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Fractional order derivative has been widely used in many different areas such as 
bioengineering, fluid mechanics, circuits systems, biomathematics, and biomedicine. 
This study introduces the system of the fractional differential equation on SIR 
(Susceptible-Infected-Recovered) model to simulate the COVID-19 in Malaysia. The 
fractional derivative is described in Caputo sense and solved by the Adams Bashforth 
Moulton method. The Runge-Kutta method is used to prove and validate the numerical 
results obtained. The graphical representations of the simulation with difference 
fractional order have been presented. The derivative order, with values more than 
0.5 are acceptable and reliable. 
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1. Introduction 
 

The Coronavirus disease of 2019 (COVID-19) is a newly found coronavirus that causes an 
infectious disease [19]. COVID-19 was discovered around the end of 2019 in Wuhan, China. The virus 
continues to spread widely, and the cases are detected in countless countries worldwide, eventually 
becoming a pandemic. By 2020, COVID-19 has reached the United States, Europe, and Asia, brought 
by travellers from affected areas including Malaysia. The first outbreak of imported COVID-19 was 
reported on January 25, 2020, involving three Chinese tourists. Then, the outbreak became epidemic 
when the number of cases in Malaysia increased from 3 cases to 22 confirmed cases registered 
throughout the 23-day periods.  

Despite minimal outbreak control measures, many researchers tried to understand the disease 
transmission and provide solutions for disease control. Mathematical modelling in epidemiology 
opens up a new era in understanding disease transmission and provides recommendations for 
disease control. A few mathematical models can describe the dynamic of the COVID-19. The 
Susceptible-Infected-Recovered (SIR) model is the most basic mathematical model to study 
epidemiology including COVID-19.  
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In 1927, Kermack and McKendrick developed the model which studied a fixed population with 
only three compartments, which are susceptible (S), infected (I) and recovered (R). This model started 
with the number of people in the susceptible, infected, and recovered categories at initial time zero. 
This SIR model serves as a fundamental mathematical model for transmitting epidemic diseases. 
Later, various modifications of SIR model such as SIS, SIR, SIRS, SEIS, SEIR and SEIRS have been used 
to model the spread of disease. Several past studies focused on epidemic model have been done to 
describe the dynamic of COVID-19 in Malaysia and aimed to “flatten the epidemic curve”. Ariffin et 
al., [6]. The research interests include incorporating a partial time-varying force of infection into SIR 
model [11], an exposed population (E) as SEIR model [13], the influence of reinfection force and 
limited medical resources issues [16] and the effect of vaccination [18].  

Research with different methods and approaches on SIR model has been conducted to 
understand its nature and transmission. Most researchers used Runge-Kutta's fourth and fifth-order 
and Euler's methods to solve the SIR model. A fractional derivative is a real or complex derivative of 
any arbitrary order in applied mathematics and mathematical analysis.  

Fractional differential equations started to obtain extensive application in developing physical 
and biological simulation [20]. A fractional derivative extends the derivative and integral of integer 
order. It helps simulate multi-scale situations with a broader time or length scale. Fractional 
derivative is powerful fractional operator because of their non-local power-law form, making them 
suitable for explaining various physical phenomena memory and hereditary aspects. 

The effect of SARS-CoV-2 infection on the dynamics of dengue and HIV is interpreted by utilizing 
the methods of fractional calculus. The model fitting applying the three fractional derivatives was 
done using real data from Argentina [21]. However, currently there is no study on fractional order 
derivative of SIR model for COVID-19 disease has been done in Malaysia.  

It is important to highlight that the basic mathematical models of integer-order derivatives, as 
well as nonlinear models, do not fit into acceptable framework in numerous situations [20]. Since the 
fractional derivative can explain the model better, this study considers SIR fractional-order 
derivatives on COVID-19 infectious trend simulation in Malaysia based on the study by Ariffin et al., 
[6]. The fractional derivatives used are in Caputo sense. Caputo derivative is one of the studied 
fractional derivatives, and Italian Caputo proposed it in 1967. Caputo fractional derivative is the most 
accessible fractional operator to deal with real-world problems because it allows initial and boundary 
conditions Atangana [5]. Caputo fractional derivatives and their applications for various epidemic 
model have been widely used such as SIR [1,2,12,13,15,17]. 

The Adams Bashforth Moulton approach is then applied to solve differential equations. Applying 
Adams Bashforth Moulton method to the fractional derivative allows computing the approximate 
solution. John Couch Adams developed the Adams Bashforth and Adams-Moulton methods to solve 
differential equation problems. The Adams Bashforth Moulton is obtained from the Adams-Bashforth 
and Adams Moulton methods. The Adams-Bashforth method is used as the predictor. In contrast, 
the Adams-Moulton method is used as the corrector in a multistep process for approximating the 
solution of a differential equation. 

One of the main advantages of fractional derivatives are adaptability and non-locality. Since these 
derivatives are of fractional order, the method is able to simulate with more flexibility than the 
classical derivatives. Hence, this study focused on solving fractional derivatives by using Adam 
Bashforth method to simulate COVID-19 in Malaysia. 
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2. Methodology  
2.1 SIR Formulation 

 
A SIR models the theoretical number of people infected with an infectious disease over time in a 

closed population as presented in the compartment model in Figure 1. The name of this group of 
models comes from the fact that they involve coupled equations connecting the number of 
susceptible individuals , infected people , and recovered people . 

 

 
Fig. 1. SIR compartment diagram 

 
The dynamics of the COVID-19 transmission are described using the following nonlinear ordinary 

differential equations (ODEs): 
 

            (1) 

 
In the model represent the total number of people in the area, the number of 

susceptible, the number of infected and the number of recovered individuals, respectively. All the 
variables are functions of time, . The parameter 𝛽 is a constant showing infectivity rate and 𝛾  is a 
constant showing recovery rate. Assume  is fixed a long time , then 
 

               (2) 
 
 
The SIR model Eq. (1) can be non-dimensionally by using dimensionless variables, which are 

 

and              (3) 

 
Hence, the dimensionless model of the COVID-19 transmission is then given as 

 

          (4) 

 
where and are dimensionless variable for the number of susceptible, the number of 
infectious individuals and the number of fully recovered individuals, respectively. 

 
2.1.1 Apply fractional Caputo 

 
The general initial value problem for the first order differential equation written as 
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and              (5) 
 
Then, the ordinary derivative model Eq. (4) is replaced by a fractional derivative of the following 

form (Diethelm et al., [8]): 
 

            (6) 

 
where  is a suitable positive number, and  is a positive integer. is the th order 
(always fractional) derivative of .  

Consider  be a function with continuous integer-order derivatives, then the fractional 
Caputo derivative of order a is defined as [7]: 
 

        (7) 

 
where denotes the derivatives of integer mth order of y and in the above integral  represents 

the Gamma function, . Hence, the new system of fractional differential 

equations (FDEs) for the model: 
 

          (8) 
 

subject to initial conditions  
 
2.1.2 Solve Fractional using Adams Bashforth-Moulton 

 
Approximation and numerical approaches must be used since fractional differential equations 

(FDEs) are difficult to solve analytically [14]. Thus, the generalized Adams-Bashforth-Moulton method 
can be used to solve the system numerically. 

The Eq. (6) is equivalent to Volterra integral equation: 
 

        (9) 

 
For solving the Eq. (6) and Eq. (9), the first study of the fractional Adams method on a uniform 

grid  with some integer N, step length  and  [9]. The following 

is the specified implicit formula 
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                  (10) 

 
where 
 

                 (11) 

and 
 

                    (12) 

 
Therefore, the value is defined by the fractional Adams-Bashforth method 

 

                    (13) 

 
with the weights and  is defined according to Eq. (11) and Eq. (12), respectively. 
 
2.1.3 Numerical analysis 

 
By using the Adams-Bashforth-Moulton (ABMs) method, the numerical solutions of the system 

of fractional differential Eq. (8) are formulated as follow. 
Considering the initial value problem 
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where 
 

                              (16) 

 
Findings from the simulation conducted based on the above equations will be elaborated in the 

next section. 
 
3. Results  

 
This section shows the numerical results for SIR model in Eq. (15) associated with the susceptible, 

infected, and recovered populations. Parameters values infectivity rate,  and recovery rate, 
 were collected from Ariffin et al., [6].  

 
3.1 Validation of the Study 

 
The Runge-Kutta build-in method in Matlab@ software is performed to prove and validate the 

numerical results obtained from Adams Bashforth Moulton simulation method by comparing 
susceptible, infected, and recovered individuals against time (days). The comparison is shown in 
Table 1. Both methods are in good agreement. 

 
Table 1 
Numerical table of solving SIR model with  

Time 
(days) 

Population 
Adams Bashforth Moulton Runge-Kutta 
Susceptible 

 

Infectious 

 

Recovered 

 

Susceptible 

 

Infectious 

 

Recovered 

 
0 1 0.001 0 1 0.001 0 
5 0.998477 0.0018994 0.000623454 0.998452 0.00191409 0.000633659 
10 0.995555 0.00362252 0.00182241 0.9955 0.00365497 0.00184508 
15 0.990018 0.00687812 0.00410405 0.989899 0.00694749 0.00415305 
20 0.979631 0.0129503 0.00841841 0.979386 0.0130931 0.00852129 
25 0.960515 0.024005 0.0164795 0.960028 0.024284 0.0166879 
30 0.926529 0.0432559 0.0312154 0.925626 0.0437572 0.0316165 
35 0.869635 0.0742295 0.057136 0.868134 0.075017 0.0578494 
40 0.783249 0.117824 0.0999271 0.781125 0.118821 0.101053 
45 0.669372 0.167438 0.16419 0.666954 0.16835 0.165696 
50 0.543342 0.208117 0.249541 0.541188 0.208635 0.251177 
55 0.426638 0.225818 0.348544 0.425093 0.225951 0.349955 
60 0.333298 0.217963 0.449739 0.332312 0.218 0.450688 
65 0.265497 0.192431 0.543072 0.264837 0.192628 0.543534 
70 0.218633 0.159495 0.622872 0.218096 0.159932 0.622972 
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3.2 SIR Simulation 
 
The dynamic behaviour of Adams Bashforth Moulton SIR simulation is investigated based on the 

simulation curves. 
 

  
(a) (b) 

 
(c) 

Fig. 2. SIR simulation with fractional derivative order (a)  , (b) , and 
(c) . 

 
However, Figures 3(b) and 3(c) with   less than  show that the graph becomes insignificant 

compared to Ariffin [6] because Figure 2(a), the proportion of Susceptible, decreases until it 
reaches asymptotic behaviour below 20 percent while Figure 3(c) shows asymptotic behaviour above 
80 percent. Thus, the transition into a fractional model makes it particularly sensitive to the order of 
differentiation, which is a slight shift may result in a significant difference in the outcome [4]. 
 

  
(a) (b) 

Fig. 3. SIR simulation with fractional derivative order (a) , (b) , and (c) 
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Figure 4(a) indicates that the duration of time for Susceptible,  to reach asymptotic 
behaviour decreases as the fractional order, decreases where   is at 100 days,   is at 
93 days, and  is at 79 days. However, Susceptible,  of starts to increase above 
Susceptible,  of  after 65 days. Figure 4(b) illustrates that by decreasing the fractional 
order, , Infected, increases for the first 60 days and afterwards, it drops. The peak cases of 
Infected,  are different for the three different  where   is at 30 days, is at 40 
days, and is at 56 days. In contrast to Figure 4(a), Figure 4(c) shows that Recovered, rises 
when the decrement of fractional order from to . All three  reach more than 80 
percent of the population in the number of Recovered, . 

 

  
(a) (b) 

 
(c) 

Fig. 4. Numerical solution for (a) Susceptible,   ,(b) Infected,  , and (c) Recovered,  in a 
time, (days) at  

 
Figure 5(a) shows that the duration of time for Susceptible, to reach asymptotic behaviour 

decreases as the fractional order,  decreases. However, the Susceptible,  asymptotic 
behaviour increases for   is below 20 percent,   is 40 percent, and  is more 
than 80 percent when the fractional order, decreases. Moreover, both Figure 5(b) and Figure 5(c) 
are opposite to Figure 5(a) as by lowering the fractional order from to , the number 
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of Infected, and Recovered,  decrease, respectively. Recovered is less than 20 percent for 
. Nevertheless, it is below 62 percent for , and   showing at least 80 percent 

of the Recovered,  after 50 days. 
 

  
(a) (b) 

 
(c) 

Fig. 5. Numerical solution for (a) Susceptible, ,(b) Infected, , and (c) Recovered,  in a 
time, (days) at  
 
Figures 4(a) - 4(c) and Figures 5(a)-5(c) recognize that  values above 0.5 are reasonable and 

acceptable. The graphs demonstrate that reducing  values reduce the number of Infected,  
while significantly increasing the number of Recovered, . On the other hand, the graphs with 

 and  are unacceptable. It is proven in Figures 5(b), where the graph demonstrates 
that when is applied, more than 80% of people are expected to become susceptible, and only 
10% are recovered from the disease within 40 days to 100 days. Since the percentage of Susceptible, 

 is high and the percentage of Recovered,  is low in this circumstance, the graph is 
unreasonable compared to Figure 2(a).  
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4. Conclusions 
 
In conclusion, simulated results showed that the Adams Bashforth Moulton method can solve the 

fractional SIR model. This method is valid and reliable since the result achieved is identical to the 
validation result obtained using the Runge-Kutta built-in method. Different sets of derivative order, 

 values are used to determine the most identical fractional derivative value of SIR simulation model 
for COVID-19 disease in Malaysia. Additionally, it can be shown from the simulation that values more 
than 0.5 are reliable and acceptable. All the populations reached the asymptotic behaviour in lesser 
time by decreasing the fractional order derivative values. Future work could be expanded to include 
more SIR parameters by using the current COVID-19 data. 
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