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The concept that a cross correlation might improve prediction error underpins machine 
learning algorithms for multi-target regression (MTR). Numerous MTR approaches have 
been created in recent years, however there are still uncertainties concerning how their 
performances are impacted by dataset properties such as linearity, number of targets, 
and cross correlational complexity. In order to contribute to a better understanding of 
the relationship between dataset properties and MTR methods, authors proposed a 
new model of TPOT-MTR, which its result will be compared to previously generated 33 
synthetic datasets with controlled characteristics and tested their performance against 
other two MTR methods, Random Forest and SVM. The results demonstrated that 
TPOT-MTR approaches could enhance performance even in datasets with non-linearly 
correlated targets, although the prediction improvement varies depending on the 
method and regressor combinations used. 
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1. Introduction 
 

Multi-target regression (MTR) methods are statistical methods to deal with the prediction of 
multiple output variables which are related to the same input set. They can be used in a wide range 
of applications such as predicting multiple characteristics of a product, predicting the risk of disease 
progression, predicting the effect of a drug on multiple biological targets, and predicting the 
performance of complex systems. When complexity, linearity, and even target correlations are 
considered, it is difficult to relate the performance of MTR approaches in datasets to baseline 
scenario features [1]. There are different types of MTR methods; Supervised learning models can be 
used to improve the prediction of multiple targets with a single input. These models learn how to 
predict each target by training on data that corresponds to individual examples of the target. The 
most widely used supervised learning model for multi-target prediction is the Support Vector 
Machine (SVM) [2]. 
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1.1 Prior Works on Multi Target Regression 
 

Both supervised and unsupervised learning models can be used to improve the prediction of 
multiple targets with a single input. However, this paper will be discussing about multi target 
regression in supervised learning. Researchers evaluated in Lingitz et al., [3] regarding linear, ridge, 
and lasso regression, multivariate adaptive regression or multiple target regression, k nearest 
neighbour, regression tree (bagged, unbagged, and boosted), RF, and ANN. Ultimately, after 
evaluation researchers found RFs outperformed. 

The simulation-based technique of RFs might be used to often retrain models in order to preserve 
model performance since RFs are sensitive to range changes in the predictor variables [4]. Supervised 
learning models are often used to improve the prediction of multiple targets with a single input. 
These models learn how to predict each target by training on data that corresponds to individual 
examples of the target. In order to recap the level of use, the SVM is the most used supervised 
learning model for multi-target prediction. The SVM is a supervised learning model that uses a linear 
regression to predict the target variable from the input variables. The SVM is composed of three 
parts: a kernel function, a cost function, and an optimization algorithm. The kernel function is used 
to transform the input data into a feature space. The cost function is used to determine how much 
weight should be given to each feature in the feature space. The optimization algorithm is used to 
find the best combination of cost function and kernel function. 

The unlimited FIRE algorithm approach, in general, strikes a fair mix between simplicity and 
precision. Despite tending to produce slightly less accurate models than the most accurate random 
forests, the size difference is extremely significant. To simulate multi-target regression issues, 
researchers thus think that the unlimited FIRE with linear terms is a very excellent option. Despite 
certain difficulties with the training and testing set limitations, the results show that Multi Output 
Gaussion Process (MOGP) regression has some promise for usage in Residual Storage Life (RSL) 
prognostic situations [5]. To obtain the optimal forecasting model, MOGP employs the Bayesian 
algorithm methodology. At the core of the MOGP process lies a Gaussian process as the underlying 
model. This process is used to model the correlations between the input variables and the output 
variable. The input variables are then combined with the output variable to form a joint probability 
distribution. This distribution is used to determine the hyperparameters associated with the model. 

The best convolutional and recurrent neural network architectures and hyperparameters are 
sought using a revolutionary genetic algorithm-based Network Architecture Search (NAS) technique 
[6]. Real-world traffic speed data from Berlin, Germany is used to evaluate the suggested system. 
Experimental findings in Li et al., [6] show that the suggested AutoML framework is more effective, 
efficient, and robust than alternative benchmarking techniques. This study demonstrates the 
enormous potential of AutoML approaches in applications related to intelligent transportation. 
Having stated that, this research will also investigate the use of a genetic algorithm to use AutoML in 
multiple target regression. 

A wide range of possible applications for multiple-output regression on data streams exist, 
including forecasting the weather and predicting air quality, among others. Having said that, this work 
aims to capitalize on its benefits by enhancing it with the capacity to apply a genetic-based MTR 
algorithm [7]. Multiple outputs frequently include connected information, but passive-aggressive 
(PA) simply views these outputs as separate tasks and is unable to detect these relationships [7]. By 
linking the dot amongst several targets, the suggested TPOT-MTR will be successful in reducing the 
problem. An Auto-ML system known as TPOT (Tree-Based Pipeline Optimization) employs genetic 
algorithms in order to improve machine learning pipelines. It does this by making use of another 
Genetic Algorithm framework known as DEAP (Distributed Evolutionary Algorithms in Python). 
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However, this paper will be discussing about new proposed method of multi target regression which 
is named as TPOT-MTR and use TPOT as a core and main engine for regression. 

According to a prior study, whereas the LSTM model cannot be acquired with a lower sample size, 
multiple linear regression models able to do it. In addition, it has been found that when the sample 
size is large enough, LSTM forecasting models of intensive resources produce predictions that are 
more accurate. When the resource-intensive nature of apps is considered, this conclusion has more 
useful applications [8]. In the other hand, A novel strategy for the AutoML domain was introduced in 
TPOT (2016) by applying genetic algorithm. Although it was only concerned with classification 
algorithms and classification accuracy, it was effective in breaking down the machine learning process 
into a series of incremental steps that could be automated one at a time. Three primary jobs or 
operators are included in TPOT (Tree-based Pipeline Optimization Tool): feature preprocessing 
operators, feature selection operators, and supervised classification and regression operators. Each 
of these operators was considered as a genetic algorithm primitive, and genetic algorithm trees were 
built. Because a structured task-based methodology was adopted, TPOT was particularly adaptable, 
allowing for easy scaling and the addition or removal of additional pipeline nodes [9]. 
 
1.2 Genetic-Based Algorithm of AutoML 
 

Genetic algorithms, which are founded on the ideas of natural selection and evolution, are one 
of the techniques utilised in AutoML. Natural selection in biology serves as the basis for genetic 
algorithms (GAs), a category of optimization method. With each member of the population 
representing a potential solution, GAs search through a wide space of potential solutions using a 
population-based method. The population's members are exposed to selection, crossover, and 
mutation processes that mimic natural processes of reproduction and mutation and produce young 
individuals who are more fit than their parents. 

In the context of AutoML, genetic algorithms can be used to look for the best feature engineering 
methods, model topologies, and hyperparameters. Genetic algorithms can effectively search through 
a huge number of alternative solutions to discover the best one by modelling each potential solution 
as an individual in a population and utilizing the selection, crossover, and mutation operations to 
develop the population. 

There have been several studies that have explored the use of genetic algorithms in AutoML. For 
example, in a paper by LeDell and Poirier [10] presents an automated hyper-parameter optimization 
method based on the Parallel Genetic Algorithm (PGA) for fast-hyperparameters optimization on the 
Internet of Things (IoT) field, particularly for analyzing spatiotemporally coherent data collected by 
wireless sensors. For the efficacy of deep learning models, hyperparameter settings during training 
are regarded as crucial factors. Automated Machine Optimization (HPO) is primarily utilised for grid 
search and hyperparameter search based on genetic algorithm, but also contains population 
initialization, fitness function, tournament selection, crossover operators, mutation operators, 
subgroup exchange, and evolution. The hyperparameter opponents proposed are discussed and 
implemented. 

Based on GA, PGA is a population-based search algorithm that accelerates the solution by 
calculating multiple populations in parallel. It has no requirements for the data dimension at runtime 
and can reduce the number of earlier model solutions. Genetic Algorithms are used to optimize the 
parameters of models using genetic nano algorithms. These activities have involved HPO 
implementation. The genetic algorithm is then executed independently in each subgroup, and 
adjustments are made between subgroups on an individual basis. Eventually, the optimal individual 
for the paradigm is evolved. However, the PGA model in research by LeDell and Poirier [10] appears 
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to have limitations in terms of the relationship between outputs, in contrast to multi-target 
regression, which considers the relationship between variables. 

Multi-target regression is a challenging problem in machine learning that aims to simultaneously 
predict multiple output variables. In recent years, several AutoML solutions for this problem have 
been devised, including H2O, AutoGluon, and FEDOT. In this response, I will provide a concise 
overview of these AutoML solutions, and the work analysis associated with them. H2O is an open-
source AutoML platform that offers a variety of tools for the development and deployment of 
machine learning models. It incorporates gradient boosting, random forest, and deep learning as 
algorithms for multi-target regression. H2O utilizes a combination of grid search and random search 
to optimize hyperparameters and provides an intuitive interface for model selection and 
deployment. The article by LeDell and Poirier [10] contains an analysis of related H2O-related work 
include its ability to handle missing or categorical data natively, it's comprehensive modeling 
strategy, including powerful stacked ensembles, and the ease in which H2O models can be deployed 
and used in enterprise production environments. 

AutoGluon is an additional AutoML platform that offers a variety of tools for constructing and 
deploying machine learning models. It incorporates gradient boosting, random forest, and neural 
networks, among other algorithms for multi-target regression. AutoGluon employs a combination of 
Bayesian optimization and ensemble learning to optimize hyperparameters and offers an intuitive 
interface for model selection and deployment. The paper "AutoGluon-Tabular: Robust and Precise 
AutoML for Structured Data" by Gedam [11]. AutoGluon-Tabular succeeds in contrast to existing 
AutoML frameworks that concentrate primarily on model/hyperparameter selection by assembling 
multiple models and stacking them in multiple layers. Experiments indicate that our multi-layered 
combination of many models is a more efficient use of training time than searching for the best 
model. Tests on a collection of fifty classification and regression tasks from Kaggle and the OpenML 
AutoML Benchmark demonstrate that AutoGluon is significantly more accurate, robust, and quick. 
Authors find that AutoGluon frequently outperforms the finest combination of its competitors' 
performance in hindsight. Its limitation is enormous datasets, such as those with 400,000 rows, and 
the inability to complete 10 folds of cross validation. 

AutoGluon AutoML can manage multi-target regression situations, wherein many target variables 
need to be predicted. Several models are combined into one for prediction using an alternate method 
of "ensembling and stacking" them in many layers [12]. By training several models, one for each 
target variable, and then aggregating their predictions, it can be utilised to tackle issues involving 
multiple targets in a regression analysis. AutoGluon is a powerful AutoML system that can handle a 
wide range of machine learning tasks, including multi-target regression. However, it has some 
disadvantages compared to other AutoML systems such as TPOT. These include limited customization 
options, limited interpretability, and longer training time [13]. Additionally, AutoGluon AutoML has 
limited support for feature engineering, meaning that users need to perform more feature 
engineering tasks manually before using it. TPOT allows for more customization and interpretability 
options, and it can be faster to train models, but it requires more effort from the user in terms of 
specifying custom pipelines and feature engineering. Ultimately, it will depend on your specific needs 
and requirements. 

FEDOT (Federated Optimization) is an AutoML solution based on genetics that employs 
evolutionary algorithms to optimize machine learning pipelines for multi-target regression problems. 
It employs a hybrid of genetic algorithms and reinforcement learning for hyperparameter 
optimization and includes multiple feature selection, preprocessing, and model selection algorithms. 
FEDOT is intended for distributed and federated learning environments and can manage large-scale 
datasets. The paper by Olson et al., [14] contains a related work analysis of FEDOT and the obtained 
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results confirm the correctness and effectiveness of the proposed approach in the comparison with 
the state-of-the-art competitors and baseline solutions. Due to the limited number of input features, 
the primary disadvantage is the restricted variability of the obtained decision boundary. The second 
implementation always passes data to the input of any model (this technique is implemented as a 
Stacked Ensemble (SE) in the TPOT tool, for instance), but it limits flexibility. 
 
2. Methodology 
 

TPOT-MTR is a new proposed method of multi target regression that uses TPOT as a core and 
main engine for regression. TPOT-MTR is an improved version of TPOT that use for multiple target 
regression and considering of multiple targets correlation. The key advantage of TPOT-MTR is that it 
can consider of multiple targets correlation and improve the prediction accuracy. Another key 
advantage of TPOT-MTR is that it is a fast algorithm that can be used for multiple target prediction. 
It is based on the genetic algorithm concept and uses a greedy algorithm to improve the prediction 
accuracy. TPOT-MTR is also able to identify the optimal parameters for the SVM kernel function and 
cost function. 
 
2.1 A Proposed Approach 
 

Traditional machine learning methods convert numerous inputs into a single output. For example, 
you have several images observations of flowers and forecast a single characteristic or label such as 
length, width, and few more. When numerous outputs are required, it is widespread practice to 
perform two independent classifications: first predict one variable, then the next. The issue with this 
method is that it entirely disregards correlations in the results. 

TPOT automated machine learning is an open-source Python tool for automating data science 
tasks such as supervised learning, feature selection and pre-processing. It is built on top of the scikit-
learn library and is designed to optimize machine learning pipelines. It is intended to be used as an 
assistant to data scientists and machine learning engineers, providing them with the potential of 
ability to optimize their machine learning models quickly and easily. TPOT automates several 
common data science tasks, such as feature selection and pre-processing. It does this by providing a 
set of predefined algorithms that can be used to optimize machine learning models. 

Integrating that TPOT system, specifically this improved version of that system, which has the 
potential to manage multiple target regression while still making use of automated machine learning 
systems to locate the most effective algorithms for each solution. Based on the Figure 1, the raw data 
is the source data and normally in a format of Comma-separated values (CSV). Common data 
preprocessing activities like missing value imputation, scaling, and encoding categorical variables are 
all taken care of automatically by TPOT. TPOT-MTR composing two additional processes which are 
MTR initiator and MTR check point and between of them, the existing processes are still included. 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 30, Issue 3 (2023) 104-126 

109 
 

 
Fig. 1. TPOT-MTR workflow 

 
The MTR initiator function as MTR starter depends on the target variables, for example if there 

are two number of targets, the concepts of one regressor fit for one target still be fulfilled that the 
second target will be managed after the first target been served. MTR check point will be validating 
the multiple target service in the pipeline, and it will halt the operating pipeline after all the number 
of targets has been served in order to finish the training of the model. If the targets have not yet 
been met, it will forward the information to the subsequent pipeline and continue doing so until all 
the targets have been accomplished as shown in Figure 2. 
 

 
Fig. 2. TPOT-MTR activity diagram 

 
Feature selection is the act of picking out the most outstanding features from a large pool of 

candidates. This has the potential to enhance the efficiency of the machine learning pipeline by 
decreasing the data's dimensionality. Transforming the raw features into a format that is more 
conducive to machine learning algorithms is what feature preprocessing is all about. Scaling, 
imputation, and one-hot encoding are just a few of the common preprocessing tasks that TPOT 
automatically handles, but users can also tweak these processes with scikit-learn transformers. The 
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performance of a machine learning pipeline can be enhanced through the process of feature 
construction, which involves the generation of new features from preexisting ones. In TPOT, new 
feature representations are automatically evolved via genetic algorithm. 

To create new features, TPOT able perform mathematical operations on existing features or apply 
feature transformations like log or square root. The goal of model selection is to find the most 
effective machine learning technique for a specific problem. To build its pipelines, TPOT employs 
several different algorithms. These include decision trees, support vector machines, and random 
forest. TPOT uses a genetic algorithm to search through the space of possible pipelines and selects 
the best-performing model based on cross-validation performance. The term "parameter 
optimization" refers to the process of fine-tuning the hyperparameters of the chosen machine 
learning algorithm. To determine the optimal hyperparameters for each machine learning algorithm, 
TPOT employs both grid search and random search [15]. 

The aim behind this TPOT-MTR was to first fit for y1, and then include that knowledge into the 
second fit. That is, instead of fitting a separate regressor for each target of y1, y2, y3, and so forth, 
this TPOT-MTR employs a daisy chaining strategy that uses information from the prior target of y1 to 
predict y2. The same is applicable for predicting y3, for which the preceding target of y1 and y2 will 
be considered, and so for the remainder. The following equations will aid in comprehending the 
TPOT-MTR methods. 
 
{𝑋, 𝑦1}  →  𝑦2                (1) 
 
{𝑋, 𝑦1, 𝑦2}  →  𝑦3             (2) 
 
2.2 Experiment 
 

The techniques are experimentally examined in this section by comparing their performance to 
RMSE and MAE. Experiments were carried out on thirty datasets in the realm of multiple target 
regression. In the first section, the efficiency of the suggested technique was examined by comparing 
MTR and ST methods using SVM regression based on different feature sizes. The performance of the 
proposed technique is assessed in the second portion utilizing different regression methods (i.e., ET, 
DT, and RF) based on the best feature subset determined by feature selection algorithms. The SVM 
regressor was utilised with the LIBSVM software package's default parameter values and a standard 
nonlinear kernel [2]. 

MTR is a subset of the larger subject of predictive problems with multiple structured outputs. 
MTR, as opposed to multi-label classification (MLC) and hierarchical classification (HC), works with 
continuous targets. Because MTR is concerned with organized responses, the numerical objectives in 
these tasks exhibit underlying correlations or dependencies. Formally, an MTR job can be described 
as the creation of a group of functions or a single function h that models the relationships between 
a set of input variables X and a target vector Y in a set of N instances. The input (X) and output (Y) 
sets are made up of m and d variables, accordingly [1]. The following equation describes the 
previously discussed prediction problem [1] 
 
ℎ: 𝑋1. . 𝑚 →  𝑌1. . 𝑑             (3) 
 

To handle this type of difficulty, a basic uncomplicated technique is to treat each target 
individually, solving multiple single target (ST) problems that share the same input characteristics. 
This method has been utilised in certain circumstances, although it is generally used as a baseline 
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method to compare to more advanced methods. Indeed, when correlations between outputs exist, 
examining them during modelling should result in lower prediction errors. 

Table 1 shows an ensemble algorithm utilised in the TPOT and those will be also integrated in 
new proposed approaches. These algorithms were written in the Python programming language and 
implemented using specific hyperparameter settings. These regression techniques were 
implemented into the systems and found widespread use in MTR settings. 
 

Table 1 
Twelve algorithms used in TPOT AutoML system 
ElasticNetCV ExtraTreesRegre

ssor 
GradientBoostin
gRegressor 

AdaBoostRegres
sor 

DecisionTreeReg
ressor 

KNeighborsRegr
essor 

LassoLarsCV LinearSVR RandomForestR
egressor 

RidgeCV XGBRegressor SGDRegressor 

 
In this experiment, two regression strategies were used: one with TPOT-MTR and the other with 

SK-Learn's multioutput regressor. The algorithms utilised in the multioutput regressor were random 
forest dubbed MOR-RFR, which is an ensemble of decision trees, and linear SVM named MOR-LSVR. 
The studies were conducted in conjunction with the local MTR methods: Support Vector Machine 
(SVM) and Random Forest (RF). Both algorithms were written in Python and ran on the Google 
Collaboratory (Colab) with the default hyperparameter values. Apart from the suggested TPOT-MTR 
techniques, these regression algorithms were chosen due to their broad applicability in MTR settings. 
 
2.3 Performance Metrics 
 

An accuracy, R2 is utilised to transform the correlation coefficient into accuracy measurements 
since it is a key indicator of how well the technique is working [16]. The root mean square error 
(RMSE) for n different predictions represented by is one of the most used metrics as an error function 
[8]. 
 

RMSE =√
∑ (𝑦̂𝑖 − 𝑦𝑖 )2𝑛

𝑖=1

𝑛
             (4) 

 

𝑀𝐴𝐸 =  
∑ |𝑦̂𝑖 − 𝑦𝑖|𝑛

𝑖=1

𝑛
             (5) 

 
where n represents the total number of tests, i represents the ith experiment, 𝑦𝑖 is the actual value 
of the speed prediction, and 𝑦̂𝑖  is the predicted value. Average Relative Root Mean Square Error 
(aRRMSE) was used to assess the MTR techniques. We used a 10-fold cross-validation as our sampling 
approach. The following equation determines the RRMSE (Relative Root Mean Square Error) 
 

RRMSE = √
∑ (𝑦𝑘− 𝑦̂𝑘)

2𝑁
𝑘=1

∑ (𝑦𝑘− 𝑦̅𝑘)
2𝑁

𝑘=1

            (6) 

 
where y, 𝑦̂, and 𝑦̅ indicate the target's real, predicted, and mean values, respectively, and N denotes 
the number of assessed cases. This metric has been employed as a common way to assess prediction 
error in a few MTR and ST regression studies [1]. The RRMSE computed for each of the problem's d 
targets is averaged to provide the average RRMSE (aRRMSE). 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 30, Issue 3 (2023) 104-126 

112 
 

2.4 Dataset 
 

Dataset generator was used to generate synthetic datasets based on three hyperparameters: the 
number of instances (N), features (m), and targets (d). Additionally, a percentage of instances to be 
degraded by noise () and the number of generation groups (g) are inputs into the algorithm. Random 
coefficients (X) were generated utilising a uniform distribution. Initially, the desired d targets are 
generated using unique random linear coefficients for each of the g groups. These groups, termed 
generation groups here, correspond to randomly defined partitions within the data domain that 
share the same input-to-output linear mapping properties. Multiple generation groups can add 
nonlinearity to the generated datasets despite the use of only linear equations to describe the input-
output relationships. The instance-wise length of each of these partitions is defined as a random 
proportion of N. After generating the input data (X) and an initial set of mutually uncorrelated targets 
(Y), percent of the input cases are degraded with noise to increase the prediction task complexity. 33 
datasets were constructed with the following parameters to restrict an initial narrow scope [1]. The 
instance count, N was set at five hundred. So “N = 500”. "45" and "90" were alternated as the value 
of m. The “g” switched between the numbers "1" and "2". The d either read "3" or "6." For each 
target (y1, y2, y3, y4, y5, y6), linear, quadratic, and cubic functions were used alone or in combination. 
In each created dataset, noise affected 1% of the cases in total [1]. We will investigate more 
parameter options in future developments. The produced datasets are described in Table 2. 
 
3. Results 
3.1 Code Availability 
 

The code and result are publicly available at https://github.com/hanafimajid/tpot-mtr. Based on 
the Table 2, the mean value of aRRMSE** is 0.065 generated by TPOT-MTR while the mean of 
aRRMSE in Mastelini et al., [1] cumulating of 0.691. When the regressors are examined separately, 
the prediction performance of each technique changes. Cases 1, 2, 9, 10, for example, showed R2 
improvements of 99% when utilising the TPOT-MTR. The same could not be said for MOR-RFR and 
MOR-LSVR. Table 4 indicates that for this dataset, the targets are positive linked for all RMSE in Y1, 
Y2, Y3, Y4, Y5, and Y6. Because of the observed influence of the regression technique, we decided to 
address them individually. Table 3 shows the best algorithms for each target and mean duration of 
about 79.49 minutes taken for each case to learn and generate the best model. 

The average time taken for three targets was 56 minutes and 101 minutes for six targets. This is 
showing that the more target that it has, the more time taken to produce the model. Focusing on the 
algorithms, the ElasticNetCV and LassoLarsCV contributing 18 and 6 for three targets. There are 23 
ElasticNetCV used as the best pipeline for six targets. Average R2 for MOR-RFR and MOR-LSVR is 
0.368 and 0.508, this is due to powerful of random forest in regressing the training in comparison 
with linear SVM. Case twenty-five having the highest value of 0.822 and the lowest R2 value is for 
case 7 which counted at 0.044 as show in Table 4. 
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Table 2 
Performance result for TPOT-MTR. m represents the number of features and g the number of generating groups 
Dataset m g y1 y2 y3 y4 y5 y6 aRRMSE* aRRMSE** MAE** R2** 

Case 1 90 1 y1 y2 y3 NA NA NA 0.446 0.009 0.007 0.997 
Case 2 90 1 y1 y1+y2 y1+y3 NA NA NA 0.446 0.008 0.006 0.998 
Case 3 90 1 y1 y12 y13 NA NA NA 0.743 0.014 0.010 0.985 
Case 4 90 1 y1 y12+y22 y12+y32 NA NA NA 0.84 0.108 0.076 0.473 
Case 5 90 2 y1 y2 y3 NA NA NA 0.794 0.112 0.078 0.467 
Case 6 90 2 y1 y1+y2 y1+y3 NA NA NA 0.785 0.115 0.083 0.566 
Case 7 90 2 y1 y12 y13 NA NA NA 0.864 0.103 0.063 0.388 
Case 8 90 2 y1 y12+y23 y12+y32 NA NA NA 0.937 0.132 0.082 0.348 
Case 9 45 1 y1 y2 y3 NA NA NA 0.309 0.005 0.004 0.997 
Case 
10 

45 1 y1 y1+y2 y1+y3 NA NA NA 0.305 0.001 0.001 0.998 

Case 
11 

45 1 y1 y12 y13 NA NA NA 0.637 0.013 0.005 0.971 

Case 
12 

45 1 y1 y12+y22 y12+y2 NA NA NA 0.744 0.020 0.007 0.974 

Case 
13 

45 2 y1 y2 y3 NA NA NA 0.786 0.096 0.074 0.512 

Case 
14 

45 2 y1 y1+y2 y1+y3 NA NA NA 0.748 0.093 0.070 0.562 

Case 
15 

45 2 y1 y12 y13 NA NA NA 0.875 0.106 0.067 0.434 

Case 
16 

45 2 y1 y12+y22 y12+y32 NA NA NA 0.92 0.126 0.083 0.064 

Case 
17 

90 1 y1 y2 y3 y4 y5 y6 0.44 0.022 0.010 0.980 

Case 
18 

90 1 y1 y2 y3 y1+y2 y1+y3 y2+y3 0.443 0.020 0.008 0.981 

Case 
19 

90 1 y1 y2 y3 y12 y22 y32 0.733 0.028 0.011 0.957 

Case 
20 

90 1 y1 y2 y3 y12+y22 y12+y32 y22+y32 0.732 0.031 0.015 0.947 

Case 
21 

90 2 y1 y2 y3 y4 y5 y6 0.817 0.112 0.088 0.423 

Case 
22 

90 2 y1 y2 y3 y1+y2 y1+y3 y2+y3 0.801 0.115 0.091 0.524 

Case 
23 

90 2 y1 y2 y3 y12 y22 y32 0.916 0.140 0.091 0.321 

Case 
24 

90 2 y1 y2 y3 y12+y22 y12+y32 y22+y32 0.919 0.165 0.116 0.282 

Case 
25 

45 1 y1 y2 y3 y4 y5 y6 0.313 0.023 0.006 0.980 

Case 
26 

45 1 y1 y2 y3 y1+y2 y1+y3 y2+y3 0.311 0.028 0.007 0.970 

Case 
27 

45 1 y1 y2 y3 y12 y22 y32 0.644 0.026 0.010 0.965 

Case 
28 

45 1 y1 y2 y3 y12+y22 y12+y32 y22+y32 0.633 0.028 0.008 0.953 

Case 
29 

45 2 y1 y2 y3 y4 y5 y6 0.789 0.085 0.052 0.554 

Case 
30 

45 2 y1 y2 y3 y1+y2 y1+y3 y2+y3 0.805 0.078 0.049 0.660 

Case 
31 

45 2 y1 y2 y3 y12 y22 y32 0.924 0.079 0.040 0.516 

Case 
32 

45 2 y1 y2 y3 y12+y22 y12+y32 y22+y32 0.917 0.080 0.047 0.047 

Case 
33 

45 1 y1 y2 y3 y13 y23 y33 0.495 0.017 0.006 0.972 

*Metric obtained by SVM regressor with the ST strategy and a 10-fold cross-validation 
**Metric obtained by TPOT-MTR method and a 10-fold cross-validation 
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Table 3 
urationdarget with tach elgorithm for aipeline pBest  

Dataset 1st Best 
Pipeline 

2nd Best 
Pipeline 

3rd Best 
Pipeline 

4th Best 
Pipeline 

5th Best 
Pipeline 

6th Best 
Pipeline 

Duration 
(min) 

Case 1 LassoLarsCV ElasticNetCV ElasticNetCV NA NA NA 66 
Case 2 LassoLarsCV LinearSVR ElasticNetCV NA NA NA 72 
Case 3 LassoLarsCV RandomFores

tRegressor 
AdaBoostReg
ressor 

NA NA NA 60 

Case 4 ElasticNetCV ElasticNetCV ElasticNetCV NA NA NA 120 
Case 5 ElasticNetCV ElasticNetCV ElasticNetCV NA NA NA 57 
Case 6 ElasticNetCV ElasticNetCV ElasticNetCV NA NA NA 60 
Case 7 ElasticNetCV ExtraTreesRe

gressor 
AdaBoostReg
ressor 

NA NA NA 60 

Case 8 ElasticNetCV ExtraTreesRe
gressor 

RandomFores
tRegressor 

NA NA NA 78 

Case 9 LinearSVR LinearSVR ElasticNetCV NA NA NA 35 
Case 10 LinearSVR LassoLarsCV RidgeCV NA NA NA 31 
Case 11 LinearSVR XGBRegresso

r 
AdaBoostReg
ressor 

NA NA NA 48 

Case 12 LinearSVR XGBRegresso
r 

ElasticNetCV NA NA NA 40 

Case 13 ElasticNetCV ElasticNetCV ExtraTreesRe
gressor 

NA NA NA 52 

Case 14 ElasticNetCV ElasticNetCV LassoLarsCV NA NA NA 55 
Case 15 ElasticNetCV RandomFores

tRegressor 
AdaBoostReg
ressor 

NA NA NA 60 

Case 16 ElasticNetCV KNeighborsR
egressor 

ExtraTreesRe
gressor 

NA NA NA 50 

Case 17 ElasticNetCV LassoLarsCV LassoLarsCV ElasticNetCV LassoLarsCV RidgeCV 120 
Case 18 ElasticNetCV LassoLarsCV LassoLarsCV ElasticNetCV LassoLarsCV LassoLarsCV 114 
Case 19 ElasticNetCV LassoLarsCV LassoLarsCV DecisionTree

Regressor 
ExtraTreesRe
gressor 

XGBRegresso
r 

114 

Case 20 ElasticNetCV LassoLarsCV LassoLarsCV RandomFores
tRegressor 

LassoLarsCV ElasticNetCV 114 

Case 21 LassoLarsCV ElasticNetCV RandomFores
tRegressor 

LassoLarsCV RidgeCV RidgeCV 138 

Case 22 LassoLarsCV ElasticNetCV RandomFores
tRegressor 

LassoLarsCV LassoLarsCV LassoLarsCV 144 

Case 23 LassoLarsCV ElasticNetCV RandomFores
tRegressor 

ExtraTreesRe
gressor 

LassoLarsCV ElasticNetCV 180 

Case 24 LassoLarsCV ElasticNetCV RandomFores
tRegressor 

DecisionTree
Regressor 

LassoLarsCV XGBRegresso
r 

138 

Case 25 LinearSVR RidgeCV RidgeCV LassoLarsCV LassoLarsCV ElasticNetCV 78 
Case 26 LinearSVR RidgeCV RidgeCV LassoLarsCV LassoLarsCV LassoLarsCV 69 
Case 27 LinearSVR RidgeCV RidgeCV XGBRegresso

r 
XGBRegresso
r 

KNeighborsR
egressor 

56 

Case 28 LinearSVR RidgeCV RidgeCV DecisionTree
Regressor 

LassoLarsCV KNeighborsR
egressor 

84 

Case 29 ElasticNetCV ElasticNetCV ExtraTreesRe
gressor 

ElasticNetCV ElasticNetCV RidgeCV 78 

Case 30 ElasticNetCV ElasticNetCV ExtraTreesRe
gressor 

LassoLarsCV LassoLarsCV LassoLarsCV 78 

Case 31 ElasticNetCV ElasticNetCV ExtraTreesRe
gressor 

ExtraTreesRe
gressor 

XGBRegresso
r 

DecisionTree
Regressor 

96 

Case 32 ElasticNetCV ElasticNetCV ExtraTreesRe
gressor 

ExtraTreesRe
gressor 

LassoLarsCV AdaBoostReg
ressor 

66 

Case 33 LinearSVR RidgeCV RidgeCV AdaBoostReg
ressor 

DecisionTree
Regressor 

KNeighborsR
egressor 

60 
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Table 4 
Accuracy and error metrics for regular MTR of random forest and linear SVM 
Dataset MOR-

RFR(R2) 
MOR-
RFR(RMSE) 

MOR-
RFR(MAE) 

MOR-
LSVR(R2) 

MOR-
LSVR(RMSE) 

MOR-
LSVR(MAE) 

Case 1 0.709 0.100 0.077 0.988 0.020 0.016 
Case 2 0.689 0.104 0.080 0.987 0.021 0.016 
Case 3 0.523 0.096 0.066 0.448 0.100 0.050 
Case 4 0.312 0.148 0.104 0.206 0.156 0.102 
Case 5 0.290 0.131 0.095 0.430 0.116 0.041 
Case 6 0.305 0.145 0.116 0.491 0.125 0.044 
Case 7 0.044 0.138 0.093 0.210 0.129 0.062 
Case 8 0.091 0.157 0.115 0.033 0.161 0.093 
Case 9 0.613 0.102 0.081 0.999 0.013 0.010 
Case 10 0.633 0.099 0.080 0.991 0.016 0.012 
Case 11 0.324 0.108 0.071 0.473 0.092 0.041 
Case 12 0.216 0.134 0.097 0.295 0.125 0.067 
Case 13 0.362 0.120 0.088 0.480 0.100 0.043 
Case 14 0.322 0.120 0.090 0.532 0.096 0.073 
Case 15 0.239 0.129 0.089 0.246 0.128 0.064 
Case 16 0.077 0.136 0.088 0.113 0.134 0.060 
Case 17 0.581 0.110 0.086 0.983 0.023 0.002 
Case 18 0.532 0.112 0.090 0.983 0.021 0.002 
Case 19 0.226 0.126 0.092 0.388 0.106 0.049 
Case 20 0.212 0.128 0.091 0.382 0.108 0.052 
Case 21 0.221 0.132 0.099 0.299 0.123 0.094 
Case 22 0.271 0.142 0.107 0.463 0.122 0.094 
Case 23 0.111 0.164 0.112 0.085 0.167 0.102 
Case 24 0.100 0.191 0.136 0.116 0.194 0.126 
Case 25 0.822 0.071 0.054 0.980 0.024 0.003 
Case 26 0.792 0.077 0.060 0.970 0.029 0.004 
Case 27 0.424 0.108 0.082 0.379 0.109 0.054 
Case 28 0.399 0.100 0.076 0.410 0.095 0.044 
Case 29 0.371 0.109 0.076 0.513 0.091 0.034 
Case 30 0.427 0.107 0.079 0.618 0.084 0.031 
Case 31 0.148 0.116 0.071 0.233 0.106 0.044 
Case 32 0.144 0.126 0.086 0.243 0.117 0.058 
Case 33 0.627 0.063 0.043 0.806 0.031 0.013 

 
RMSE value for Y1, Y2, Y3, Y4, Y5 and Y6 showing a strong positive correlation with the range of 

0.69 to 0.98. This is due to the significant correlation among of the targets produced by the TPOT-
MTR approaches as shown in Table 5. On the other hand, R2 showing negative strongest correlation 
with the RMSE, and this is caused by the logical relationship in between both that conversely 
proportionate. The more accurate the model is, the least value of error it has as shown in Table 6. 
While the Time having positive correlation of 0.4 with the RMSE, which means that if the RMSE 
increased by 1.0, the Time also will be increased by 0.4 minutes. R2 is having weakest negative 
correlation with the Time and seems not affected by the value if both ups and downs. 
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Table 5 
Correlation in between error metrics in each target 
  RMSE(Y1) RMSE(Y2) RMSE(Y3) RMSE(Y4) RMSE(Y5) RMSE(Y6) 

RMSE(Y1) 1 
     

RMSE(Y2) 0.86 1 
    

RMSE(Y3) 0.69 0.86 1 
   

RMSE(Y4) 0.88 0.88 0.87 1 
  

RMSE(Y5) 0.92 0.90 0.88 0.98 1 
 

RMSE(Y6) 0.90 0.92 0.92 0.92 0.93 1 

 
Table 6 
Correlation in between RMSE, duration and accuracy for 
TPOT-MTR 
  RMSE Time(min) R2 

RMSE 1 
  

Time(min) 0.40 1 
 

R2 (TPOT-MTR) -0.87 -0.20 1 

 
Figure 3 below is showing result of the accuracy, R2 TPOT-MTR, MOR-RFR and MOR-LSVR. It looks 

like a plot of the performance results for different TPOT-MTR, MOR-RFR, and MOR-LSVR models. The 
accuracy of each model is displayed along the y-axis, while the numerous iterations of datasets that 
were utilized throughout the evaluation process are likely represented along the x-axis. According to 
the narrative, TPOT-MTR achieves the best results in terms of accuracy, with MOR-LSVR coming in a 
close second. It would indicate that MOR-RFR has a less accurate predictive capability than the other 
two models. In addition, there is a measurement of R2 included in the plot. R2 is a typical metric that 
is utilised when evaluating the goodness-of-fit of regression models. 

Accuracy is an important way to measure how well a model can predict the outcome of an event, 
but it may not always tell the whole story about how well a model works. In example, a model with 
a high level of accuracy may not work well on certain subsets of the data or may be more likely to 
overfit. Also, accuracy might not be the best measure for all kinds of tasks. For example, in some 
situations, it may be better to judge a model's performance by its precision, recall, or F1 score (as 
shown in section 3.2). When judging an AutoML model's performance, it is best to use a mix of 
different performance metrics such as the error rated of RMSE and MAE (as shown in Table 7). This 
can give a more complete picture of how well the model works and help find possible weaknesses or 
places to improve. 
 

 
Fig. 3. Accuracy for TPOT-MTR, MOR-RFR and MOR-LSVR 
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TPOT-MTR presented highest value of R2 for Case 1, Case 2, Case 3, Case 9, Case 10, Case 11, 
Case 12, Case 17, Case 18, Case 19, Case 20, Case 25, Case 26, Case 27, Case 28, and Case 33. In 
datasets such as Case 1, Case 2, Case 9, Case 10, Case 17, Case 18, Case 25, case 26 have a good 
accuracy for MOR-LSVR as shown in Table 2, this is due to linearity of the input data and its better 
performance for the linear data. For the non-linear input data, the TPOT-MTR gives better accuracy 
because of the advantages of genetic algorithm concepts which provide better performance for the 
non-linear data. Figure 4 to Figure 33 showing the actual and predicted value for multiple target 
regression with the one hundred data in x-axis and result of y with the maximum of 1.0 in y-axis. 
Having too many outliers as shown in Figure 13, Figure 14, Figure 19, Figure 22, Figure 27, and Figure 
28 requiring further investigation on the generated model that causing huge residual value in 
between actual and predicted. For Case 16, Case 29, and Case 31 having R2 value of 0.06, 0.55 and 
0.51 and making it consistent and relevant with the output value. 

 
Hyperparameters for TPOT-MTR is defined as follow 
 
generations=5, population_size=50, verbosity=2, random_state=39, n_jobs=1, 
max_time_mins=None, max_eval_time_mins=5, cv=10. TPOT will evaluate 250 (5 generations x 50 
population_size) pipeline configurations before finishing. In a single grid search, around 2500 models 
are fitted and assessed on the training data. This corresponds to 250 model configurations to 
evaluate if 10-fold cross-validation is used. This is a time-consuming process even for relatively 
straightforward models like decision trees. However, there are datasets where a thorough dive is still 
needed to investigate why the difference in time between three targets and six targets is so tiny. To 
fully understand the motivation for this, additional research may be necessary. 

The y-axis for Figure 4 to Figure 33 is showing the value of the target y and the x-axis for Figure 4 
to Figure 33 is showing the value of testing percentage using the TPOT-MTR. 
 

 

 

 

 

 

 
 Fig. 4. Actual and predicted value 

for 500s90f3t1g0.01py1-y1+y2-
y1+y3 

 Fig. 5. Actual and predicted value for 
500s45f3t1g0.01py1-y1e2-y1e3 
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 Fig. 6. Actual and predicted value for 
500s45f3t1g0.01py1-y1e2+y2e2-
y1e2+y3e2 

 Fig. 7. Actual and predicted value 
for 500s45f3t1g0.01py1-y1+y2-
y1+y3 

 

 

 

 

 

 

 
 Fig. 8. Actual and predicted value 

for 500s45f3t2g0.01py1-y1+y2-
y1+y3 

 Fig. 9. Actual and predicted value 
for 500s45f3t2g0.01py1-
y1e2+y2e2-y1e2+y3e2 

 

 

 

 

 

 

 
 Fig. 10. Actual and predicted value 

for 500s45f3t2g0.01py1-y1e2-y1e3 
 Fig. 11. Actual and predicted value for 

500s45f3t2g0.01py1-y1+y2-y1+y3 
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 Fig. 12. Actual and predicted value 

for 500s45f6t1g0.01py1+y2-y1+y3-
y2+y3 

 Fig. 13. Actual and predicted value 
for 500s45f6t1g0.01py1e2+y2e2-
y1e2+y3e2-y2e2+y3e2 

 

 

 

 

 

 

 
 Fig. 14. Actual and predicted value 

for 500s45f6t1g0.01py1e2-y2e2-
y3e2 

 Fig. 15. Actual and predicted value 
for 500s45f6t1g0.01py1e3-y2e3-
y3e3 

 

 

 

 

 

 

 
 Fig. 16. Actual and predicted value for 

500s45f6t1g0.01py1-y2-y3 
 Fig. 17. Actual and predicted value 

for 500s45f6t1g0.01py1e3-y2e3-
y3e3 
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 Fig. 18. Actual and predicted value 

for 500s45f6t2g0.01py1e2+y2e2-
y1e2+y3e2-y2e2+y3e2 

 Fig. 19. Actual and predicted value 
for 500s45f6t2g0.01py1e2-y2e2-
y3e2 

 

 

 

 

 

 

 
 Fig. 20. Actual and predicted 

value for 500s45f6t2g0.01py1-y2-
y3 

 Fig. 21. Actual and predicted value 
for 500s90f3t1g0.01py1y2y3 

 

 

 

 

 

 

 
 Fig. 22. Actual and predicted value for 

500s90f3t1g0.01py1-y1e2+y2e2-
y1e2+y3e2 

 Fig. 23. Actual and predicted value for 
500s90f3t1g0.01py1-y1+y2-y1+y3 

 
 
 
 
 

V
al

u
e 

o
f 

Y 

Instance of X Instance of X 

V
al

u
e 

o
f 

Y 

Instance of X Instance of X 

V
al

u
e 

o
f 

Y 

Instance of X Instance of X 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 30, Issue 3 (2023) 104-126 

121 
 

 

 

 

 

 

 

 Fig. 24. Actual and predicted value 
for 500s90f3t2g0.01py1-y1+y2-
y1+y3 

 Fig. 25. Actual and predicted 
value for 500s90f3t1g0.01py1-
y1e2+y2e2-y1e2+y3e2 

 

 

 

 

 

 

 
 Fig. 26. Actual and predicted value 

for 500s90f6t1g0.01py1+y2-
y1+y3-y2+y3 

 Fig. 27. Actual and predicted value 
for 500s90f6t1g0.01py1e2+y2e2-
y1e2+y3e2-y2e2+y3e2 

 

 

 

 

 

 

 
 Fig. 28. Actual and predicted value 

for 500s90f6t1g0.01py1e2-y2e2-
y3e2 

 Fig. 29. Actual and predicted value 
for 500s90f6t1g0.01py1-y2-y3 
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 Fig. 30. Actual and predicted 

value for 
500s90f6t2g0.01py1+y2-y1+y3-
y2+y3 

 Fig. 31. Actual and predicted value for 
500s90f6t2g0.01py1e2-y2e2-y3e2 

 

 

 

 

 

 

 
 Fig. 32. Actual and predicted value 

for 500s90f6t2g0.01py1e2+y2e2-
y1e2+y3e2-y2e2+y3e2 

 Fig. 33. Actual and predicted value for 
500s90f6t2g0.01py1-y2-y3 

 
Figure 34 to Figure 42 displays the Pearson correlation representation graphics for different 

datasets according to the generating functions used to construct them so that the behaviour of each 
target can be seen in more detail. In instance eighteen of datasets, most of the targets exhibit high 
intra-target correlation coefficients. Other instances include examples 3, 20, and 33, which show the 
presence of both high and inter-target correlation coefficients. Finally, targets 2, and 17 have weakly 
positive correlations. We included a summary of the correlation coefficient in the heatmaps for each 
simulated example. Bright colours indicate great correlation, whereas dark hues indicate instances 
when the targets are uncorrelated. 
 

 

 

 

 

 
Fig. 34. Pearson correlation 
heatmap for 
500s90f3t1g0.01py1y2y3 

 Fig. 35. Pearson correlation 
heatmap for 
500s90f3t1g0.01py1-y1+y2-
y1+y3 

 Fig. 36. Pearson correlation 
heatmap for 
500s90f3t1g0.01py1-y1e2-y1e3 
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Fig. 37. Pearson correlation 
heatmap for 
500s90f3t1g0.01py1-
y1e2+y2e2-y1e2+y3e2 

 Fig. 38. Pearson correlation 
heatmap for 500s90f6t1g0.01py1-
y2-y3 

 Fig. 39. Pearson correlation 
heatmap for 
500s90f6t1g0.01py1+y2-
y1+y3-y2+y3 

 

 

 

 

 

 
Fig. 40. Pearson correlation 
heatmap for 
500s90f6t1g0.01py1e2-y2e2-
y3e2 

 Fig. 41. Pearson correlation 
heatmap for 
500s90f6t1g0.01py1e2+y2e2-
y1e2+y3e2-y2e2+y3e2 

 Fig. 42. Pearson correlation 
heatmap for 
500s45f6t1g0.01py1e3-y2e3-
y3e3 

 
3.2 F-Test Result 
 

Table 7 displays the 33 dataset’s mean absolute error (MAE) and root mean squared error (RMSE) 
comparison between TPOT-MTR and TPOT-MO. Data analysis in Microsoft Excel shows the F-Test 
result for MAE and RMSE between TPOT-MTR and TPOT-MO in Table 8 and Table 9. The F-Test result 
is interpreted using the research by Xiong et al., [17] and the following hypothesis is made to test 
their correlation. 
 
H0: No significant different in between TPOT-MTR and TPOT-MO result 
H1: Significant different in between TPOT-MTR and TPOT-MO result 
 

According to Xiong et al., [17], if F > F Critical, the Ho null hypothesis can be rejected. Both the 
root-mean-squared error (RMSE) and the mean-squared error (MAE) indicate statistically significant 
differences between TPOT-MTR and TPOT-MO (p-values for both are less than 0.05). The lower the 
RMSE and MAE values are, the more accurate the model is, and the better the fit. 
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Table 7 
MAE and RMSE result for TPOT-MTR and TPOT-MO 
Case RMSE(TPOT-MTR) RMSE (TPOT-MO) MAE (TPOT-MTR) MAE (TPOT-MO)  

1 0.011 0.099 0.009 0.076 
2 0.009 0.103 0.006 0.080 
3 0.015 0.095 0.010 0.065 
4 0.130 0.148 0.076 0.105 
5 0.112 0.131 0.078 0.096 
6 0.115 0.144 0.083 0.115 
7 0.108 0.136 0.063 0.092 
8 0.134 0.157 0.082 0.115 
9 0.008 0.100 0.004 0.079 
10 0.004 0.100 0.003 0.080 
11 0.016 0.109 0.005 0.070 
12 0.024 0.135 0.007 0.097 
13 0.097 0.120 0.074 0.088 
14 0.094 0.120 0.070 0.090 
15 0.110 0.129 0.067 0.089 
16 0.129 0.136 0.083 0.088 
17 0.024 0.110 0.010 0.086 
18 0.094 0.111 0.008 0.089 
19 0.030 0.128 0.011 0.092 
20 0.033 0.129 0.015 0.129 
21 0.112 0.132 0.088 0.099 
22 0.115 0.142 0.091 0.106 
23 0.144 0.165 0.091 0.113 
24 0.174 0.190 0.116 0.135 
25 0.024 0.072 0.006 0.055 
26 0.029 0.076 0.007 0.059 
27 0.028 0.109 0.010 0.043 
28 0.029 0.099 0.008 0.075 
29 0.087 0.109 0.052 0.074 
30 0.078 0.107 0.049 0.080 
31 0.080 0.115 0.040 0.071 
32 0.080 0.130 0.047 0.088 
33 0.020 0.063 0.006 0.043 

 
Table 8 
F-Test Two-Sample of TPOT-MTR and TPOT-MO for Variances of 
RMSE 
  RMSE(TPOT-MTR) RMSE (TPOT-MO) 

Mean 0.070 0.118 
Variance 0.002 0.001 
Observations 33.000 33.000 
df 32.000 32.000 
F 3.109 

 

P(F<=f) one-tail 0.001 
 

F Critical one-tail 1.804   
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Table 9 
F-Test Two-Sample of TPOT-MTR and TPOT-MO for Variances of 
MAE 
  MAE (TPOT-MTR) MAE (TPOT-MO)  

Mean 0.042 0.087 
Variance 0.001 0.000 
Observations 33.000 33.000 
df 32.000 32.000 
F 2.866 

 

P(F<=f) one-tail 0.002 
 

F Critical one-tail 1.804   

 
4. Conclusions 
 

This chapter suggested TPOT-MTR, a new dimension of the daisy-chain technique. In comparison 
to single target (ST) approaches utilised for multiple regression target work, the novel methodology 
has developed a more compact and powerful multiple target regression based on genetic algorithm 
idea. As a result, regression accuracy improved much further. The experimental results validated the 
TPOT-MTR methods' efficacy. The results revealed that the TPOT-MTR outperformed the ST in most 
situations. TPOT-MTR successfully improves regression aRRMSE by 91%. TPOT-MTR, on the other 
hand, was much more successful than ST at reducing dimensionalities across all datasets. More tests 
are required to validate this complex flow structure. 

Moreover, TPOT-MTR was found to be much more effective than the single target approach at 
reducing dimensionalities across all datasets, which is a significant advantage when working with 
large datasets. Although the results are promising, more tests are required to validate the efficacy of 
this complex flow structure. TPOT-MTR has limitations and potential disadvantages, like any other 
methodology. Here are some of TPOT-MTR's limitations: Computationally Demanding: Multiple 
phases of optimization utilizing the genetic algorithm are required by the TPOT-MTR methodology, 
which can be computationally intensive and time-consuming. This can be an issue for large datasets 
or real-time applications where performance is essential. Since TPOT-MTR employs multiple 
regression algorithms and hyperparameters, it can be difficult to interpret the final model and 
comprehend how each input variable affects the output. 

This lack of interpretability can be detrimental in situations where explain ability is essential, such 
as medical or legal applications. Limited Scope: TPOT-MTR is designed exclusively for multiple target 
regression problems and may not be applicable to classification or clustering problems. Overall, 
TPOT-MTR represents a significant advancement in the field of multiple target regression, but it is 
essential to consider its limitations and potential disadvantages when assessing its applicability to a 
specific problem. In addition, TPOT-MTR represents a significant advancement in the field of multiple 
target regression and has the potential to revolutionize the way we approach regression problems. 
Additional research might be conducted in other areas, such as renewable energy, which has shown 
that Malaysia continues to rely on non-renewable energy [17]. In order to encourage the 
consumption of renewable energy, integration between AutoML and other systems could be carried 
out. 
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