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Those in authority are evaluating the test evaluation for threat assessments currently 
in place. Since people often depend on their feelings and moods, this may create 
inequality. Therefore, this study suggested applying deep learning for Autonomous 
Emergency Steering (AES) and Autonomous Emergency Braking (AEB) assessments in 
the safety rating protocol. The suggested method for the test in situation-based threat 
assessments is a monocular distance estimation-based approach. The camera's 
objective is to make it simple to conduct assessments using only an onboard dash 
camera. This study proposes a method based on a monocular distance estimation-
based approach for test methodology in the situational-based threat assessments using 
deep learning for the AES system to complement the AEB system for active safety 
features. Then, the accuracy of the distance estimation models has validated with the 
ground truth distances from the KITTI (Karlsruhe Institute of Technology and Toyota 
Technological Institute) dataset. Thus, the output of this study can contribute to the 
methodological base for further understanding of drivers the following behaviour with 
a long-term goal of reducing rear-end collisions. 

Keywords: 

Autonomous Emergency Steering; 
Autonomous Emergency Braking; 
distance estimation; monocular vision; 
Deep Learning 

 
1. Introduction 
 

This research work appears to be part of the recently released National Automotive Program 
(NAP 2020) [1]. The NAP 2020 is a policy that promotes investment, technological improvement, and 
overall sustainable growth. It promotes new growth sectors by incorporating future development 
technologies such as Industrial Revolution 4.0 (IR4.0), Mobility as a Service (MaaS) and Next 
Generation Vehicle (NxGV). On the other side, this research is incorporated primarily in the Southeast 
Asian New Car Assessment Programme (ASEAN NCAP) Roadmap 2021-2025 under the Title 'Safety 
Assist' technical development effort in Southeast Asian nations, particularly Malaysia [2]. The ASEAN 
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NCAP, for example, focuses solely on AEB technology [3], which is a function that warns drivers of 
impending collisions and assists them in using the vehicle's full capability. The AES system is one of 
the active safety features that help with evasive steering. When a probable collision is detected, 
unlike AEB, the AES system will automatically steer to assist in avoiding an accident. Later, combining 
AEB and AES will improve intelligent mobility applications with at least Level 4 vehicle automation, 
which is high automation [4]. 

Furthermore, the AES system might be integrated into an Advanced Driver Assistance System 
(ADAS) for automation in the future of driverless cars. Many scholars, such as [5-8], have discussed 
AES vehicles' general design and viability. However, only a few AES and AEB intervention systems are 
now available, which might be why the lack of precise analyses and practical solutions, particularly 
from automakers. As a result of being benchmarked to the European New Car Assessment 
Programme (EURO NCAP), new evaluations for the ASEAN NCAP safety standards may be established 
and unified. This study provides a framework for situational-based evaluations and testing methods 
for AES demand to supplement AEB for prospective inclusion in the safety automobile rating project. 

The assessment and those in authority are evaluating test evaluation for threat assessments that 
are currently in place. Since people often depend on their feelings and moods, this may create 
inequality. Therefore, this study suggested applying deep learning to assess the assessments for AES 
and AEB in the safety rating test protocol. The method is proposed for test methodology in situation-
based threat assessments using a monocular distance estimation-based approach. The distance is 
calculated between the dash camera mounted in a car and the car in front of it using distance 
estimation. The camera's objective is to make it simple to conduct assessments and tests using only 
a dashcam. 

The testing strategy will evaluate collision-avoidance scenarios with essential metrics like ideal 
braking distances to verify the methodology for active safety features. Consequently, following the 
NAP 2020 [1], particularly concerning Next-Generation Vehicles, the results of the approach used for 
assessment and test evaluation can be included in the safety vehicle rating criteria. As a result, the 
results of this study can help provide the methodological framework for a deeper comprehension of 
driver behaviours with the long-term purpose of reducing rear-end collision rates. 

The remaining section of the article is organised as follows: In Section 2, the KITTI dataset, the 
Deep Artificial Neural Network (Deep ANN) architecture, and the distance estimation method used 
in this study are explained. Table 1 also provides the list of abbreviations used in the paper. Section 
3 examines the outcomes achieved for each task and the proposed approach's overall performance. 
Lastly, Section 4 concludes with a statement of conclusion and further research. 
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  Table 1 
  List of abbreviations used in the paper 

Acronym Explanation 

2D Two Dimensional 
3D Three Dimensional 
ADAS Advanced Driver Assistance Systems 
AEB Autonomous Emergency Steering 
AES Autonomous Emergency Braking 
ASEAN NCAP Southeast Asian New Car Assessment Program 
CPU Central Processing Unit 
CSV Comma-Separated Values File format 
Deep ANN Deep Artificial Neural Network 
EURO NCAP European New Car Assessment Programme 
Faster R-CNN Faster Region-based Convolutional Neural Network 
GPS Global Positioning System 
IMU Inertial Measurement Unit 
IR 4.0 Industrial Revolution 4.0 
KITTI Karlsruhe Institute of Technology and Toyota Technological Institute dataset 
m Meters 
MaaS Mobility as a Service 
MAE Mean Average Error 
MSE Mean Squared Error 
NAP 2020 National Automotive Program 2020 
NxGV Next Generation Vehicle 
RAID Redundant Array of Independent Disks 
ReLU Rectified Linear Unit 
RMSE Root Mean Squared Error 
txt Text file format 
Xloc 3D object location for the x-axis in camera coordinates in meters 
Xmax Maximum x-coordinate value of an object's 2D bounding box in an image 
Xmin Minimum x-Coordinate Value of an object's 2D bounding box in an image 
Yloc 3D object location for y-axis in camera coordinates in meters 
Ymax Maximum y-Coordinate Value of an object's 2D bounding box in an image 
Ymin Minimum y-Coordinate Value of an object's 2D bounding box in an image 
Zloc 3D object location for z-axis in camera coordinates in meters 

 
2. Methodology  

 
There are currently two different approaches to estimating visual distance: monocular vision and 

binocular vision. Binocular vision uses two cameras positioned at different angles to capture pictures 
or movies from both views. Using a combination of stereo matching and camera calibration [9], 
disparity maps [10] are used to calculate distances, depth information [11] is used to estimate 
distances, and Faster R-CNN [12] is used to identify obstacle items before calculating distances. While 
binocular approaches get some relevant 3D information, [13] claims that they are frequently delayed 
in imaging due to the computation of position deviation. Contrarily, monocular visual distance 
estimate has benefits such as speed, simplicity, and affordability. As a result, the proposed method 
in this study for estimating vehicle distance is based on monocular vision and employs a deep 
learning-based strategy. By reconstructing 3D structures from a few geometry-restricted pictures, 
geometry-based approaches [14-16] detect depth. In order to achieve competitive accuracy, deep-
learning-based systems [17-19] estimate the distance from monocular vision. 

Deep ANN algorithms are used as the deep learning approach for the proposed method. The 
workflow used in this study is described in Figure 1. The KITTI dataset is employed to train and test 
the proposed method. Four different architectures with varying numbers of hidden layers are 
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designed to select the optimum architecture for the proposed method. Then, the outputs of all four 
algorithms are evaluated and compared.  

 

 
Fig. 1. Workflow for distance estimation using Artificial Neural Networks 

 
2.1 KITTI Dataset 

 
The most widely used dataset for mobile robots and autonomous driving is KITTI (Karlsruhe 

Institute of Technology and Toyota Technological Institute) [20]. A Volkswagen Passat B6, which has 
been retrofitted with pedal and steering wheel actuators, was used to record the KITTI dataset. An 
eight-core Intel i7 computer running Ubuntu Linux and a real-time database are used to capture the 
data. It also has a RAID system and eight CPU cores. Table 2 lists the sensors that were utilised to 
create the KITTI dataset.  

 
Table 2 
List of sensors used in the KITTI dataset 
Sensors Model Quantity 

Inertial Navigation System (GPS/IMU) OXTS RT 3003 1 
Lasers DEEP-ANNer Velodyne HDL-64E 1 
Grayscale cameras, 1.4 Megapixels Point Grey Flea 2 (FL2-14S3M-C) 2 
Color cameras, 1.4 Megapixels Point Grey Flea 2 (FL2-14S3C-C) 2 
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Test images, train images, and train annotations are all included in the KITTI dataset's raw data 
for distance estimation. The train annotations should be converted from txt to CSV format. The train 
annotations in a CSV file comprise 51,865 data, whereas the images from the KITTI dataset have 7,481 
images. Table 3 shows several examples of train annotation in CSV files. 

 
Table 3 
A few examples of train annotation in CSV File 
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Pedestrian 0 0 -0.2 712.4 143 810.73 307.92 1.89 0.48 1.2 1.84 1.47 8.41 
Truck 0 0 -1.57 599.41 156.4 629.75 189.25 2.85 2.63 12.34 0.47 1.49 69.44 
Car 0 0 1.85 387.63 181.54 423.81 203.12 1.67 1.87 3.69 -16.53 2.39 58.49 
Cyclist 0 3 -1.65 676.6 163.95 688.98 193.93 1.86 0.6 2.02 4.59 1.32 45.84 
DontCare -1 -1 -10 503.89 169.71 590.61 190.13 -1 -1 -1 -1000 -1000 -1000 

 
'Car', 'Van', 'Truck', 'Pedestrian', 'Person sitting', 'Cyclist', 'Tram', 'Misc', and 'DontCare' are the 

nine types of items that are mentioned in the column for Class. The next column is labelled 
"Truncated," and it contains float numbers ranging from 0 (not truncated) to 1 (truncated), where 
truncated denotes an item that has left the borders of the picture. The integer numbers 0 through 3 
in the Occluded column indicate the degree of occlusion: 0 indicates complete visibility, 1 indicates 
some occlusion, 2 indicates substantial occlusion, and three indicates unknown. The observation 
angle of the object, which ranges from -π to π, is shown in the Observation Angle column. The Box 
column displays the left, top, right, and bottom pixel coordinates of an object's 2D bounding box in 
an image. The 3D object dimensions were displayed in the Dimensions column, including height, 
width, and length in metres. The 3D object location is shown in the final column for Location as x, y, 
and z in camera coordinates in meters. 

However, just the Box and Location columns are required to create a dataset for depth 
estimation. The new dataset is developed to focus on AEB and AES evaluation. Thus, only the class of 
'Car' is utilised to divide the dataset into train and test. Specifically, 70% of the train and 30% of the 
test datasets are divided. Thus, out of 51,865 data points, only 28,742 have the class' car.' The class 
'Car' data comprise 20,080 data for the training dataset and 8,662 data for the test dataset. 

 
2.2 Deep ANN 

 
The choice of hidden layers is a particularly challenging issue since there is a risk of overfitting 

and underfitting, negatively impacting the network's efficiency and time complexity [21]. These 
conditions can happen when there are too many hidden layers. The overtraining of the network 
begins as a result of the overfitting condition when the number of hidden layers is excessively high 
relative to the task's difficulty. It harms the network's time complexity and often happens when its 
performance is closely matched to the test data [22]. Underfitting conditions develop when the 
network's hidden layer count is fewer than the problem's complexity [23]. Such issues are hardly ever 
handled by the network because it is sometimes referred to as undertraining. The network's 
effectiveness is severely impacted by it. The network's temporal complexity becomes extremely low 
and yields ineffective results in such a situation. Fundamentally, the primary goals of this study are 
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to determine the number of hidden layers present in the network and the impact of those hidden 
layers on the network. 

The dataset in this work is trained and tested using the proposed distance estimation algorithms 
with Deep ANN architecture, as shown in Figure 2. The input variables are included within the Input 
Layer. The Input Layer is occasionally referred to as the Visible Layer. Four inputs, representing values 
from the Box column, serve as the input variables for the proposed method (Xmin, Ymin, Xmax, 
Ymax). Meanwhile, the Output Layer is a collection of neurons that generate the output variables. 
The value of the distance from the camera (Zloc) is the output variable produced by the Deep ANN 
architecture in this study. The Hidden Layers are the neuron layers between the input and output 
layers. The Hidden Layers enable a neural network's function to split into particular data processing.  

 

 
Fig. 2. The Deep ANN architecture 

 
Figure 3 illustrates the structure of the neuron. As indicated, every neuron will receive inputs 

consisting of weights and features. According to [24], if a neuron is in the network's first layer, its 
features will be the "real features" of the dataset. Otherwise, if it is not in the first layer, its features 
will be the output of other neurons from previous layers. Each ANN layer will be assigned a unique 
weight. Each neuron must perform a specific nonlinear computation to calculate multiple 
complicated functions. Here, activation functions are put into action. After computing the Linear 
component, the neuron transmits this value to an activation function. The activation function 
performs additional computations on the received value before outputting it. One of the tuning 
parameters is the number of hidden layers and the number of neurons included inside each of those 
layers. 
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Fig. 3. Neuron structure in ANN architecture [25] 

 
Additionally, activation functions were applied to boost the neural network's nonlinearity. 

Finding the optimum network design and configuration is difficult since there is no single clear-cut 
option. Instead, a few different Hidden Layers comparisons are made to determine which network is 
the best. The outcome showed that the most effective model had four hidden layers, ReLU 
activations, a batch size of 2048, and 50 epochs. 

 
2.3 Distance Estimation 

 
Assuming the camera is as good as a theoretical pinhole camera, this research finds that it can 

roughly calculate the distance to an item of a certain width from the camera. This sub-section aims 
to learn the formula for calculating the 𝑍 value. Figure 4 illustrates the possibilities to determine how 
to convert a point in the two-dimensional plane (𝑢, 𝑣) to a three-dimensional (𝑋, 𝑌, 𝑍) coordinate 
system. This transformation is described by a mathematical model that can be represented as an Eq. 
(1) [26]. 

 
𝑝 = 𝐾[𝑡]  ×  𝑄                               (1) 

 
where 𝑝 is a projected [𝑢, 𝑣, 1] point and 𝐾  represents the camera's inherent features, often the 
focal length and the main point or optical centre (𝑢𝑜 , 𝑣0). The description of a camera often lists 
these characteristics. The transition from an external world point to an internal camera viewpoint is 
described by the parameters [𝑅|𝑡], which are extrinsic to the system. The Euclidean coordinate 
system states that 𝑄 is a 3D point with coordinates [𝑋, 𝑌, 𝑍, 1]. Meanwhile, 𝑠 is a scale illustrating the 
pixel scaling concerning focal length shift to get the intrinsic attributes. As a result, Eq. (1) may be 
simplified to Eq. (2) and Eq. (3). 

 

𝑢 =  
1

𝑠𝑥
𝑓

𝑋

𝑌
 +  𝑢0              (2) 

 

𝑣 =  
1

𝑠𝑦
𝑓

𝑌

𝑍
 +  𝑣0               (3) 

 
For Eq. (2) and Eq. (3), the values of 𝑋 and 𝑌 may be derived using Eq. (4) and Eq. (5) if the scale 

parameter is considered to be 1. As a result, the 𝑍 parameter’s value can be calculated by using Eq. 
(6). 

 

𝑋 =
(𝑢− 𝑢0)×𝑍

𝑓𝑥
                (4) 
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𝑌 =  
(𝑣− 𝑣0)×𝑍

𝑓𝑦
                (5) 

 
𝑍 = 𝑑𝑒𝑝𝑡ℎ (𝑣, 𝑢)              (6) 

 

 
Fig. 4. The model for pinhole camera [27] 

 
3. Results and Discussion 

 
This section reports the result of the proposed method's performance. The KITTI dataset is used 

to validate the performance of the proposed distance estimation algorithm using four differences in 
Deep ANN architecture. The first Deep ANN architecture has 1 Hidden Layer, while the other Deep 
ANN architectures have 2 Hidden Layers, 3 Hidden Layers and 4 Hidden Layers, respectively. The 
value of Hidden Layers of 1 to 4 is used to prevent the overtraining condition. When the number of 
hidden layers is excessively high relative to the task's difficulty, a negative impact on the network's 
time complexity often happens when the network's performance is closely matched to the test data. 
It is because the input layer has only four input variables. 

Meanwhile, to prevent undertraining conditions, every Hidden Layer consists of 8 neurons. The 
best distance estimation algorithm is validated with the number of Hidden Layers in Deep ANN 
architecture. It is compared in terms of prediction distance in distance estimation and the value of 
validation metrics.  

 
3.1 Evaluation of Distance Estimation 

 
The prediction distance with all four proposed distance estimation algorithms is trained and 

tested with the KITTI dataset. After those algorithms are trained, the prediction distance is tested. 
The prediction visualiser is displayed as shown in Figure 5. The red lettering indicates the actual and 
prediction distance, while the green box is for vehicle detection. 
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Fig. 5. The prediction distance for distance estimation using DEEP-ANN algorithms 

 
Table 4 shows a sampling of the distance estimation algorithms' outcomes. The results 

demonstrated that the proposed distance estimation method with four hidden layers of Deep ANN 
has the lowest measured error. The measurement error decreases as the number of Hidden Layers 
in the Deep ANN architecture increases. However, in Deep Ann architecture with 4 Hidden Layers, 
the measured error increases as the distance increases. Due to the focus of this study on emergency 
AEB and AES assessment, the accuracy of distance estimation for the nearest distance is adequate. 

 
Table 4 
The distance estimation results 

Actual 
Distance 
(m) 

1 Hidden Layer 2 Hidden Layers 3 Hidden Layers 4 Hidden Layers 

Distance 
Estimation 
(m) 

Measured 
Error (%) 

Distance 
Estimation 
(m) 

Measured 
Error (%) 

Distance 
Estimation 
(m) 

Measured 
Error (%) 

Distance 
Estimation 
(m) 

Measured 
Error (%) 

8 4.4960 43.8003 4.9989 37.5134 8.3322 4.1520 8.0331 0.4143 
18 27.1379 50.7663 19.4321 7.9560 16.4499 8.6117 17.9334 0.3702 
28 34.9400 24.7859 32.5001 16.0718 29.8253 6.5190 27.8579 0.5074 
38 34.9521 8.0208 39.0573 2.7823 39.5712 4.1348 38.7283 1.9165 
48 39.6806 17.3320 43.2663 9.8620 46.1205 3.9155 47.5800 0.8751 
58 45.8229 20.9951 52.6804 9.1717 57.2699 1.2589 58.1776 0.3062 
68 45.6679 32.8413 53.6581 21.0910 60.1889 11.4870 63.1792 7.0894 
78 45.6276 41.5031 53.7096 31.1415 60.5548 22.3657 63.4979 18.5925 

 
3.2 Evaluation of Validation Metrics 

 
Many regression models rely on distance metrics to determine the convergence to the best result. 

Even the definition of a "best" result needs to be explained quantitatively by some metric. Usually, 
the metrics used are the Mean Average Error (MAE), the Mean Squared Error (MSE) or the Root Mean 
Squared Error (RMSE). 

The proposed algorithms are validated with compared the MAE value, MSE value and RMSE value. 
Table 5 shows that the value of MAE for the Deep ANN architecture with 4 Hidden Layers is the lowest 
compared with 1 Hidden Layer, 2 Hidden Layers and 3 Hidden Layers by 56.56%, 22.41% and 12.04%, 
respectively. For the value of MSE, the Deep ANN architecture with 4 Hidden Layers also has the 
lowest value compared with 1 Hidden Layer, 2 Hidden Layers and 3 Hidden Layers by 79.51%, 47.52% 
and 20.60%, respectively. Furthermore, lastly, the Deep ANN architecture with 4 Hidden Layers for 
the RMSE value also has the lowest value compared with 1 Hidden Layer, 2 Hidden Layers and 3 
Hidden Layers by 54.73%, 27.56% and 10.89%, respectively. 
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Table 5 
Validation metrics 
Validation Metrics 1 Hidden Layer 2 Hidden Layers 3 Hidden Layers 4 Hidden Layers 

MAE 5.8896 3.2976 2.9089 2.5587 
MSE 61.3991 23.9724 15.8441 12.5806 
RMSE 7.8357 4.8962 3.9805 3.5469 

 
Figure 6 shows the graph of the relationship between the Hidden Layers and the validation 

metrics. In conclusion, as the Hidden Layers increase, the value of validation metrics decreases. Thus, 
the Deep ANN architecture with 4 Hidden Layers is better compared to fewer Hidden Layers in 
prediction error and validation metrics. 

 

 
Fig. 6. The relationship between Hidden Layers and Validation Metrics 

 
The Loss History graph for all algorithms is also generated, as shown in Figure 7. The Loss History 

graph for all Deep ANN architectures is a good fit learning curve. A training and testing loss identifies 
a good fit learning curve that decreases to the point of stability with a minimal gap between the two 
final loss values [28]. However, this study focuses on the prediction value's accuracy. Thus, the Deep 
ANN with 4 Hidden Layers is better than the Deep ANN architecture with fewer Hidden Layers. 
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Fig. 7. The loss history graph 

 
The primary goals of this study are to determine the number of hidden layers present in the 

network and the impact of those hidden layers on the networks. The results demonstrated that the 
proposed distance estimation method with four hidden layers of Deep ANN has the lowest measured 
error. The measurement error decreases as the number of Hidden Layers in the Deep ANN 
architecture increases. However, in Deep Ann architecture with 4 Hidden Layers, the measured error 
increases as the distance increases. Due to the focus of this study on the AEB and AES assessment, 
the accuracy of distance estimation for the nearest distance is adequate. In addition, as the Hidden 
Layers increase, the value of validation metrics such as MAE, MSE and RMSE decreases. Thus, the 
Deep ANN architecture with 4 Hidden Layers outperforms fewer Hidden Layers in prediction error 
and validation metrics. 

 
5. Conclusions 

 
This study proposed a test methodology using deep learning to assess the assessments for AES 

and AEB in the safety rating test protocol. The suggested method for test methodology in situation-
based threat assessments is based on a monocular distance estimation-based approach. The 
monocular visual distance estimate has benefits such as speed, simplicity, and affordability compared 
to binocular vision. Deep ANN algorithms use as the deep learning approach for the proposed 
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method. The KITTI dataset is employed to train and test the proposed method. Four different 
architectures with varying numbers of hidden layers are designed to select the optimum architecture 
for the proposed method. The results show that the Deep ANN architecture with 4 Hidden Layers 
outperforms fewer Hidden Layers in prediction error and validation metrics. Therefore, this study 
suggested applying the proposed method to assess the assessments for AES and AEB in the safety 
rating test protocol. Besides that, the proposed method will evaluate collision-avoidance scenarios 
with essential metrics like ideal braking distances to verify the methodology for active safety features. 
As a result, this study can help provide the methodological framework for a deeper comprehension 
of driver behaviour with the long-term purpose of reducing rear-end collision rates. 
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