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Establishing an effective HI model is challenging because it involves balancing cost, risk, 
and performance. The currently developed Reduced Features Model (RFM) for the 
transformer Health Index (HI) prediction may lead to late prediction. The RFM utilised 
non-routine input features to achieve a high-accuracy model where data availability is 
the primary concern. Hence, the common goal of Transformer Asset Management 
(TAM) in achieving acceptable availability and reliability of the transformer may not be 
achieved. In this paper, the primary objective is to investigate the performance of the 
HI model by considering routine test features as a baseline for developing the Early 
Detection Model (EDM). The development of EDM is significant, as the model shall 
provide a sustainable solution to the utility and plant owners in establishing their TAM 
strategies. Hence, this paper's case studies include performance investigation using 
routine, non-routine, and derived features from the routine test. Support Vector 
Machine (SVM) was used for the prediction modelling, and the model's performance 
was validated based on a 5-fold cross-validation technique to avoid biases. As a result, 
it was found that the average accuracy performance of 88.4% was obtained by 
considering only routine test features during the model validation process. However, 
complementing the routine test with other features, which were non-routine and 
derived features, increased the average performance accuracy model to 95.3%. Hence, 
further development of EDM is feasible and crucial for sustainable TAM solutions. 

Keywords: 
Transformer Health Index; non-routine 
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1. Introduction 
 

Transformers are one of the critical parts of every electrical network [1]. Following IEEE 
C57.12.80, the transformer function transfers power by electromagnetic induction between circuits 
at the same frequency, usually with changed voltage and current values. Due to its nature, the 
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transformer is widely used for various applications, including electrical distribution and transmission 
network systems. 

While the IEEE C57.91 thermal model sets the ideal life expectancy for oil-type transformers at 
20.5 years, considering the hottest insulation temperature of 110°C, the transformer may experience 
various degradation processes throughout this operational period. These processes can stem from 
factors such as design safety margins, operation, and maintenance practices [2]. The transformer 
anticipated failure rates become unacceptable if nothing is done since the transformer needs a long 
time to repair [3]. Also, the statistical analysis found an increase in the failure rate for transformers 
aged between 30 and 40 [4]. In some cases, replacing the damaged transformer may take more than 
a year [5]. 

Given the ageing global transformer infrastructure, ongoing operational and financial constraints, 
and long replacement times, utility and plant owners seek strategies to optimise transformer 
performance while minimising costs [6]. The importance of asset management, system safety, and 
the adoption of advanced technology can provide valuable insights for holistic and efficiency-centred 
approaches in various industries [7]. The TAM program addresses these challenges, improving asset 
decision-making and providing greater flexibility in maintenance programs [2]. Nevertheless, 
establishing an effective TAM program is challenging as it requires a balance between cost, risk, and 
performance, especially in managing an ageing transformer asset [6]. In the context of the TAM 
program, the HI facilitates the evaluation of the transformer's health condition, which has been 
accepted as a standard technique [8]. 

One persuasive approach to creating a cost-effective solution for the HI assessment is the 
development of the RFM [9-12]. In the RFM, data preprocessing employs a feature selection method 
focusing on sensitivity analysis. This process selects a subset of relevant, high-quality, and non-
redundant features for building learning models with improved accuracy [13]. Cost reduction is 
achieved using fewer features to maintain a similar performance as a full-featured model [14]. The 
main limitation of the RFM is its reliance on non-routine test features, hindering early predictions 
and consistent health assessments. The non-routine test is conducted on a case-by-case. 
Additionally, feature selection can be misinterpreted without expert input, complicating the model's 
industrial application. 

The RFM predominantly focuses on DGA, OQA, and Furan as features or parameters for predicting 
the transformer HI. However, it overlooks the potential of derived features such as incipient faults 
that can give useful information to enhance the model's predictive reach. Incorporating these derived 
inputs could substantially refine the HI model's predictions performance. The increasing trend of 
research into Unsupervised Fault Detection (UFD) techniques was discussed in a systematic review 
conducted by Sobran and Ismail [15], also highlights the importance of early fault detection systems 
which useful for monitoring system in engineering fields. 

Focusing on risk reduction, opportunity identification, and early process improvement is more 
effective in achieving a cost-effective solution than relying solely on the RFM. Developing the EDM 
addresses these RFM weaknesses, using routine test features to ensure data availability, facilitate 
continuous health assessments, and enable integration with other TAM activities. Unlike RFM, the 
EDM's routine features allow seamless integration into monitoring systems and workflows, 
benefiting from existing data sources and test protocols. 

This paper investigates the EDM's feasibility by considering input features from routine tests as a 
baseline. The SVM ML model is developed based on the established case studies. The benchmark 
datasets from Alqudsi and El-Hag [13] are utilised for the performance validation of the developed 
SVM models. The findings are expected to be valuable tools in establishing the TAM programs and 
may provide long-term impacts on sustainability for the utility and plant owner. 
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The paper is structured as follows: Section 2 discusses relevant research within the topic that led 
to the problem statement. Then, in Section 3, the proposed methodology is described and followed 
by Section 4, with the results and discussion. Finally, the conclusion is provided in Section 5. 
 
2. Related Work 
 

The HI represent an effective and practical tool that combines the results of operating 
observations, field inspections, and site and laboratory testing into an objective and quantitative 
index, providing the overall health of the asset [16]. According to Rediansyah et al., [17], most of the 
input features considered as part of HI are based on the insulation system testing, consisting of 
Dissolved Gas Analysis (DGA), Oil Quality Assessment (OQA), and Furan. The DGA gases include 
Hydrogen (H2), Methane (CH4), Ethane (C2H6), Ethylene (C2H4), and Acetylene (C2H2), while OQA 
consists of Water Content, Breakdown Voltage (BDV), Interfacial Tension (IFT) and Acidity as a 
minimum. 

Various techniques have been proposed for selecting the most influential input features for the 
HI model development. In the study by Ghoneim and Taha [11], the RFM reveals the efficiency of the 
adopted feature reduction technique. The results show a slight performance difference between the 
full and reduced-feature input. Employing the Ensemble (EN) method, the obtained HI performance 
accuracy is 95.9% for the full features and 95.8% for the reducing feature. Three (3) feature selection 
techniques are proposed: filters, wrapper, and embedded method. The final features chosen for the 
reduced features were CO2, C2H2, C2H6, C2H4, colour, BDV, IFT, water content, and Furan. This 
suggests that even simpler models can yield comparable results, making them more resource-
friendly. 

In another study conducted by Alqudsi and El-Hag [13], a stepwise regression method is proposed 
for the feature reduction technique. This method led to the selection of six (6) primary input features 
for determining a transformer's Health Index. These include 1) Furan, 2) IFT, 3) H2, 4) C2H6, 5) C2H2, 
and 6) Acidity. For this study, eight (8) different ML classifiers were used for the performance 
validation, and the obtained Mean Accuracy Rate (MAR) was above 90%, where Decision Tree (J48) 
and Random Forest (RForest) classifiers have the best performance among the eight (8) classifier 
models. Finally, in Benhmed et al., [10], various reduced-feature approaches are developed to find 
the most influential input features. Three (3) filter techniques have been proposed consisting of Info-
gain (IG), ReliefF, and Correlation Based Feature Selection (CRS). Based on the investigation, it is 
found that water content, acidity, BDV, and Furan are the most dominant features. 

Selecting input features is critical for every HI model. Unfortunately, as researchers relied on the 
technique and aimed to achieve high performance, it is lacking in addressing the industry practice 
and recommendations and less concerned about the data availability, as highlighted in CIGRE WG 
761. For example, The IFT test is classified into three groups per IEC 60422 standards and is part of 
the complementary test category. A Furan analysis is recommended by IEC 60599 only when 
excessive degradation of cellulose-based insulation is suspected. This analysis, which is not part of 
the standard inspection routine but rather performed on an as-needed basis, aims to supplement the 
interpretation of DGA and confirm insulation faults. Therefore, due to these two tests' occasional 
nature and data unavailability, integrating IFT and Furan as part of the HI model is not practically 
feasible. 

Also, the industry recommendation does not support selecting a few input features proposed by 
Benhmed et al., [10] and Ghoneim and Taha [11], for their RFM, such as oil colour and BDV. Based 
on IEEE C57.152, no direct correlation exists between the insulating oil colour change and any failure 
issues. Besides, according to IEC 60422, a high BDV value does not indicate the unavailability of 
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contaminants in the mineral oil. Instead, the BDV indicates its capacity to withstand electrical stress. 
Therefore, it is supposed that the selected features for the RFM correlate with deterioration factors 
that cumulatively contribute to the transformer’s loss of life. 

Based on the provided perspective, the currently developed RFM may not be suitable yet for the 
actual and sustainable industry application. Furthermore, as highlighted in CIGRE WG A2.18, there is 
pressure to make savings by reducing maintenance from traditional time-based to condition-based 
action. Hence, better solutions to meet the economic and financial constraints are necessary as the 
current RFM leads to late predictions affecting the electrical network’s availability and reliability. 
 
3. Methodology 
3.1 Framework 
 

The proposed research methodology framework is shown in Figure 1. Five (5) main tasks are 
conducted to complete this work. Detailed descriptions of each block (i.e., conducted task) are 
described in the following sub-sections. 
 

 
Fig. 1. Research methodology framework 

 
3.2 Obtained Dataset and Label 
 

The oil sample datasets, including HI labels, are obtained from Alqudsi and El-Hag [13], and are 
referred to as Util1 and Util2. Both obtained oil samples are categorised as medium voltage 
distribution transformers [13]. The transformer for Util1 is rated at 66/11kV with a capacity ranging 
between 12.5MVA to 40MVA. On the other hand, the transformer for Util2 is rated at 33/11kV with 
a capacity of 15MVA. Due to a limited dataset, particularly for the “Fair” and “Poor” categories, oil 
sample populations of both Util1 and Util2 were combined in this work. The summary of the dataset 
distribution is shown in Table 1. 
 

Table 1 
Summary of transformer data per HI categories 
HI Status Nos of sample Total  

Util 1 Util2 Nos % 
Good 496 238 734 70 % 
Fair 206 84 290 27 % 
Poor 28 5 33 3 % 
Total 730 327 1057 100% 

 
3.3 Dataset Preparation 
 

The oil sampling dataset from Alqudsi and El-Hag [13], consists of DGA, OQA, and Furan. Five (5) 
gases are available for DGA that are H2, CH4, C2H6, C2H4, and C2H2. On the other hand, six (6) 
measured oil parameters are available for OQA: Water Content, Acidity, BDV, and IFT. The obtained 
dataset’s input features are further segmented into routine and non-routine tests, and derived 
features are also established from the available routine dataset. The new derived features consist of 
the DGA Factor (DGAF), OQA Factor (OQAF), and Fault Code (FC). 

Obtained 
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Based on the established background defined in Section 2.0, although the BDV is part of the OQA 
routine test, this feature is not considered part of the model development as the industry does not 
recommend this feature. Figure 2 summarises the input features block diagram considering routine, 
non-routine, and relevant derived features. 
 

 
Fig. 2. Block diagram on input features 

 
3.3.1 Derived features for fault code 
 

IEEE C57.104 recommended a few fault identification methods, such as Roger Ratios, 
Doernenburg ratios, Key Gases, Duval Triangle (DT), and Duval Pentagon. This paper computes the 
fault code from the DT One method. Also, the standard, theoretically, the DT One utilises three gases 
to correlate faults’ increasing energy content or temperature. This method identifies the six basic 
types of faults, plus mixtures of electrical/ thermal faults in zone DT. The basic type of fault consists 
of Partial Discharge (PD), Discharge of Low Energy (D1), Discharge of High Energy (D2), Thermal Fault 
below 300°C (T1), Thermal Fault between 300°C and 700°C (T2) and Thermal Fault above 700°C (T3). 

The predicted incipient fault from the DT One method is later segmented according to its FC. The 
assigned fault codes are 1) Fault Code “0” for PD, 2) Fault Code “1” for T1, 3) Fault Code “2” for T2, 
4) Fault Code “3” for T3, 5) Fault Code “4” for DT, 6) Fault Code “5” for D1 and 7) Fault Code “6” for 
D2. Figure 3 illustrates the DT One method. 
 

 
Fig. 3. Duval Triangle One method  

 
 
 
 
3.3.2 Derived features for DGAF 
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In Jahromi et al., [16], a ranking method for the DGA gases known as DGAF has been developed 

using the available DGA data (H2, CH4, C2H2, C2H4 & C2H6). The DGAF is computed based on Eq. (1) 
 

𝐷𝐺𝐴𝐹 = ∑ "!×	%!
"
#$%
∑ %!
"
#$%

             (1) 

 
Where Si = 1,2,3,4,5 or 6 is the scoring value, Wi is the assigned weighting factor, and n is defined as 
the number of features (i.e. H2, CH4, C2H2, C2H4 & C2H6). Si and Wi for the gas levels (ppm) are 
summarised in Table 2, while the rating code based on the obtained DGAF score is summarised in 
Table 3. This was also a similar approach utilised by Alqudsi and El-Hag [13]. 
 

Table 2 
Scoring and weight factor for gas levels (ppm) [16] 
Gas Score (Si) Weight 

(Wi) 1 2 3 4 5 6 
H2 < 155 < 225 < 365 < 585 < 700 > 700 2 
CH4 < 103 < 145 < 240 < 400 < 600 > 600 3 
C2H6 < 92.5 < 95.5 < 96.5 < 97.5 < 100 > 100 3 
C2H4 < 75 < 85 < 95 < 105 < 130 > 130 3 
C2H2 < 5 < 15 < 25 < 35 < 60 > 60 5 

  
Table 3 
DGAF code summary [16] 
Rating Code Condition Score 
4 Good DGAF < 1.2 
3 Acceptable 1.2 ≤ DGAF < 1.5 
2 Need caution 1.5 ≤ DGAF < 2 
1 Poor 2 ≤ DGAF < 3 
0 Very poor DGAF ≥ 3 

 
3.3.3 Derived features For OQAF 
 

The ranking method for the oil test parameters, known as OQAF, has also been developed by 
Jahromi et al., [16]. For this paper, the computation of the OQAF was performed based on water 
content and acidity only. The OQAF is derived based on Eq. (2) 
 

𝑂𝑄𝐴𝐹 = ∑ "!×	%!
&
#$%
∑ %!
&
#$%

             (2) 

 
where Si = 1,2,3 and 4 is the scoring value, Wi is the assigned weighting factor, and n is defined as the 
numbers of features (i.e. acid and moisture). The grading (i.e., scoring) method for the oil quality test 
parameter, as adopted by Jahromi et al., [16], is shown in Table 4. The grading method applies to 
transformers rated U < 69 kV. Finally, the OQAF rating code, similar to DGAF, is assigned based on 
the OQAF scoring and summarised in Table 3. Alqudsi and El-Hag [13] also utilise a similar approach. 
 
 
 
 

Table 4 
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Oil quality grading For U < 69 kV [16] 
Oil quality Score (Si) Weight (Wi) 

1 2 3 4 
Acidity ≤ 0.05 0.05 – 0.1 0.1- 0.2 ≥ 0.2 1 
Moisture (ppm) ≤ 30 30 - 35 35 - 40 ≥ 40 4 

 
3.4 Case Study Development 
 

A few case studies were developed to investigate the feasibility of developing the EDM by utilising 
routine features as a baseline. These proposed case studies were intended to evaluate the model's 
effectiveness, including investigating each input's strengths and weaknesses, seeking patterns, and 
trending the data. Also, the input features considered for each case study are summarised in Table 
5. For Case Studies 2 and 3, as both IFT and acidity have the same knowledge, only IFT was considered 
part of the input features.  

 
(i) Case Study 1 (CS-1): Investigate the effectiveness of input features considering transformer 

routine tests.  
(ii) Case Study 2 (CS-2): Investigate the effectiveness of input features considering transformer 

routine and non-routine test features.  
(iii) Case Study 3 (CS-3): Investigate the effectiveness of input features considering transformer 

routine, non-routine, and derived features from the available routine test data.  
 

Table 5 
Summary of input features considered for each case study 
No Case 

Study 
Routine test Non-Routine Test 
OQA DGA Derived OQA  Paper insulation 
BDV Acidity Water H2, CH4, C2H6, 

C2H4, C2H2 
OQF, DGAF IFT Furan 

1 CS-1 No Yes Yes Yes No No No 
2 CS-2 No No Yes Yes No Yes Yes 
3 CS-3 No No Yes Yes Yes Yes Yes 

 
3.5 ML Model Development 
 

As defined in Section 1.0, the SVM method is selected as a tool for the performance comparison. 
Moreover, SVM is a supervised ML Algorithm that can be used for classification problems. Besides, 
the proposed method was also utilised by Ghonemi and Taha [11], Alqudsi and El-Hag [13], and 
Ashkezi et al., [18], where this technique requires minimum parameter setting. Hence, suitable for 
this paper's study, where the main objective is to investigate the input features selection for 
developing the EDM. 

As shown in Figure 4, SVM finds the best-separating hyperplane to maximise the margin between 
data samples. The filled circles represent the support vectors, while the unfilled circles represent the 
support vectors. SVM creates a hyperplane to separate samples from different classes. The 
hyperplane is constructed using the training datasets and used as a classifier for a new sample to 
determine the true class of each tested sample. The kernel function is popular for identifying the 
hyperplane [11]. The structure of the SVM classification model with input-output consideration and 
SVM model parameter setup are shown in Figure 5 and Table 6, respectively. 
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Fig. 4. Separation between two classes by 
SVM [11] 

 Fig. 5. Model structure for SVM model 
for various case studies 

 
Table 6 
SVM model parameter setup 
No Classifier Parameter/s 
1 SVM Regularization = 12 norm, Loss = Square hinge 

 
3.6 Training and Validation of the SVM Model 
 

The developed SVM model is trained using 80% of the available dataset, and the remaining 20% 
is set for validation purposes. Zeinoddini-Meymand and Vahidi [19] also utilise a similar 
configuration. Besides that, the testing parameter of 20% is selected due to the limited data 
distribution, especially for the "Poor" categories, which govern only 3% of the total data distribution. 

The cross-validation technique was implemented to deter overfitting. Cross-validation is an ML 
model evaluation technique that encompasses training multiple machine learning models on subsets 
of the available input data and assessing them on the complementary subset. Therefore, a 5-Fold 
cross-validation technique is implemented, similar to the selection in Kari et al., [20]. 
 
3.7 Performance Evaluation 
 

Evaluating the SVM model is a critical step. This study uses classification accuracy and confusion 
matrix to evaluate the model performance. Classification accuracy is the ratio of the number of 
correct predictions to the total number of input samples. At the same time, the confusion matrix 
gives a matrix as output and describes the complete performance of the model. In addition, the 
confusion matrix provides insight into the errors produced by the classifier and the types of mistakes 
produced. 
 
4. Result and Discussion 
4.1 Result 
 

Table 7 summarises the obtained result for all three studied cases compared to the benchmark 
in terms of model accuracy performance. The benchmark accuracy performance published by Alqudsi 
and El-Hag [13], also obtained from the SVM method, was adopted for performance comparison 
purposes. The average performance accuracy from the benchmark result is 88.4%. The benchmark 
result utilises all input features from the available dataset. In CS-1, by exploiting only routine features, 
the average accuracy is slightly lower than the base case, 87.7%. Interestingly, the obtained minimum 
accuracy for CS-1 was slightly better than the benchmark result. In CS-2, the average accuracy was 
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increased by applying routine and non-routine tests to 93.3%. Finally, in CS-3, further model 
improvement is observed, where the average accuracy was increased to 95.3%. 
 

Table 7 
Results summary in percentage 
 Performance accuracy (%) 

Min Max Avg. Std. Dev. 
Benchmark (with full 
features) [13] 

85.6 92.6 88.4 3.0 

CS-1 86.3 89.2 87.7 1.2 
CS-2 92.0 94.8 93.3 1.3 
CS-3 94.8 96.7 95.3 0.8 

 
Besides performance accuracy obtained from the developed case studies, a confusion matrix was 

also established. The confusion matrix information is essential to provide the performance of the 
developed model. Table 8-10 describe confusion matrix results obtained from CS-1, CS-2, and CS-3. 
Here, the efficiency per class for each confusion matrix class was also calculated for in-depth analysis 
of the obtained model performance, particularly in classifying the targeted HI label. 
 

Table 8 
Confusion matrix for CS-1 
 Predicted label Efficiency per class 

(%) Good Fair Poor 
Good 139 8 0 94.6 
Fair 15 40 3 69.0 
Poor 0 3 4 57.1 

 
Table 9 
Confusion matrix for CS-2 
 Predicted label Efficiency per class 

(%) Good Fair Poor 
Good 143 4 0 97.3 
Fair 8 47 3 81.0 
Poor 0 2 5 71.4 

 
Table 10 
Confusion matrix for CS-3 
 Predicted label Efficiency per class 

(%) Good Fair Poor 
Good 145 2 0 98.6 
Fair 4 52 2 89.7 
Poor 0 3 4 57.1 

 
4.2 Analysis and Discussion 
 

Three (3) case studies have investigated the effects of routine test features as a baseline for 
developing the EDM. In CS-1, the average accuracy was 87.7%, compared with the benchmark result 
of 88.4%. However, no details on the model setting parameters, such as training and validation data 
distribution, were mentioned by Alqudsi and El-Hag [13] for the benchmark result. Hence, a fair 
comparison might be arguable as far as optimised model selection is concerned. Nevertheless, since 
the main objective of this work is to investigate the influence of input features selection for HI 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 39, Issue 2 (2024) 141-152 

150 
 

determination, the model tuning task was not considered, and targeted comparison only focused on 
the selection of numbers and nature (i.e., routine, non-routine, and derivation) of input features. 

By adopting a default setting of SVM model parameters setup (i.e., as in Table 6), the obtained 
accuracy from CS-1 demonstrated that the model that utilises only routine features has promising 
performance compared with the benchmark model, which utilises all the available features. 
Therefore, it can be concluded that features such as BDV and colour, which are not recommended 
by industry practice or using features with similar knowledge, such as acidity and IFT, may not 
necessarily improve the model. Utilising these features could introduce extraneous or 'noise' data 
that may distort the true pattern in the dataset. Nevertheless, the obtained confusion matrix from 
CS-1, Table 8, shows that further improvements in the "Fair" and "Poor" classes are required as the 
obtained efficiency is only 69.0% and 57.1%, respectively. Hence, consideration for the non-routine 
test is further investigated. 

In the second case study (i.e. CS-2), the average accuracy improved from 87.7% to 93.3%. It shows 
that the non-routine input features, i.e., Furan and IFT are essential for predicting the transformer 
HI. The confusion matrix from CS-2, Table 9, also shows further improvement in the "Fair" and "Poor" 
classes as the obtained efficiency increases from 69.0% to 81.0% and 57.1% to 71.4%, respectively. 
Unfortunately, as the features of IFT and Furan are part of a non-routine test, the data is unavailable, 
preventing the utility and plant owner from providing continuous health assessments. Besides that, 
conducting the test are also expensive. As per Prasojo et al., [14], the normalised price for conducting 
the Furan test from five (5) providers is 0.89. Also, based on this Alqudsi and El-Hag [21], the 
estimated cost to conduct IFT per sample is US$115. However, a few researchers have successfully 
predicted the IFT and Furan [17,22]. Hence, a similar approach may be considered for developing an 
early detection model, especially for the IFT and Furan condition. 

Meanwhile, in CS-3, the average accuracy improved from 93.3% to 95.3%. It shows that the 
derived features from the routine test, consisting of DGAF, OQAF, and Fault Code, can provide 
additional knowledge and complement other input features. The confusion matrix from CS-3, Table 
10, also shows further improvement in the "Good" and "Fair" classes as the obtained efficiency 
increases from 97.3% to 98.6% and 81.0% to 89.7%, respectively. Only the "Poor" class shows a drop 
in efficiency from 71.4% to 57.1%. Although the "Fair" class shows improvement in the model 
prediction, there is a possibility for the model to be misclassified the "Fair" as "Good." For developing 
a robust early prediction model, misclassifying a superior class for an instant, "Fair" as "Good" or 
"Poor" as "Fair" should be avoided. Misclassification in the dataset may be due to its distribution. For 
instance, in Table 1, the "Fair" category represents around 27% of the data, while the "Poor" category 
is about 3%. This imbalance can favour predicting the overrepresented class, leading to more 
misclassification of the minority class. Therefore, balancing the dataset can help alleviate these 
issues. Despite this, the technique could be improved – exploring ensemble ML methodologies might 
offer further enhancements due to their inherent flexibility. 
 
5. Conclusion 
 

In conclusion, this paper has successfully investigated the influence of routine, non-routine, and 
derived features in developing the EDM for the HI classification. 

From the dataset acquired by Alqudsi and El-Hag [13], three (3) case studies have been simulated. 
The SVM ML technique was selected as a tool for the performance comparison, and a 5-fold 
validation technique has been used for diagnosing model overfitting. The obtained result from this 
paper shows that the EDM for HI classification by considering routine features as a baseline is 
feasible, provided the listed consideration is carried out: 
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i. Avoid using input features with similar knowledge or input features not recommended by 
the industry, as the features do not improve the model and might cause noise in the 
dataset. 

ii. Developed prediction model for IFT and Furan as it provides essential knowledge to the 
model. The prediction model shall utilise input from the routine test to avoid late 
predictions. Hence, it allowed for continuous assessment by the utility and plant owner. 

iii. Mitigate the unbalance dataset issues, especially for "Fair" and "Poor" categories, to avoid 
any bias in the model prediction. If the unbalanced dataset could not mitigate for "Fair" 
and "Poor" classes, the early prediction model is proposed to predict the worst class. This 
allowed the model to predict accurately, especially for the minority class. 

iv. Explore other techniques, as a single ML classifier may not be suitable for predicting the 
"Fair" and "Poor" categories. 
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