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In this paper, we introduced a solution to improve hardware Trojan (HT) detection 
coverage by analyzing features at different abstraction levels. We demonstrated our 
solution with a supervised classification of HT branching statement (BS) in register-
transfer-level (RTL) description. The proposed classifier was trained with a double-
abstraction-level feature vector consisting of features extracted at RTL and gate level 
(GL). In the experiment, we evaluated the HT detection coverage of the trained classifier 
by applying them on 24 self-designed HT circuits. The proposed classifier achieved the 
highest 87.5% HT detection coverage with 81.25% true positive rate (TPR), 88.44% true 
negative rate (TNR), and 88.24% accuracy (ACC). The result proved that the double-
abstraction-level feature vector outperformed the single-abstraction-level feature 
vector with a higher HT detection coverage. 
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1. Introduction 
 

In the semiconductor industry, a term “hardware Trojan” (HT) was coined to refer to a circuitry 
that is secretly inserted into an integrated circuit (IC) and attempts to attack the system at which the 
HT resides [1]. The HT can launch harmful attacks such as changing the circuit operation, leaking the 
critical information, degrading the circuit performance, and a Denial-of-Service attack [2]. The 
presence of HT causes the trustworthiness issue of ICs.  

One of the HT countermeasures is detection. Among the previously proposed detection methods, 
the machine-learning-based approach is relatively popular, especially for pre-silicon detection. Its 
self-learning ability helps in building an analytical model without an explicit programming. The model 
can even be expanded by fitting it with a larger database. Due to these reasons, machine learning 
can reduce the effort of HT detection. However, we cannot apply only single approach to detect all 
HTs because of the diversity of HT types. Many HT detection methods have been introduced with 
each of them having different motivations and different HTs covered. 
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HT detection is preferable to be conducted during pre-silicon stage due to the difficulty of HT 
removal from a physically fabricated circuit. To prevent unnecessary investment in an infected circuit 
design, it is always better to identify the HT before the circuit design is mapped into later stages of 
design process. In addition, the information contained in the circuit design at every stage is different, 
it could be harder to trace the HT when the circuit design undergoes more mappings at lower 
abstraction levels. Due to these reasons, register-transfer level (RTL) is an early design stage which is 
suitable for conducting HT detection. However, conversion of RTL circuit functionality to quantitative 
data is a challenge. 

This paper suggests a solution to HT detection coverage improvement by utilizing double-
abstraction-level features. We demonstrated our solution with an RTL branching statement (BS) 
classification method and the proposed features extracted at both RTL and gate level (GL). To our 
best knowledge, we are the first to extract GL features from RTL instances for HT detection. 

We first discuss on the related HT detection methods and emphases on the differences between 
each method. Then, we discuss the proposed solution framework including the proposed features, 
training and validation of classifiers, and evaluation of the proposed solution. Lastly, the experimental 
results are presented, and discussions are made between previously proposed methods and our 
method. 
 
2. Related Works 
 

In 2016, a GL HT net classification method was proposed by Hasegawa et al., [3]. A support-vector 
machine (SVM) was implemented to detect HT nets based on their structural features. It achieved 
83% true positive rate (TPR) and 49% true negative rate (TNR). The proposed method was further 
evaluated by Inoue et al., [4]. The result showed that the method was effective against conditionally 
triggered HTs but not effective against always-on HTs. Another set of HT net structural features was 
introduced by Inoue et al., [5] which achieved at least 98.2% TNR on every circuit it tested using a 
random-forest classifier. The proposed features were adopted by Hasegawa et al., [6] to be 
implemented with a multi-layer neural network, and it achieved 85% TPR and 70% TNR. The study 
was further explored by Inoue et al., [7] to optimize the neural network classifier. The experiment 
result showed that the classifier managed to achieve 72.9% TPR and 90% TNR. Another GL HT net 
classification method based on net structural features was introduced by Kurihara and Togawa [8] 
which achieved 63.6% TPR and 100% TNR. 

 A GL net HT detection method based on net testability was proposed by Salmani [9]. The author 
employed unsupervised k-means clustering approach to categorize nets into three clusters of 
possibly genuine nets, HT nets with poor controllability, and HT nets with poor observability, 
respectively. The proposed method managed to achieve 100% accuracy (ACC) in 21 out of 23 tested 
HT benchmark circuits.  

A GL netlist classification method was proposed by Xie et al., [10] based on both net structural 
and testability features. The experimental result showed an 100% ACC in which every circuit was 
correctly classified. Another study of GL net classification based on both types of features was 
introduced by Kok et al., [11]. The proposed method achieved 99.85% TPR, 99.95% TNR, and 99.90% 
ACC by using an k-nearest neighbors (k-NN) classifier. 

A GL logic classification using an unsupervised Density-Based Spatial Clustering of Applications 
with Noise (DBSCAN) was introduced by Lu et al., [12] based on information entropy of signal 
waveforms, and it obtained 79% TPR and 99% TNR. 

An RTL signal classification based on RTL description’s abstract syntax tree information was 
introduced by Han et al., [13]. Gradient boosting classifier was employed, and it achieved 100% TPR 
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and 89.32% TNR. An RTL description classification method using graph neural network (GNN) based 
on data flow graph was introduced by Yasaei et al., [14], and it achieved 97% TPR. 

Based on our literature review, we find that RTL machine-learning-based HT classification method 
is less explored compared to GL. In addition, no existing study focuses on improving HT detection 
coverage. 
 
3. HT Classification with RTL and GL Features 
 

The proposed HT detection method utilizes a double-abstraction-level feature vector and a 
supervised machine learning classifier to identify HT BSs in RTL description. BS refers to any 
statement that involves conditional operator such as if and if-else, and case. The classification is 
based on the proposed BS features extracted at both RTL and GL.  

The framework of our proposed solution is presented in Figure 1. The samples of BSs are collected 
from the HT benchmark circuits provided by Trust-Hub [2]. A feature vector consisting of RTL and GL 
features are extracted from each BS. A label of genuine or HT class is given to each feature vector. 
After dataset balancing, the collected data forms a training dataset and is used to train classifiers. 
After performance validation, the selected trained classifier is further evaluated to determine their 
HT detection coverage. 
 

 
Fig. 1. Our proposed solution framework 

 
3.1 BS Features Extraction 
 

The four (4) RTL features were previously proposed by Choo et al., [15] and are defined based on 
branching probability and control dependency index which quantifies the difficulty of transition of a 
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variable from one to another state; the six (6) GL features are related to combinational testability 
measures based on Sandia Controllability/Observability Analysis Program (SCOAP) [16]. 
 
3.1.1 RTL features 
3.1.1.1 Branching probability 
 

HTs are usually activated under rare conditions [17]. In other words, HT statements in RTL are 
expected to have a lower chance of execution. By assuming that the chance of a statement being 
executed at RTL corresponds to the probability of entering the BS under the specified condition, 
branching probability could be analyzed for detecting HTs. 

Branching probability (P) is defined as the probability of executing a BS 
 

P =  
|COND|

2Ncond
               (1) 

 
where COND is a set of binary values that satisfy the branching condition when they are assigned to 
the conditional variable, and Ncond is the number of bits that compose the conditional variables. For 
instance, a branching condition (A==2’b01&&B<2’b11) has COND = {0100, 0101, 0110} and Ncond = 
4 where the first two bits belong to variable A and the following two bits belong to variable B. The 
lower the P, the more difficult the BS will be taken.  

Pouter of a BS is the effective branching probability of the preceding level BS (which is applicable 
to any nested BS). For BS at the outermost level, Pouter is, by default, assigned to 1 which is the 
maximum value indicating that the preceding level BS is always taken.  

Effective branching probability of a BS (Pe) refers to the effective probability of a BS being taken 
instead of other BSs at the same branching level. Pe of a BS is dependent of Pouter and is defined as 
 
Pe = Pouter × P              (2) 
 
where P is the branching probability of the BS being evaluated.  

Relative branching probability (RP) of a BS is defined as the branching probability of the BS with 
respect to the highest branching probability of any BS at the same branching level 
 

RP =
P

Pmost
               (3) 

 
where P¬¬most represents the highest branching probability of the BS at the same level with the 

BS under evaluation. Low relative branching probability indicates that the BS is suspicious because 
the branching condition is difficult to be fulfilled, compared to other BSs at the same branching level. 

Since P can be derived from Pouter and Pe using Eq. (2), it could be considered as a redundant 
feature. Only Pouter, Pe and RP are selected to be used as the input features for HT detection.  
 
3.1.1.2 Control dependency index 
 

On one hand, a sequential HT may need to transition through several register states before the 
HT is activated. On the other hand, the HT triggering variable tends to stay in the same register state 
for a long duration before proceeding to the final state to activate. This HT characteristic could be 
observed at a BS that uses control dependent variable in the branching condition along with an 
additional difficult branching condition. Control dependent variable refers to a variable which is an 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 32, Issue 1 (2023) 73-86 

77 
 

output variable(s) of the block (variable being used as the left-hand-side variable by any statement 
in any BS within the block) and is also being used in the BS’s condition. If the control dependent 
variable is also the state of the sequential block, the variable may determine the number of 
transitions of the states before the HT activates. One example is as shown below 
 
if(A==2’b01 && B==6’b110110) A=2’b10; 
 

Variable A is a control dependent variable which requires itself to be 2’b01 to transition to state 
2’b10 with an additional requirement of (B==6’b110110) making the transition of the states more 
difficult. This kind of control dependent variable has a difficult sequential transition pattern due to 
the additional requirement. It could be part of the HT trigger signals, especially the sequential HT. 
Control dependency index (Cdep) of a BS is introduced to quantify the difficulty of the control 
dependent variable to trigger transition from one to another state, and is defined as 
 

Cdep = {
1, Ndep = 0

 
Ndep

Ncond
, Ndep > 0

             (4) 

 
where Ndep is the number of bits of the control dependent variable in a branching condition; Ncond 
is the total number of bits that compose the conditional variables in the BS. If Ndep is 0, Cdep is taken 
as 1, which means there is no control dependency between the conditional operator and the output 
variables of the block. Otherwise, Cdep equals to the ratio of Ndep to Ncond. 

The lower the Cdep, the more difficult it is for the variable to transition from one state to another 
state. This also means that the variable tends to stay in the same state for a long period, which is one 
of the characteristics of hardware HTs. Thus, Cdep is used as one of the proposed features for HT 
classification. 
 
3.1.2 GL features 
 

Goldstein et al., [16] estimates and quantifies the difficulties of controlling and observing a signal 
in a net. For conventional testing, these measurements are desired to be low to reduce the 
complexity of test generation. However, depending on the inserted HTs, some HT related nets could 
be high in these measurements as the HTs usually want to bypass the testing. In this paper, SCOAP is 
used to measure three measurements, combinational 0-controllability (CC0), combinational 1-
controllability (CC1), and combinational observability (CO). We further analyze the measurements 
and process them into the six (6) features representing a BS.  

First, the given RTL description is compiled into a dummy GL netlist without any extra design 
constraints or optimization to avoid any further difficulty of HT detection. During this compilation, 
the RTL variables are converted into either a net, a primary input, or a primary output. RTL variables 
refer to the variables defined as reg (registers) and net (nets) in the RTL description written in Verilog 
HDL. From here, the set of nets corresponding to RTL variables is defined as SRTL, which is a subset 
of the set of all nets, S 
 
SRTL ⊆ S               (5) 
 

We use Synopsys TetraMax to calculate the SCOAP measurements. In theory, the combinational 
SCOAP measurements can be ranging from 1 to infinity for CC0 and CC1, 0 to infinity for CO. However, 
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Synopsys TetraMax has a limitation that the measured values for CC0, CC1, and CO have a threshold 
of 254 where any value higher than 254 will be replaced by the symbol of asterisk (*). This threshold 
is easily exceeded especially by large circuits. 

D flip-flop is a sequential logic that complicates the combinational testability, resulting in a high 
SCOAP measurement value. In this paper, we simplify the previously obtained GL netlist by removing 
all D flip-flops under the assumption of full scan technique being applied to the circuit. The removed 
D flip-flops’ data input nets and data output nets are then converted to a new primary outputs and 
inputs, respectively. By doing so, we can simplify the SCOAP computation by just considering 
combinational circuit parts. With D flip-flop removal, the issue of exceeding threshold is resolved and 
the SCOAP measurement becomes possible with generally all values below 254. 

After obtaining the SCOAP measurements of each net, we extract all the nets of SRTL for further 
analysis and filter out any net which does not belong to SRTL. For each SRTL net, the magnitude of 
combinational controllability (CC) is calculated, which indicates the degree of difficulty to control a 
net to either 0 or 1. The CC of a net w in SRTL is defined in terms of its CC0 and CC1 as 
 

CC(w) = √CC0(w)2 + CC1(w)2, w ∈ SRTL          (6) 
 

For each BS, the CCs of each SRTL net that correspond to the RTL variables being used in 
branching condition are summed up to be one of the proposed GL features, ΣCC. If ΣCC is high, the 
BS is suspected to have a hard-to-achieve condition that could be possibly used as a rare HT 
activation event. ΣCC is defined as 
 

ΣCC = ∑ CC(wi)
Ncond
i=1 , wi ∈ SRTL            (7) 

 
where wi is the net corresponding to bit i of the conditional variables. 

In a similar way, another BS feature ΣCO is calculated using CO. If ΣCO is high, the BS is 
suspected to use hard-to-observe variables in the branching condition to hide the trigger signal or 
the activation condition from the detection 
 

ΣCO = ∑ CO(wi)
Ncond
i=1 , wi ∈ SRTL            (8) 

 
HT BS is always expected to have much higher CC or CO values than the genuine class BS. 

Therefore, the HT can be considered as the outlier [9]. A simple way to determine the outlier is by 
using the mean and the standard deviation of the samples. By measuring the difference between the 
feature value of a sample and its standard deviation as well as the mean, the outlier can be 
determined when the difference value is beyond a given threshold. However, the threshold is unable 
to be confirmed because it would vary according to circuit and HT design. Instead, we utilize the 
mean and the standard deviation of CC and CO directly as our proposed GL features for classification 
between the genuine circuits and the HT circuits.  

Assuming that SRTL contains N number of nets, the proposed features CC’s mean (μCC) and the 
CC’s standard deviation (σCC) of all SRTL nets in the netlist are defined as 
 

μCC =
∑ CCi

N
i=1

N
               (9) 

 

σCC = √∑ (CCi−μCC)2N
i=1

N
                       (10) 
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In a similar way, the proposed features CO’s mean (μCO) and the CO’s standard deviation (σCO) 
of all SRTL nets in the netlist are defined as 
 

μCO =
∑ COi

N
i=1

N
                        (11) 

 

σCO = √∑ (COi−μCO)2N
i=1

N
                       (12) 

 
3.2 Class Labelling 
 

For the classifier training, each BS in the HT circuits is given a class label which is either a positive 
HT class or a negative genuine class. In this paper, the labelling of HT class depends on how the HT 
trigger signal is designed for the HT circuit. A HT trigger signal is defined as a maliciously added RTL 
variable which controls the HT execution. 

There are three different scenarios we have considered. First, for HT circuits that do not have a 
HT trigger signal at RTL, we label the BS which directly executes the HT payload as a HT class, as 
highlighted below (BS #1 in the example in Figure 2). 
 

 
Fig. 2. Scenario 1: HT trigger signal does not exist at RTL 

 
Second, for HT circuits that use a BS to control the HT trigger signal, we label the BS as a HT class 

(BS #1 in the example in Figure 3). 
 

 
Fig. 3. Scenario 2: HT trigger signal is controlled by a branching statement 

 
Third, for HT circuits that control HT trigger signal without using a conditional statement, the BS 

which tests the HT trigger signal and executes the HT payload is labelled as HT class (BS #1 in the 
example in Figure 4). 
 

 
Fig. 4. HT payload (a) Without attribute III (b) With attribute III 

 

 

if (cond == HT_cond)   //BS #1 [HT class]  

out = HT_payload; 

else      //BS #2 [Genuine class] 

out = genuine_function;  

 

if (cond == HT_cond)   //BS #1 [HT class] 

HT_trigger = 1; 

else      //BS #2 [Genuine class] 

HT_trigger = 0; 

 

if (cond == HT_trigger)   //BS #3 [Genuine class] 

out = HT_payload; 

else      //BS #4 [Genuine class] 

out = genuine_function; 

 

HT_trigger = in1&in2&in3&in4 

 

if (cond == HT_trigger)   //BS #1 [HT class] 

out = HT_payload; 

else      //BS #2 [Genuine class] 

out = genuine_function; 
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3.3 Dataset Balancing 
 

HT detection using machine learning approach suffers from an imbalanced dataset issue due to 
insufficient HT sample availability. This imbalanced dataset issue will cause biased training towards 
the major class. We balance the dataset using the adaptive synthetic sampling algorithm (ADASYN) 
[18]. ADASYN is an oversampling method that generates synthetic minor class data based on a 
weighted distribution which describes the learning difficulty of each of the minor class data. In this 
paper, the minor class is the HT class. The generated synthetic HT class data is combined with the 
original extracted dataset to form a balanced dataset which will be used as the training set. The ratio 
of HT class data and genuine class data is aimed to achieve approximately 1:1.  

 
3.4 Training and Validation of Classifiers 
 

Three supervised machine learning algorithm candidates are used to develop the HT classifiers. 
These machine learning algorithms are the popular binary classification algorithms including decision 
tree (DT), k-NN, and SVM. To obtain a fair classifier validation result, we implement k-fold cross-
validation method. The flowchart of k-fold cross validation is illustrated in Figure 5. In this paper, we 
applied k=10 for the k-fold cross-validation. The best performing algorithm is selected for the 
proposed HT classification. 
 

 
Fig. 5. Flow of k-fold cross validation 

 
There are a few performance metrics commonly used for machine learning approaches. Positives 

refer to the HT predictions; negatives refer to the genuine predictions. True positive (TP) indicates 
the event where a HT class data is correctly predicted; false negative (FN) indicates the event where 
a HT class data is incorrectly predicted as genuine class. Similarly, true negative (TN) indicates the 
event where a genuine class data is correctly predicted; false negative (FP) indicates the event where 
a genuine class data is incorrectly predicted as HT class. TPR, or sensitivity, measures the proportion 
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of the correct prediction among the positives; TNR, or specificity, measures the proportion of the 
correct prediction among the negatives. TPR and TNR can also be explained as the estimated correct 
prediction rate among the positives and the negatives, respectively. Lastly, ACC is used to measure 
the overall percentage of correct prediction over all the samples. TPR, TNR, and ACC are defined as 

 

TPR =
TP

TP+FN
                         (13) 

 

TNR =
TN

TN+FP
                         (14) 

 

ACC =
TP+TN

TP+TN+FP+FN
                        (15) 

 
3.5 HT Detection Coverage Evaluation 
 

We further evaluate the trained classifiers with another set of HT circuits to determine their HT 
detection coverage. The HT circuits are designed based on a HT modelling method which categorically 
models the HTs based on four HT attributes. The designed HT circuits should originate from an unseen 
circuit which is not included in the training data. 
 
3.5.1 HT modelling 
 

This paper targets HTs that are stealthy and tend to bypass conventional testing. Based on this 
assumption, we list out four HT binary attributes which can describe the stealthiness of the targeted 
HTs, as listed in Table 1. The HT attributes are then used to design some HT circuits for the evaluation 
of the HT detection coverage. Each of the designed circuits has its own unique combination of the HT 
attributes and attack effect. 
 

Table 1 
HT modelling attributes 

Attribute# Description 

I Does the HT have a deactivation mechanism? 
II Does the HT require multiple trigger patterns at multiple clock cycles to be activated? 
III Is the HT effect observable at only the timeframe at which circuit output is not a concern (idle state)? 
IV Is the HT trigger logic distributed throughout multiple blocks instead of only a single block? 

 
For Attribute I, we consider that a HT with a deactivation mechanism is a stealthier HT which 

could have a higher chance of bypassing the testing. Assuming that the HT could be deactivated some 
time frames after executing the attack, the HT is harder to be detected even when an unusual activity 
is found during testing.  

For Attribute II, we consider that the HT requiring multiple trigger patterns at multiple clock cycles 
to be activated is a stealthier HT since the condition is much rarer than using single trigger pattern.  

For Attribute III, we consider that the HT whose effect is observable only at the time frame when 
the circuit output is not a concern such as idle state is a stealthier HT. Such HT can leak information 
without affecting the major functionality of the circuit, and thus is harder to be detected.  

For Attribute IV, we consider that the HT whose trigger logic is distributed throughout multiple 
blocks instead of a single block is a stealthier HT. The distributed structure of the HT makes the tracing 
of HT signal becomes harder and confusing.  
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3.5.2 HT detection coverage 
 

In this paper, we use another metric, HT detection coverage, to measure what types of HTs can 
or cannot be successfully detected by the classifier. We measure the classifier’s HT detection 
coverage based on the HT attributes previously discussed. The analysis of HT detection coverage will 
be further discussed in detail with some examples in Chapter 4. In addition, the percentage of HT 
detection coverage is also included as another performance metric to quantify the HT detection 
coverage, which is defined as 
 

HT Coverage% =
number of HT circuits with at least one TP detection

total number of HT circuits 
× 100%                 (16) 

 
4. Experimental Result and Discussion 
 

For the experiment, we trained the classifiers using different feature vectors including RTL, GL, 
and the proposed double-abstraction-level feature vectors. Our aim was to show the effect of 
utilizing double-abstraction-level feature vector as compared to single-abstraction-level feature 
vector. 

The circuits used in the experiment are listed in Table 2. For the classifier training, a total of 19 
HT benchmark circuits were collected from Trust-Hub; for the evaluation of HT detection coverage, 
24 HT circuits are designed based on a genuine Keccak encryption circuit.  
 

Table 2 
List of HT circuits used for the experiment 

Classifier Training & Validation HT Detection Coverage Evaluation 

AES-T400 RS232-T600 Genuine TL04 

AES-T700 RS232-T700 TC00 TL05 

AES-T800 RS232-T900 TC01 TL06 

AES-T900 RS232-T901 TC02 TL07 

AES-T1000 wb_conmax-T200 TC03 TL08 

AES-T1100 wb_conmax-T300 TC08 TL09 

AES-T1200  TC09 TL10 

AES-T1600  TC10 TL11 

AES-T1700  TC11 TL12 

RS232-T100  TL00 TL13 

RS232-T300  TL01 TL14 

RS232-T400  TL02 TL15 

RS232-T500  TL03  

 
4.1 Validation Result of Trained Classifiers 
 

Table 3 showed the result of classifier training using different classification algorithms and feature 
vectors. As depicted in the table, DT generally achieved the highest ACC as compared to the other 
two classification algorithms. Among the DT classifiers, the proposed classifier trained with the 
double-abstraction-level feature vector achieved the highest ACC of 99.97%. It proved that the 
double-abstraction-level feature vector provided a better learning process. 
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 Table 3 
 Result of classifier validation after training 

Classifier Feature Vector TP FN TN FP TPR (%) TNR (%) ACC (%) 

DT RTL 6253 10 5885 379 99.84 93.95 96.89 

GL 6231 18 6231 32 99.71 99.49 99.60 

Proposed (RTL+GL) 6259 1 6261 3 99.98 99.95 99.97 

k-NN RTL 5826 437 6261 3 93.02 99.95 96.49 

GL 5975 274 6229 35 95.62 99.44 97.53 

Proposed (RTL+GL) 6242 18 6259 5 99.71 99.92 99.82 

SVM RTL 6258 5 5169 1095 99.92 82.52 91.22 

GL 5510 739 5623 641 88.17 89.77 88.97 

Proposed (RTL+GL) 6260 0 6099 165 100.00 97.37 98.68 

 
4.2 Evaluation Result of HT Detection Coverage 
 

In the next evaluation using self-designed circuits, as shown in Table 4, the proposed classifier 
achieved the second highest ACC of 88.23% which was 8.91% lower than the GL classifier. However, 
the GL classifier had a very low sensitivity whereby its TPR had only 6.25%. Since sensitivity is highly 
focused on HT detection to avoid HT bypassing the detection, we consider that the proposed classifier 
has a better performance in which the highest TPR of 81.25% was achieved. We find that there is a 
large performance difference between the first validation and the second evaluation results, 
especially for the RTL and the GL classifiers. It is possibly due to the overfitting issue whereby the 
classifiers were biased towards the training data and not robust against the unseen circuits in the 
second evaluation. Therefore, we think that the second evaluation stage using circuits not included 
in training data is mandatory to identify such issue. 
 

 Table 4 
 Result of classifier evaluation using self-designed HT circuits 

Classifier Feature Vector TP FN TN FP TPR (%) TNR (%) ACC (%) 

DT RTL 24 24 671 964 50.00 41.04 41.31 

GL 3 45 1632 3 6.25 99.82 97.15 

Proposed (RTL + GL) 39 9 1446 189 81.25 88.44 88.24 

 
In Table 5, the HT detection coverage of each classifier is shown in detail. Based on the 

assessment measures (<IV, III, II, I>), we found that the proposed classifier is unable to detect HTs 
with attributes <1,X,1,0>. “X” means that the attribute is a “don’t care” attribute and does not seem 
to affect the HT coverage. In other words, the proposed classifier cannot detect the HTs with all the 
following characteristics: i) it does not have a deactivation mechanism, ii) its HT activation requires 
multiple trigger patterns, and iii) its HT trigger has a distributed structure. Similarly, we found that 
the RTL classifier cannot detect <1,X,X,X>, while the GL classifier can only detect <1,X,0,1>.  

The RTL classifier detected 12 out of 24 HT circuits. The GL classifier detected 3 out of 24 HT 
circuits. The RTL classifier and the GL classifier have different HT detection coverage. The proposed 
classifier achieved an improved HT detection coverage whereby 21 out of 24 HT circuits are 
successfully identified. The HT circuits that were detected by the single-abstraction-level classifiers 
were also detected by the proposed classifier. In addition, it successfully identified other 6 HT circuits 
which were not detected by any of the single-abstraction-level classifiers, including TC08, TC10, TL08, 
TL11, TL12, and TL 15. Furthermore, as with the GL classifier, the proposed classifier does not have 
any false positive detection in the genuine circuit, which makes its positive detection reliable. The 
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comparison proves that the proposed double-abstraction-level feature vector can improve the 
detection performance in term of HT coverage.  
 

Table 5 
HT detection coverage evaluation based on HT modelling attributes 
Circuit HT Effect Attributes Testing Result 

RTL (DT) GL (DT) Proposed (DT) 
IV III II I TP FN TN FP TP FN TN FP TP FN TN FP 

Genuine - - - - - 0 0 23 28 0 0 51 0 0 0 51 0 
TC00 Change functionality 0 0 0 0 1 0 23 33 0 1 56 0 1 0 55 1 
TC01 0 0 0 1 1 0 23 34 0 1 57 0 1 0 54 3 
TC02 0 0 1 0 3 0 23 33 0 3 56 0 3 0 55 1 
TC03 0 0 1 1 3 0 25 32 0 3 57 0 3 0 54 3 
TC08 1 0 0 0 0 1 28 36 0 1 64 0 1 0 55 9 
TC09 1 0 0 1 0 1 28 37 1 0 64 1 1 0 54 11 
TC10 1 0 1 0 0 3 31 55 0 3 86 0 0 3 70 16 
TC11 1 0 1 1 0 3 31 56 0 3 87 0 3 0 68 19 
TL00 Leak information 0 0 0 0 1 0 23 33 0 1 56 0 1 0 55 1 
TL01 0 0 0 1 1 0 23 34 0 1 57 0 1 0 54 3 
TL02 0 0 1 0 3 0 25 31 0 3 56 0 3 0 55 1 
TL03 0 0 1 1 3 0 25 32 0 3 57 0 3 0 54 3 
TL04 0 1 0 0 1 0 25 31 0 1 56 0 1 0 55 1 
TL05 0 1 0 1 1 0 25 32 0 1 57 0 1 0 54 3 
TL06 0 1 1 0 3 0 25 31 0 3 56 0 3 0 55 1 
TL07 0 1 1 1 3 0 25 32 0 3 57 0 3 0 54 3 
TL08 1 0 0 0 0 1 28 36 0 1 64 0 1 0 55 9 
TL09 1 0 0 1 0 1 28 37 1 0 64 1 1 0 54 11 
TL10 1 0 1 0 0 3 31 55 0 3 86 0 0 3 70 16 
TL11 1 0 1 1 0 3 31 56 0 3 87 0 3 0 68 19 
TL12 1 1 0 0 0 1 30 34 0 1 64 0 1 0 55 9 
TL13 1 1 0 1 0 1 30 35 1 0 64 1 1 0 54 11 
TL14 1 1 1 0 0 3 31 55 0 3 86 0 0 3 70 16 
TL15 1 1 1 1 0 3 31 56 0 3 87 0 3 0 68 19 

 
4.3 Comparison to Previous Studies 
 

We find that the reviewed studies did not evaluate their trained classifiers using truly unseen 
circuits. In other words, the classifiers were trained and evaluated based on different HT circuits, but 
which originated from the same genuine circuit. For example, Han et al., [13] trained and validated 
the classifier using 21 same AES circuits with only the inserted HTs are different. Since HTs usually 
occupy a tiny portion of the circuit, the genuine signals are mostly identical in every circuit. If there 
is an overfitting issue, it cannot be identified. 

Since no reviewed studies was evaluated based on truly unseen circuits (as we did in the second 
evaluation), we compare their results with our validation result, as summarized in Table 6. Our 
validation result is relatively high as compared to most of the reviewed studies [3-8,11-12,14]. 
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Table 6 
Comparison between our proposed solution to previous studies 
Method Classifier Level Validation (%) 

TPR TNR ACC 

Hasegawa et al., [3] SVM GL 83.00 49.00 - 
Inoue et al., [4] SVM GL 100.00 <70.00 - 
Hasegawa et al., [5] Random forest GL - 98.20 - 
Hasegawa et al., [6] Neural network GL 85.00 70.00 - 
Inoue et al., [7] Neural network GL 72.90 90.00 - 
Kurihara and Togawa [8] Random forest GL 63.60 100.00  
Salmani [9] k-means clustering GL 100.00 100.00 100.00 
Xie et al., [10] SVM GL 100.00 100.00 100.00 
Kok et al., [11] k-NN GL 99.85 99.95 99.90 
Lu et al., [12] DBSCAN GL 79.00 99.00  
Han et al., [13] Gradient boosting RTL 100.00 89.32 - 
Yasaei et al., [14] GNN RTL - 97.00  
Our proposed solution DT RTL 99.98 99.95 99.97 

 
There are a few studies which achieve a higher performance with their proposed method. In 

Salmani [9], the proposed unsupervised k-means clustering method achieved 100% ACC. However, 
the proposed method has a limitation that it is not suitable to be used for very large circuits. Besides, 
it relies on a threshold which is set manually. On the contrary, our proposed method seems not to 
be affected by the circuit size and does not require any manual analysis after the classifier is 
developed. In Xie et al., [10], an SVM classifier achieved ACC of 100%. Unlike our method which can 
pinpoint the HT branching statements, their proposed method classifies HT GL netlist, but the HT’s 
location is unknown. This makes further analysis of the HT difficult when it is required. 
 
5. Conclusion 
 

We proposed a HT branching statement classification method based on a double-abstraction-
level feature vector. As per our knowledge, we are the first to propose to use features extracted at 
different abstraction levels (RTL and GL) to improve HT detection coverage. Based on the 
experimental result, the proposed double-abstraction-level classifier achieved 81.25% TPR, 88.44% 
TNR, and 88.24% ACC in evaluation utilizing unseen circuits. We proved that the proposed classifier 
outperforms the single-abstraction-level classifiers with 87.5% HT detection coverage, whereby 21 
out of the 24 HT circuits were successfully identified and no false positive was found in the genuine 
circuit. 

The proposed method suggested using features of different levels to increase the HT detection 
coverage. To further prove the HT detection effectiveness of the proposed method, it is necessary to 
involve more than two levels. Besides, we presume that the proposed method is not only effective 
to HT branching statements or HT nets. To prove this, another research on the effectiveness of the 
proposed method on other HTs is required. 
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