two square root measurement errors (𝑃𝑧𝑧 =

√𝑃𝑧𝑧 × √𝑃𝑧𝑧) along with measurement noise, 𝑅𝑘. Meanwhile, the cross error, 𝑃𝑥𝑧𝑘|𝑘−1 is 

calculated by multiplying the square root of state error for the first cubature point (𝑗 = 1),  and the 

square root measurement error for the second cubature point (𝑗 = 2): (𝑃𝑥𝑧 = √𝑃𝑥𝑥 × √𝑃𝑧𝑧). After 
that, the gain, 𝑊𝑘, is computed using Eq. (10): 
 
𝑊𝑘 =   𝑃𝑥𝑧𝑘|𝑘−1 𝑃𝑧𝑧𝑘|𝑘−1⁄                        (10) 

 
2.3 State Estimation 
 

Lastly, Eq. (11) and Eq. (12) are used to update the estimated value for the state variable, 𝑥𝑘|𝑘, 

and their corresponding error, 𝑃𝑘|𝑘: 

 
𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝑊𝑘 (𝑧(𝑡) − 𝑧𝑘|𝑘−1)                      (11) 

 
𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝑊𝑘 𝑃𝑧𝑧𝑘|𝑘−1                      (12) 
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3. The Cubature Kalman Optimizer (CKO) Algorithm  
 

Optimization deals with the problem of minimizing or maximizing objective functions given a 
defined domain or set of its constraints. Mathematically, a function minimization optimization 
problem can be written as the following equation: 
 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:          𝑓(𝑥)  
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:       𝑔_𝑗 (𝑥)   ≤ 0           𝑗 = 1,2 … , 𝐽  

                           ℎ𝑘(𝑥) = 0               𝑘 = 1,2, … , 𝐾 
                             𝑥𝑖𝐿  ≤ 𝑥𝑖  ≤  𝑥𝑖𝑈    𝑖 = 1,2, … , 𝐼  

(13) 

 
where the function 𝑓(𝑥) represents the objective (or goal) function, 𝑔𝑗(𝑥) is an inequality constraint 

and ℎ𝑘(𝑥) is an equality constraint function. The 𝑥 vector represents the 𝐼 design variables that are 
modified to obtain the optimum solution. The searchable design space is defined by the upper and 
lower bounds, 𝑥𝑖𝐿 and 𝑥𝑖𝑈, of the design variables. In general, the objective and constraint functions 
can be either linear or non-linear functions. Also, the functions can be either explicit or implicit 
functions.  

The cubature Kalman optimizer (CKO) is a single-agent metaheuristic algorithm based on CKF 
framework, where one agent is employed to estimate the global minima or maxima. An agent in CKO 
holds the estimated solution position in the search space. 

In CKO, an agent, 𝑥𝑑(𝑡), can be represented as in Eq. (14):  
 
𝑥(𝑡) = {𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑑(𝑡), … , 𝑥𝐷(𝑡)}        𝑑 = 1,2, . . . , 𝐷                  (14) 
 
where a solution of the 𝑑𝑡ℎ dimension at 𝑡𝑡ℎ  iteration is denoted by 𝑥𝑑(𝑡), the highest dimensional 
number is denoted by 𝐷. 

The overall process of the CKO algorithm is divided into six main phases: (1) initialization, (2) 
fitness evaluation and update 𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟, (3) solution prediction, (4) simulate measurement, (5) 
measurement prediction, and (6) solution update as depicted in Figure 3. The first two processes are 
similar to most metaheuristic algorithms. In contrast, the solution prediction, simulated 
measurement, measurement prediction, and solution update phases are four dedicated operations 
in the proposed optimizer. The purpose of the simulated measurement phase is to simulate the 
actual measurement output in a real estimation process, while the solution prediction, measurement 
prediction, and solution update phases are adopted from the CKF. 

The CKO algorithm starts with random initialization of the solution, 𝑥𝑑(0) and its error, 𝑃𝑑(0). 
After that, an agent is evaluated in the calculation of fitness. Then, according to the type of problem, 
the 𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟𝑑 is firstly updated. The 𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟𝑑 which holds the best solution so far, is 
updated only if 𝑥𝑑(𝑡) has obtained a better solution. For minimization problems, 𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟𝑑 is 
updated if the fitness of 𝑥𝑑(𝑡) is less than the fitness of 𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟𝑑. Meanwhile for the 
maximization problem, 𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟𝑑 is updated if the fitness of 𝑥𝑑(𝑡) is greater than the fitness 
of 𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟𝑑. 

In the solution predicted step of CKO, the predicted solution, 𝑥𝑝𝑑(𝑡) are generated based on the 
CTT using the following steps: (1) generate two cubature points of the solution {𝑇11(𝑡), 𝑇12(𝑡)}, (2) 
propagate cubature point in the local neighborhoods search area {𝑈11(𝑡), 𝑈12(𝑡)}, (3) generate a 
predicted solution by calculating the mean of the cubature point. Then, the predicted error, 𝑃𝑝𝑑(𝑡), 
is calculated.  
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In the simulated measurement step, the actual measurement, 𝑧𝑑(𝑡), is simulated around the 
predicted solution to introduce uncertainty, where the locus between the predicted solution and the 
best-so-far solution  |𝑥𝑝𝑑(𝑡) − 𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟𝑑(𝑡)| is the magnitude of measurement. Once the 
solution converges, the measurement magnitude is progressively decreased. The transition 
magnitude of measurement from high to low indicates the change from exploration stage to 
exploitation stage.  

In the measurement prediction of CKO, the process is quite similar to the solution prediction step. 
The predicted measurement, 𝑧𝑝𝑑(𝑡), is generated also based on CTT following these steps: (1) 
generate two cubature points of the solution, {𝑇21(𝑡), 𝑇22(𝑡)} (2) propagate cubature point in the 
local neighborhoods search area, {𝑈21(𝑡), 𝑈22(𝑡)} (3) generate predicted measurement by 
calculating the mean of the cubature point. Then, the innovation error, 𝑃𝑧𝑧𝑑(𝑡), and cross-error, 
𝑃𝑥𝑧𝑑(𝑡), are calculated. The gain, 𝑊𝑑(𝑡), is calculated based on the ratio of these 𝑃𝑧𝑧𝑑(𝑡) and 
𝑃𝑥𝑧𝑑(𝑡). 

Finally, CKO performs the solution update step to update the solution 𝑥𝑑(𝑡 + 1), and its 
corresponding error 𝑃𝑑(𝑡 + 1). The estimated solution, 𝑥𝑑(𝑡 + 1) is updated based on the predicted 
solution and innovation, which is the difference between simulated measurement and predicted 
measurement. 
 

 
Fig. 3. The CKO flowchart 

 
Note that, in the CKF, the cubature point propagations mentioned in Eq. (2) and Eq. (6) are done 

by using the state prediction function and measurement prediction function. However, in CKO, the 
local neighborhood term is used to propagate the cubature point in local search, where the radius, 
δ, of local search are updated in every iteration. This radius is large at earlier iterations to promote 
exploration stage. Meanwhile, when the iteration increases, the radius is scale down to favor 
exploitation stage. An adaptive value, 𝛽 in local neighborhood formulation is employed to control 
how fast the radius, δ, is be reduced. 

The detailed process of the CKO is given as follows: 
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3.1 Initialization Phase 
 

The CKO algorithm starts with the random initialization of its agent, 𝑥𝑑(0), within the search 
space as Eq. (15), where 𝑥𝑑  is the lower limit and 𝑥𝑑 is the upper limit of the search space in the 𝑑th 

dimension. Additionally, the initial value of the solution error, 𝑃𝑑(0) ∈  [0,1], is generated using a 
random value as Eq. (16). 
 

𝑥𝑑(0) = 𝑟𝑎𝑛𝑑𝑛𝑑 +  [∪ (𝑥𝑑  , 𝑥𝑑)]                      (15) 

 
𝑃𝑑(0) = 𝑟𝑎𝑛𝑑𝑛𝑑                        (16) 
 
3.2 Fitness Evaluation and X_best_so_fard Update Phase 
 

The iteration begins with the fitness calculation of the solution. The fitness of the solution, 𝑥𝑑(𝑡) 
is compared to the fitness of 𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟𝑑 whereby 𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟𝑑 will be updated if the better 
solution (𝑥𝑑(𝑡) < 𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟𝑑(𝑡) for minimization problems, or 𝑥𝑑(𝑡) > 𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟𝑑(𝑡) for 
maximization problem) is found. 
 
3.3 Solution Prediction Phase 
 

At first, the 𝛿 is determined by using the following Eq. (17): 
 

𝛿 = 𝑒−𝛽×
𝑡

𝑡𝑀𝑎𝑥 ×
𝑥𝑑−𝑥𝑑

2
                       (17) 

 
where 𝑡 its current iteration and 𝑡𝑀𝑎𝑥 is maximum number of iterations. The predicted solution 
candidate, 𝑥𝑝𝑎(𝑡), is determined by the following equations: 
 

𝑇1𝑑
𝑗 (𝑡) = 𝑥𝑑(𝑡)  +  [√𝑃𝑑(𝑡) −√𝑃𝑑(𝑡)]    𝑑 = 1,2, … , 𝐷 𝑎𝑛𝑑 𝑗 = 1 , 2                 (18) 

 

𝑈1𝑑
𝑗 (𝑡) = 𝑇1𝑑

𝑗 (𝑡) + 𝑟𝑎𝑛𝑑𝑑(U [−𝛿 , 𝛿])                    (19) 
 

𝑥𝑝𝑑(𝑡) =
1

2
 ∑ 𝑈1𝑑

𝑗 (𝑡)2
𝑗=1                        (20) 

 

where 𝑇1𝑑
𝑗 (𝑡) is the generated cubature point (two pints), 𝑗th is the cubature point, and 𝑈1𝑑

𝑗 (𝑡) is 
the propagation of both cubature point randomly in the search space by using a random element, 
𝑟𝑎𝑛𝑑𝑑 ∈  [0,1].Once the predicted solution candidate is calculated, the solution error, 𝑃𝑝𝑑(𝑡), need 
to be predicted by using Eq. (21): 
 
𝑃𝑝𝑑(𝑡) = ( (𝑈1𝑑

1 (𝑡) − 𝑥𝑝𝑑(𝑡)) × (𝑈1𝑑
2 (𝑡) − 𝑥𝑝𝑑(𝑡)) ) + 𝑟𝑎𝑛𝑑𝑛𝑑                 (21) 

 
where 𝑟𝑎𝑛𝑑𝑛𝑑 ∈  [0,1] is used to present the system error. 

3.4 Simulated Measurement Phase 
 

The measurement step acts as feedback to the estimation process. The measurement of the 
agent is simulated based on the following Eq. (22): 
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𝑧𝑑(𝑡) = (𝑥𝑝𝑑(𝑡)  + 𝑠𝑖𝑛(𝑟𝑎𝑛𝑑𝑑 × 2𝜋) × |𝑥𝑝𝑑(𝑡) − 𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟𝑑(𝑡)|)                 (22) 
 
where the simulated measurement value for the agent, 𝑧𝑑(𝑡), may take any random position in a 
locus |𝑥𝑝𝑑(𝑡) − 𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟𝑑(𝑡)|. A random element, 𝑟𝑎𝑛𝑑𝑑 ∈  [0,1], in 𝑠𝑖𝑛(𝑟𝑎𝑛𝑑𝑑 × 2𝜋) is 
responsible for the stochastic aspect of the CKO algorithm.  
 
3.5 Measurement Prediction Phase 
 

At first, the predicted measurement vector, 𝑧𝑝𝑑(𝑡) is determined by the following equations: 
 

𝑇2𝑑
𝑗 (𝑡) = 𝑥𝑝𝑑(𝑡)  +  [√𝑃𝑝𝑑(𝑡) −√𝑃𝑝𝑑(𝑡)]   𝑑 = 1,2, … , 𝐷 𝑎𝑛𝑑 𝑗 = 1 , 2                (23) 

 

𝑈2𝑑
𝑗 (𝑡) = 𝑇2𝑑

𝑗 (𝑡) + 𝑟𝑎𝑛𝑑𝑑(U [−𝛿 , 𝛿])                     (24) 
 

 

𝑧𝑝𝑑(𝑡) =
1

2
 ∑ 𝑈2𝑑

𝑗 (𝑡)2
𝑗=1                        (25) 

 

where 𝑇2𝑑
𝑗 (𝑡) is the generated cubature point (two points) and 𝑗th is cubature points. The 𝑈2𝑑

𝑗 (𝑡) is 
the propagation of both cubature point randomly in the search space by using a random element, 
𝑟𝑎𝑛𝑑𝑑 ∈  [0,1]. Once the predicted measurement, 𝑧𝑝𝑑(𝑡) is calculated, the measurement error, 
𝑃𝑧𝑧𝑑(𝑡), and the cross-error, 𝑃𝑥𝑧𝑑(𝑡) need to be estimated for gain calculation. These two types of 
error can be obtained by using Eq. (26) and Eq. (27), respectively: 
 
𝑃𝑧𝑧𝑑(𝑡) = ((𝑈2𝑑

1 (𝑡) − 𝑧𝑝𝑑(𝑡)) × (𝑈2𝑑
2 (𝑡) − 𝑧𝑝𝑑(𝑡))) + 𝑟𝑎𝑛𝑑𝑛𝑎                                                                  (26) 

 
𝑃𝑥𝑧𝑑(𝑡) = ((𝑈1𝑑

1 (𝑡) − 𝑥𝑝𝑑(𝑡)) × (𝑈2𝑑
2 (𝑡) − 𝑧𝑝𝑑(𝑡)))                   (27) 

 
where 𝑟𝑎𝑛𝑑𝑛𝑑 ∈  [0,1] is known as measurement noise. Then, the gain, 𝑊𝑑(𝑡), can be calculated 
using Eq. (28): 
 
𝑊𝑑(𝑡) =   𝑃𝑥𝑧𝑑(𝑡) 𝑃𝑧𝑧𝑑(𝑡)⁄                        (28) 
 
3.6 Solution Update Phase 
 

Finally, the solution, 𝑥𝑑(𝑡 + 1) and solution error, 𝑃𝑑(𝑡 + 1) are updated by the following 
equations: 

 

𝑥𝑑(𝑡 + 1) = 𝑥𝑝𝑑(𝑡) +  𝑊𝑑(𝑡)(𝑧𝑑(𝑡) − 𝑧𝑝𝑑(𝑡))                   (29) 

 
𝑃𝑑(𝑡 + 1) = 𝑃𝑝𝑑(𝑡) − 𝑊𝑑(𝑡)𝑃𝑧𝑧𝑑(𝑡)                     (30) 
 

This process is iteratively updated until the stopping condition is fulfilled. 
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4. Experimental Setup 
 

The performance of CKO is evaluated using CEC 2014 benchmark suite, that contain with 3 
unimodal functions, 13 simple multimodal functions, 6 hybrid functions, and 8 composition functions 
[25]. Then, the performance of the CKO is compared with other well-established optimization 
algorithms such as the SAFIRO, ssSKF, SKF, ASKF, PSO, GA, GWO and BH. The stopping condition is set 
at 1,000,000 for the number of function evaluations. The complexity of the benchmark functions is 
set at 50 dimensions, and the experiments are conducted 50 times. The initialization and parameter 
settings for all of the tested algorithms are listed in Table 2. All algorithms are implemented in 
MATLAB. The MATLAB codes for the CEC 2014 benchmark suite can be downloaded from 
http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014.  

It should be noted that the performance and convergence of these metaheuristic methods 
completely depend on the internal parameters of the algorithms. The CKO has only one parameter, 
𝛽, where the appropriate value of 𝛽 is considered to be 12. In Table 2, the key parameters of the 
selected methods are also presented. These values are recommended by the authors in the original 
papers. The references for each method are presented in the third column of Table 2.  
 
  Table 2 
  Parameter setting of the selected algorithms 

Year Algorithm Reference Parameter Parameter Value 

2022 Cubature Kalman Optimizer (CKO) Current study Number of agents 
coefficient, 𝛽 

1 
12 

2017 Single agent Finite Impulse Response 
Optimizer 
(SAFIRO) 

Ab Rahman et al., 
[22] 

Number of agents 
parameters (N) 
coefficient, 𝛽 

1 
4 
5 

2018 Single solution Simulate Kalman Filter 
(ssSKF) 

Abdul Azizi et al., 
[20] 

Number of agents 
coefficient, 𝛽 

1 
5 

2016 Simulate Kalman Filter 
(SKF) 

Ibrahim et al., [19] Number of agents 100 

2018 Asynchronous Simulate Kalman Filter 
(ASKF) 

Aziz et al., [21] Number of agents 100 

2019 Particle Swarm Optimizer 
(PSO) 

Eberhart and Shi 
[26] 

Number of agents 
Initial inertia weight, w1 

Final inertia weight, w2 

Cognitive acceleration 
factor, c1 

Social acceleration factor, 
c2 

100 
0.9 
0.5 
 
2 
2 

2004 Genetic Algorithm  
(GA) 

Haupt and Haupt 
[27] 

Population Size 
Crossover probability, Pc 
Mutation probability, Pm 

100 
0.5 
0.2 

2014 Grey Wolf Optimizer 
(GWO) 

Mirjalili [9] Number of agents 
Adaptive parameter, a 
Coefficient vector, C 

100 
decreases from 2 
to 0 
rand [0,2] 

2013 Black Hole 
(BH) 

Hatamlou [12] Number of stars 100 

 
A Friedman statistical test is then carried out to rank the algorithm based on the difference’s 

performance between the algorithms at 5% significant level. In order to decide which algorithms are 
significantly difference from each other, the Holm post hoc procedure is chosen. These analyses are 
performed using the KEEL software [28]. 
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5. Result and Discussion 
5.1 Statistical Analysis 
 

The mean values (mean) and standard deviation (std.) achieved by all tested algorithms for 
unimodal, simple multimodal, hybrid, and composition benchmark functions as shown in Table 3 until 
Table 6, respectively. The numbers written in bold indicate the best mean value obtained for the 
corresponding objective function among all tested algorithms. Meanwhile, Table 7 presents the 
ranking of algorithm performance using the Friedman test and Table 8 presents the significance level 
using Holm post hoc test. 
 
5.1.1 Unimodal faction (Fn1 to Fn3) 
 

Unimodal functions are related to rotation problems. According to Mirjalili [9], unimodal 
functions are correlated with exploitation benchmarking. As seen in Table 3, SAFIRO records the 
highest-ranking algorithm by producing the best solution in Fn1 and Fn3, while CKO records as a 
second-rank algorithm by producing the best solution in Fn2. Although CKO gets the second rank 
behind SAFIRO in Fn1 and Fn3, CKO is still very close to the optimal solution (near-optimal solution), 
especially for Fn1. The F1 is known as a difficult problem because it involved a quadratic ill-
conditioned property [25]. Thus, the result for Fn3 indicates that CKO has an excellent performance 
in exploiting the optimum solution, where CKO was able to converge near the ideal solution of 300. 
 

 Table 3 
 Comparison of different methods in unimodal function 

Fn  CKO SAFIRO ssSKF SKF ASKF PSO GA GWO BH 

1 mean 1.79E+6 4.49E+5 4.92E+6 4.75E+6 3.76E+6 4.35E+7 3.41E+8 6.06E+7 4.36E+6 
Std. 5.81E+5 1.56E+5 1.26E+6 1.67E+6 1.44E+6 3.45E+7 8.25E+7 3.21E+7 9.39E+5 

2 mean 5.86E+3 5.88E+3 1.30E+7 3.32E+7 1.71E+7 1.14E+7 2.3E+10 5.75E+9 1.14E+5 
Std. 5075.3 6156.4 1.45E+6 1.30E+8 4.69E+7 6.72E+7 3.80E+9 2.95E+9 1.19E+5 

3 mean 3.02E+2 3.00E+2 3.66E+2 1.72E+4 1.59E+4 9.93E+3 6.11E+4 5.08E+4 1.14E+4 
Std. 3.9112 9.57E-5 11.959 9185.2 6403 9628.3 12227 11252 2150.1 

 
5.1.2 Simple multimodal faction (Fn4 to Fn16) 
 

As seen in Table 4, CKO clearly shows superior performance by producing the best solution in 
handling the majority of the evaluated simple multimodal functions. The CKO algorithm was 
managed to outperform other optimization algorithms in Fn8, Fn9, Fn10, Fn11, Fn13, Fn14, and Fn16. 
Meanwhile, for Fn5 and Fn7, CKO produced the best solution value as other SAFIRO algorithms. 
Although the CKO algorithm was outperformed by the SAFIRO algorithms in Fn4, Fn6 and Fn15, the 
produced outcomes were still very close to the optimal solution (near-optimal solution). Most of the 
simple multimodal functions are related to shifting and rotation problems. These functions are 
suitable for exploration benchmarking of an algorithm [9]. Hence, these results proved that apart 
from being great in exploitation, CKO is also very good in exploration, especially in Fn7, Fn8, Fn12, 
Fn13 and Fn14, where CKO successfully acquired a value that is very near to the ideal fitness of 700, 
800, 1200, 1300 and 1400, respectively. 
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5.1.3 Hybrid faction (Fn17 to Fn22) 
 

In hybrid functions, the variables are randomly divided into several subcomponents, where 
different basic functions (known as N) are used for different subcomponents [25]. The hybrid function 
is a combination of several multimodal functions (Fn19, Fn21, and Fn22), or it can be a combination 
of unimodal functions with simple multimodal functions (Fn17, Fn18, and Fn20). This consideration 
makes the function more complicated to solve. The readings in Table 5, show that SAFIRO shows the 
highest rank in the hybrid function, leading to three out of six functions. Although CKO only lead 
Fn20, the CKO manage to get the second rank for other hybrid functions (except Fn17, Fn18, and 
Fn21) and was still very close to the best solution of the first-rank algorithm. 
 

Table 4 
Comparison of different methods in simple multimodal function 
Fn  CKO SAFIRO ssSKF SKF ASKF PSO GA GWO BH 

4 mean 5.03E+2 4.94E+2 5.03E+2 5.23E+2 5.29E+2 1.06E+3 3.11E+3 9.59E+2 5.73E+2 
Std. 39.481 17.862 22.194 41.813 38.409 277.16 705.25 338.28 46.244 

5 mean 5.20E+2 5.20E+2 5.21E+2 5.20E+2 5.20E+2 5.21E+2 5.21E+2 5.21E+2 5.20E+2 
Std. 0.00016 9.93E-6 0.02683 0.01016 0.00934 0.05942 0.05737 0.03547 0.03096 

6 mean 6.19E+2 6.16E+2 6.19E+2 6.33E+2 6.31E+2 6.32E+2 6.56E+2 6.28E+2 6.57E+2 
Std. 3.9787 4.5968 4.0806 3.8908 4.981 5.2396 2.5233 3.831 4.7812 

7 mean 7.00E+2 7.00E+2 7.01E+2 7.00E+2 7.00E+2 7.00E+2 9.33E+2 7.40E+2 7.00E+2 
Std. 0.00915 0.00788 0.01313 0.19049 0.13329 0.03346 37.768 22.884 0.07424 

8 mean 8.04E+2 9.74E+2 9.78E+2 8.07E+2 8.07E+2 8.59E+2 1.07E+3 9.73E+2 9.22E+2 
Std. 1.9436 39.117 41.158 2.6967 3.1555 12.203 19.965 29.905 14.224 

9 mean 1.05E+3 1.09E+3 1.09E+3 1.06E+3 1.06E+3 1.05E+3 1.40E+3 1.09E+3 1.22E+3 
Std. 29.508 48.567 41.377 37.868 35.547 29.129 32.909 29.112 46.976 

10 mean 1.23E+3 5.88E+3 5.84E+3 1.35E+3 1.35E+3 1.64E+3 6.29E+3 6.20E+3 3.03E+3 
Std. 165.01 780.86 707.67 202.35 168.24 227.67 494.54 836.22 434.97 

11 mean 5.65E+3 6.19E+3 6.40E+3 6.18E+3 6.15E+3 1.23E+4 1.28E+4 6.24E+3 8.11E+3 
Std. 712.34 799.4 1023 686.18 783.8 2163.6 428.18 843.1 987.62 

12 mean 1.20E+3 1.20E+3 1.20E+3 1.20E+3 1.20E+3 1.20E+3 1.20E+3 1.20E+3 1.20E+3 
Std. 0.05156 0.04402 0.37471 0.09492 0.08893 0.40237 0.34351 1.5175 0.23441 

13 mean 1.30E+3 1.30E+3 1.30E+3 1.30E+3 1.30E+3 1.30E+3 1.30E+3 1.30E+3 1.30E+3 
Std. 0.09737 0.14115 0.10022 0.09047 0.06953 0.10881 0.38416 0.08391 0.03733 

14 mean 1.40E+3 1.40E+3 1.40E+3 1.40E+3 1.40E+3 1.40E+3 1.46E+3 1.41E+3 1.40E+3 
Std. 0.24405 0.36392 0.29441 0.10574 0.06568 0.09850 9.7036 10.178 0.01409 

15 mean 1.51E+3 1.51E+3 1.53E+3 1.56E+3 1.55E+3 1.53E+3 3.82E+4 2.00E+3 1.77E+3 
Std. 2.6185 2.7525 3.1778 20.536 17.527 7.9526 26070 653.12 49.778 

16 mean 1.62E+3 1.62E+3 1.62E+3 1.62E+3 1.62E+3 1.62E+3 1.62E+3 1.62E+3 1.62E+3 
Std. 0.78473 0.80952 0.56302 0.81281 0.71454 0.68879 0.4513 0.97739 0.60571 
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 Table 5 
 Comparison of different methods in hybrid functions 
Fn  CKO SAFIRO ssSKF SKF ASKF PSO GA GWO BH 

17 mean 1.53E+5 2.65E+4 3.26E+5 8.43E+5 8.35E+5 2.47E+6 1.60E+7 3.39E+6 5.53E+5 
Std. 78418 11610 1.48E+5 4.58E+5 4.81E+5 2.59E+6 7.60E+6 3.00E+6 1.94E+5 

18 mean 3.38E+3 4.31E+3 3.74E+5 4.71E+6 8.85E+6 1.21E+4 5.16E+6 2.59E+7 2.40E+3 
Std. 962.31 1471 64934 1.57E+7 3.75E+7 39429 2.63E+6 6.12E+7 250.46 

19 mean 1.94E+3 1.92E+3 1.92E+3 1.95E+3 1.95E+3 1.96E+3 2.01E+3 1.97E+3 1.95E+3 
Std. 24.107 8.9355 9.9872 29.843 29.804 32.777 14.764 27.303 31.868 

20 mean 2.24E+3 2.44E+3 2.47E+3 3.26E+4 3.01E+4 6.84E+3 3.20E+4 1.53E+4 7.66E+3 
Std. 62.991 81.363 104.36 13113 11072 2981.9 13541 6565 2144.4 

21 mean 1.14E+5 3.76E+4 2.25E+5 1.16E+6 8.74E+5 6.02E+5 5.06E+6 1.60E+6 4.37E+5 
Std. 59822 18089 1.24E+5 6.04E+5 3.42E+5 6.47E+5 2.57E+6 1.42E+6 1.22E+5 

22 mean 2.98E+3 2.83E+3 2.81E+3 3.41E+3 3.44E+3 3.42E+3 3.56E+3 2.89E+3 3.73E+3 
Std. 238.31 277.37 282.2 336.82 313.88 435.87 278.65 282.98 333.65 

 
5.1.4 Composition faction (Fn23 to Fn30) 
 

In composite functions, the capability of exploration and exploitation of an algorithm can be 
benchmarked concurrently due to having many local optima contained in the test functions [9]. Table 
6 shows, CKO and ssSKF record the highest-ranking algorithm in the current domain with 
performances of two out of the eight functions. The performance of the CKO algorithm in Fn23 and 
Fn26 obtained the best solution compared to the other algorithms. Although, CKO outperforms by 
other algorithms in, the CKO still very closed to the best solution of the first rank algorithm.  
 

 Table 6 
 Comparison of different methods in composition function 
Fn  CKO SAFIRO ssSKF SKF ASKF PSO GA GWO BH 

23 mean 2.64E+3 2.64E+3 2.65E+3 2.65E+3 2.65E+3 2.66E+3 2.72E+3 2.71E+3 2.65E+3 
Std. 0.01850 0.1023 1.0797 2.1333 1.5916 5.6322 21.107 28.104 0.46051 

24 mean 2.66E+3 2.68E+3 2.68E+3 2.66E+3 2.67E+3 2.67E+3 2.78E+3 2.60E+3 2.67E+3 
Std. 6.6821 5.1387 4.7791 5.3597 5.2331 8.2314 9.645 0 8.1356 

25 mean 2.71E+3 2.71E+3 2.71E+3 2.73E+3 2.73E+3 2.73E+3 2.76E+3 2.72E+3 2.75E+3 
Std. 2.5899 2.6363 1.9487 4.1366 4.431 4.2891 9.6616 7.4823 9.7738 

26 mean 2.70E+3 2.78E+3 2.71E+3 2.79E+3 2.78E+3 2.70E+3 2.70E+3 2.78E+3 2.80E+3 
Std. 0.10365 37.58 19.84 45.326 38.754 0.09038 0.57343 40.184 19.721 

27 mean 3.54E+3 3.44E+3 3.51E+3 3.87E+3 3.89E+3 3.88E+3 4.49E+3 3.71E+3 4.64E+3 
Std. 94.982 160.03 92.329 123.2 112.44 161.89 78.061 107.55 265.11 

28 mean 4.71E+3 4.86E+3 4.59E+3 7.00E+3 7.06E+3 9.70E+3 6.35E+3 4.71E+3 1.12E+4 
Std. 488.32 665.87 289.32 1102.4 990.41 1732.4 477.94 419.26 1148.3 

29 mean 1.05E+4 3.03E+4 8.13E+4 6.76E+3 9.64E+3 2.08E+4 6.85E+6 2.18E+6 1.03E+4 
Std. 3298.7 10180 21333 6195.2 33237 85171 3.86E+6 5.02E+6 1178.1 

30 mean 1.84E+4 3.61E+4 4.67E+4 1.97E+4 1.81E+4 1.68E+5 1.82E+5 1.02E+5 5.68E+4 
Std. 3052.3 7411.1 10560 3646.1 2709.9 80774 76669 54161 3977.1 

 
5.1.5 Friedman and post hoc test 
 

The Friedman test ranks is used to analyse the performance of the CKO algorithm against eight 
other algorithms based on mean fitness values over 50 runs across 30 benchmark functions. The 
average rank for each algorithm is calculated, with lower values indicating better performance. Table 
7 and Figure 4 reveal that CKO outperforms SAFIRO, ASKF, ssSKF, SKF, PSO, BH, GWO, and GA, ranking 
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first. The Friedman statistic considers reduction performance with a chi-square value of 86.555556 
and 8 degrees of freedom. 
 

   Table 7 
   Average ranking of the algorithm 

Algorithm Average Ranking 
CKO 1.9500 
SAFIRO 3.5000 
ASKF 4.5500 
ssSKF 4.7000 
SKF 4.8333 
PSO 5.6333 
BH 5.9333 
GWO 6.2833 
GA 7.6167 

 

 
Fig. 4. Average ranking of the algorithm 

 
Based on the Friedman test performed, significant differences are observed between the 

algorithms. Hence, the null hypothesis is rejected, and further analysis with a post hoc test [29] (using 
Holm’s method) is performed to determine whether the CKO algorithm is better than the other 
algorithm or vice versa. The result of the Holm post hoc test with significance level 𝛼 = 0.05 are 
tabulated in Table 8 shows that the proposed CKO algorithm performed significantly better than the 
other eight algorithms (without an unadjusted p-value). 
 

 Table 8 
 Holm post hoc result of 𝛽 value for α = 0.05 

𝑖 Comparison 𝑧 𝑃 Holm 

8 CKO vs GA 8.013877 0 0.00625 
7 CKO vs GWO 6.128259 0 0.007143 
6 CKO vs BH 5.633284 0 0.008333 
5 CKO vs PSO 5.20902 0 0.01 
4 CKO vs SKF 4.077649 0.000045 0.0125 
3 CKO vs ssSKF 3.889087 0.000101 0.016667 
2 CKO vs ASKF 3.676955 0.000236 0.025 
1 CKO vs SAFIRO 2.192031 0.028377 0.05 
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5.2 Convergence Behaviour 
 

Convergence curves were generated to observe the ability of CKO and other algorithms to reach 
an optimal or a near-optimal solution in the optimization process. In this case, each convergence 
curve shows the mean fitness of the best solution against 10,000 iterations over 51 runs. Statistically, 
CKO demonstrates a very good result by leading in 14 out of 30 functions in solving the CEC2014 
Benchmark test Suite. Among the functions that CKO rank first, Fn2, Fn10, Fn20, and Fn23 functions 
were selected to visualize the convergence curve of unimodal, simple multimodal, hybrid and 
compositions, respectively. 
 
5.2.1 Convergence curve and boxplot (Fn2, Fn10, Fn20, Fn23) 
 

Figure 5 shows that the mean fitness value of CKO (dashed black line) changes gradually at the 
start of the iteration, then plateaus until the end. This suggests that the search agent transitions from 
exploration to exploitation before stopping the process when it reaches the maximum iteration to 
find the best solution. This CKO's convergence pattern falls under the moderate category, striking a 
balance between exploration and exploitation. The CKO algorithm yielded the best results for Fn2, 
Fn10, Fn20, and Fn23 with mean fitness values of 5855, 1233, 2242, and 2644, respectively.  
 

  
(a) (b) 

  

  
(c) (d) 

Fig. 5. Convergence curve result comparison for benchmark function (a) Unimodal (Fn2) (b) Simple 
multimodal (Fn10) (c) Hybrid (Fn20) (d) Composition (Fn23) 
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Generally, CKO still performs competitively compared to SAFIRO, ssSKF, SKF, ASKF, PSO, GA, 
GWO, and BH algorithms. Based on the boxplot pattern in Figure 6, the CKO algorithm has very good 
and consistent performance depicted by the lowest point and small derivation from the median value 
in solving the same benchmark problem over 50 runs. 
 

  
(a) (b) 

  

  
(c) (d) 

Fig. 6. Boxplot result comparison for benchmark function (a) Unimodal (Fn2) (b) Simple multimodal 
(Fn10) (c) Hybrid (Fn20) (d) Composition (Fn23) 

 
5.2.2 The trajectory of CKO agent (Fn2, Fn10, Fn23) 
 

Figure 7 illustrates CKO's search agent trajectory for one and two-dimensional solutions, with 
each dimension generating two graphs showing the agent's solution against the best-so-far solution. 
CKO's search agent displayed an exploration process during the initial phase of optimization with 
noticeable movement changes, followed by slow changes that confirmed the exploitation process. 
Finally, the plateau graph at the end of the iteration indicated CKO's search agent found a near-
optimal solution before reaching the maximum iteration. 
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(a) Unimodal (dimension 1) (b) Unimodal (dimension 2) 

  

  
(c) Simple multimodal (dimension 1) (d) Simple multimodal (dimension 2) 

  

  
(e) Composition (dimension 1) (f) Composition (dimension 2) 

Fig. 7. Experiment results comparison for Fn2, Fn10, and Fn23 
 

5.2.3 Search history of CKO agent (Fn2, Fn10, Fn23) 
 

Next, the search history of the agent is also traced to observe the capability of CKO’s agent in 
exploring and exploiting the search space, in finding the best solution. Mobilities of CKO’s agent are 
marked and plotted on the contour map for two-dimensional functions of the selected unimodal, 
multimodal, and composition problems as illustrated in Figure 8. The star (*) symbol indicates the 
locations visited by the agent which represents the solution for each iteration. The circle (º) in each 
figure represents the final best solution (𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟). It is shown that CKO’s agent can 
adequately explore promising areas of the search space and then exploit the best solution. As the 
iteration increases, the agent moves towards the best-so-far solution. This is due to the reduction in 
the local neighbourhood radius, 𝛿, as previously mentioned in Eq. (17). 
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(a) Unimodal (Fn2) (b) 3-D map for 2-D functions of Fn2 

  

  
(c) Simple multimodal (Fn10) (d) 3-D map for 2-D functions of Fn10 

  

  
(e) Composition (Fn23) (f) 3-D map for 2-D functions of Fn23 

  

Fig. 8. Search history of the CKO’s agent during optimization of the benchmark function: Fn2, Fn10 
and Fn23 

 
5.2.4 Fitness trends of CKO agent (Fn2, Fn10, Fn23) 
 

Lastly, the fitness trend is generated to observe the pattern of the agent’s solution against the 
best solution so far (𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟) over 1 run. Based on Figure 9, it can be concluded that CKO’s 
agent went through sufficient exploration at the beginning of the search and decline slowly to have 
better exploitation around the improved best-so-far solution for unimodal, simple multimodal, and 
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composition functions. This pattern ensures that the CKO algorithm eventually converges to the near-
optimal solution in the search area. 
 

  
(a) Unimodal (Fn2) 

  

  
(b) Simple multimodal (Fn10) 

  

  
(c) Composition (Fn23) 

Fig. 9. Fitness trend of the CKO’s agent during optimization of the benchmark function: Fn2, Fn10 and 
Fn23 
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Overall, CKO performs very well in solving simple multimodal functions and demonstrates a highly 
competitive performance in solving unimodal, hybrid, and composition functions. In the simple 
multimodal functions, the CKO manage to achieve first rank for 10 functions out of 13 functions. 
Although CKO only lead four functions out of 17 functions in unimodal, hybrid, and composition 
function, CKO is still very close to the optimal solution (near-optimal solution). The CKO shows a good 
ability to reach the optimal and near-optimal solution with a better number of best mean fitness 
values compared to other algorithms. These results prove that the CKO algorithm manages to 
iteratively estimate the optimal and near-optimal solution for varieties of optimization problems 
(unimodal, multimodal, hybrid, and composition functions) with different complexities.  Despite 
working with a single agent, CKO is capable to outperform population-based algorithms under the 
same number of function evaluations. 
 
6. Conclusions 
 

This paper introduces a new single-agent metaheuristic optimization algorithm inspired by the 
estimation ability of CKF, named the Cubature Kalman Optimizer (CKO) algorithm. The CKO algorithm 
aims to find an estimate of an optimal or a near-optimal solution for an optimization problem. The 
proposed CKO algorithm has six steps: (1) initialization, (2) fitness evaluation and update 
𝑋_𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟, (3) solution prediction, (4) simulate measurement, (5) measurement prediction, and 
(6) solution update. The first three processes are similar to most metaheuristic algorithms. The 
solution prediction, simulated measurement (simulate observation signal), measurement prediction 
and solution update are adopted from the CKF.  To evaluate the performance of the CKO algorithm, 
the CEC 2014 Benchmark Test Suite has been applied. Experimental results indicate that CKO is 
capable to converge to an optimal and a near-optimal solution and significantly outperforms well-
known algorithms such as SAFIRO, ssSKF, SKF, ASKF, PSO, GA, GWO, and BH in solving the CEC 2014 
benchmark problems. It is important to notice that the proposed CKO algorithm contributes to new 
knowledge and provides a platform for other researchers to explore, modify or hybrid this algorithm 
with other algorithms to produce a better metaheuristic algorithm for solving optimization problems. 
The CKO algorithm can also be used by other researchers to solve optimization problems in various 
fields. 
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