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Refractive index (RI) sensors are very valuable in first level detection of changes to the 
environment. In this project an optical fiber-based sensor is proposed to detect changes 
in surrounding RI. Most optical fiber sensors require tapering to be done to enhance the 
light interaction with the surrounding. This causes the fiber to become fragile and 
difficult to handle. In this research, optical fibers with long period gratings (LPG) are 
proposed to overcome this issue. Zinc Oxide (ZnO) nanomaterial was deposited over the 
LPG region using seeding method to enhance the performance of the sensor. The LPG 
fiber sensor was then used to investigate RI changes in the environment. A broadband 
laser source was used as the input and an optical spectrum analyser was used to observe 
the output light spectrum of the LPG sensor for different refractive index mediums. The 
ZnO coated LPG showed a sensitivity of 428.57 nm/RIU over an RI range of 1 – 1.3578. 
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1. Introduction 
 

Optical fiber-based sensors are gaining huge popularity in the research community in recent 
years. Optical fibers, which were conventionally used in the telecommunication industry, to carry 
data and signals, have proven to be very versatile due to their numerous applications in other areas 
such as in imaging, surgery, illumination and sensing [1,2]. Optical fibers as sensors offer great 
advantages over conventional electrical or electronic sensors due to their flexibility to be inserted in 
tight spaces, non-electrical making it safe from shorting or sparking, robust and non-corrosive. Being 
a transmission channel itself, there is no need to convert the signal from the sensing device to be 
transmitted to a remote location. Optical fiber sensors have been applied for sensing of both physical 
parameter such as stress and strain, temperature and pressure as well as in chemical and biological 
sensing applications [3,4]. These properties make optical fiber sensors increasingly popular for 
sensing investigations. 

Various methods for optical fiber-based sensing have been reported such as absorbance, 
reflectance, intensity, wavelength and polarization-based techniques [5-7]. Most methods require 
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some modification to the optical fiber cable such as tapering, bending, twisting or adding gratings. 
Optical fiber gratings are currently gaining popularity as they are highly sensitive and do not require 
the fiber to be tapered as tapering makes the fiber very fragile. Optical fiber gratings such as Fiber 
Bragg Gratings (FBGs) and Long Period Gratings (LPGs) had been conventionally employed as sensors 
to detect physical parameters such as stress, strain and temperature [8,9] 

Currently LPG sensors have been also gaining popularity in chemical and biological sensing 
[10,11]. In this research, we explore the LPG for refractive index (RI) sensing applications. This would 
be preliminary research towards further work in LPG sensors for chemical and biological sensing 
applications. Most chemical and biological sensors require some form of sensitive layer to enhance 
the sensing capability [12]. Zinc oxide nanoparticles have been gaining a lot of attention in sensing 
[13,14]. In this research we use a Zinc Oxide (ZnO) layer as the sensitive layer. The sensor is 
investigated towards various RI values by introducing dipping the sensing region into various 
mediums with different RI values. This simple method will prove the ZnO coated-LPG sensor can be 
used as an RI sensor without tapering or modifying the dimensions of the optical fiber.  

Korposh et al., [15] used an LPG with a Silicon Oxide (SiO2) mesoporous coatings to develop an 
RI sensor. This mesoporous coating was deposited using layer-by-layer (LbL) technique on LPGs. The 
transmission spectrum was observed by immersing in two different types of solutions for 
characterizing the sensitivity of coated-LPG for resonant wavelength. The solutions used were 
different concentration of silica colloidal solutions and sugar solutions. This technique yielded highly 
accurate result; however, the deposition process was quite tedious and complicated. Tan et al., [16] 
reported an LPG deposited with carbon nanotubes (CNTs) for refractive index detection in liquids. 
The deposition of the CNTs were done using a spraying technique. The developed sensor 
demonstrated high sensitivity of approximately 40 dB/RIU during their experimental work. This study 
shows great promise for further work in LPG based sensing in an aqueous environment. 
 
2. Sensing Principle of LPG with ZnO Layer  
 

A long period grating is an optical fiber which has had the core modified to have periodic 
refractive index variations using laser radiation. An LPF is basically a wavelength selective filter where 
the transmission spectrum is characterized by the coupling between the core mode and the 
copropagating cladding modes at a resonance wavelength which is given in Eq. (1) 
 

𝜆𝑟𝑒𝑠 =  (𝑛𝑐𝑜
𝑒𝑓𝑓

− 𝑛𝑐𝑙
𝑒𝑓𝑓

)Ʌ            (1) 
 

where 𝜆𝑟𝑒𝑠 is the resonant wavelength and 𝑛𝑐𝑜
𝑒𝑓𝑓

 and 𝑛𝑐𝑙
𝑒𝑓𝑓

  are the effective index of the core and 
cladding respectively. Ʌ is the grating period. 

The ZnO deposited LPG works on the principle of light absorbance of the cladding modes of the 
light travelling through the fiber with ZnO layer. The fundamental core mode (LP01) couples with 
the cladding modes (LP0m) when it meets the phase matching conditions in Eq. (2) 
 

𝛽01 − 𝛽𝑐𝑙𝑎𝑑
𝑚 =  

2𝜋

Ʌ
 ,   𝑚 = 1,2,3 …             (2) 

 

where 𝛽01 and 𝛽𝑐𝑙𝑎𝑑
𝑚   are the copropagating constants of the fundamental modes and mth cladding 

modes respectively. 
When the RI of the surrounding medium, (n3) is lower than the cladding, n2, any increase in n3 

will cause a corresponding increase in the effective index of the cladding resulting in a blue shift of 
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the resonant wavelengths when the surrounding RI increases. This is derived from Eq. (3) which 
shows the resonant wavelengths. 

 
𝜆𝑚,𝑟𝑒𝑠 =  [𝑛𝑒𝑓𝑓,𝑐𝑜𝑟𝑒  (𝜆𝑚,𝑟𝑒𝑠 , 𝑛1, 𝑛2)  −  𝑛𝑒𝑓𝑓,𝑐𝑙𝑎𝑑  (𝜆𝑚,𝑟𝑒𝑠 , 𝑛2, 𝑛3)]Ʌ        (3) 

 

where 𝑛𝑒𝑓𝑓,𝑐𝑜𝑟𝑒   and 𝑛𝑒𝑓𝑓,𝑐𝑙𝑎𝑑  are the effective RIs of the core and cladding and   is the resonant 

wavelength due to coupling of the core and cladding mode. 
Therefore, when n3 is higher than the cladding RI, there phase matching is no longer achieved. 

This will cause the total internal reflection conditions to be not met, resulting in leaky cladding 
modes. This will cause some of the light to be reflected and transmitted, while some light will be lost 
out of the fiber. The ZnO layer over the LPG acts as a four-layer waveguide where the transmission 
spectrum is based on the calculations of the long period modes and the cross and self-coupling 
coefficients. The RI sensing of the LPG can be observed from the spectrum of the attenuation bands 
of the sensor. 
 

3. Methodology 
 
3.1 LPFG Sensor Fabrication and Preparation 
 

Several LPFGs were fabricated with the electric-discharge technique [17,18]. This technique is 
very simple, does not require special optical fibres and specific preparations (as hydrogen loading). 
The polymer coating has been removed on a portion of a standard single-mode fibre (ex. SMF 28). 
This portion is placed in between the electrodes of a commercial fibre fusion splicer. A white light 
source and an optical spectrum analyser (OSA) are connected in both ends of the fibre sample for 
monitoring LPFG’s growth. After each electric discharge, the fibre is translated by a translation stage 
to a distance equal of the grating pitch. Distinct dips are formed in the transmission spectrum 
corresponding to resonance wavelengths where the fundamental mode is coupled to a specific 
higher order mode. The fabrication process is stopped when the isolation of the dip at targeted 
wavelength is maximal. The LPGs were coated with ZnO using a seeding method and connected to 
an ASE broadband light source (BBS) as the input and an Optical Spectrum Analyzer (OSA) model 
MS9740A from Anritsu for collection of data. 
 
3.2 Zinc Oxide Seeding Method 
 

ZnO was deposited LPG region of the fiber optic sensor using the seeding method. The seeding 
solution was made by mixing Zinc acetate dehydrate [Zn(CH3CHOO)2.2H2O] and Sodium Hydroxide 
(NaOH) were each mixed with 120 ml and 60 ml ethanol respectively. The Sodium Hydroxide solution 
is dropped into the Zinc acetate dehydrate solution drop by drop to obtain a constant pH value. The 
pH value is significant as it affects the morphology of the ZnO over the fiber [19,20]. To grow the ZnO 
nanoparticles, the seeding solution is first kept in an 80°C oven for 3 hours. Then, the stripped LPG 
was immersed into the seeding solution for 1 hour, while slowly stirring to make the first layer of the 
nanomaterial on fiber surface. Then the coated fiber undergoes an annealing process at 70°C for 30 
minutes. Finally, Zinc hexahydrate ([Zn(NO)3]2) and Hexamethylenetetramine [(CH2)NH4] were mixed 
together with 250 ml of deionized (DI) water to make the growth solution, and the stripped fiber was 
dipped into the growth solution and kept in an oven for 2 hours at 70°C. 
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3.3 Optical Sensing Setup 
 

The fabricated sensor was then connected to a broadband light source at the input and an OSA 
at the output. The experiment was carried out with both uncoated and ZnO coated LPGs. The sensors 
were immersed in different concentrations of ethanol which had different RIs and the spectral 
response at the OSA was recorded. The block diagram of the sensing experiment shown in Figure 1. 

 

 
Fig. 1. Experiment Setup 

 
4. Results  
 

The deposition of ZnO on the LPG sensor was characterized by using Scanning Electron 
Microscopy (SEM). The was done to study the morphology of the ZnO nanostructures around curved 
structure of the fiber surface. Figure 2 shows the SEM image of the ZnO coated fiber. It can be 
observed that the ZnO coating has fully coated the fiber and is adhering well. 
 

 
Fig. 2. SEM image of ZnO deposited on LPFG 

 
In Figure 3, further magnification of 15000 was performed to study the structure of the ZnO 

nanoparticles. It can be seen clearly the ZnO has formed nanorods with approximate diameters of 
0.5μm. The ZnO nanorods were found to be distributed evenly throughout the coated region and 
further investigation around the coated region yielded similar results without any significant 
uncoated or damaged areas. 
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Fig. 3. SEM of ZnO in crystallization shapes 

 
The output spectrum of the uncoated and ZnO coated LPG sensor when immersed in liquids of 

different RIs are presented in Figure 4(a) and Figure 4(b) respectively. It can be observed that as the 
RI increased, a corresponding drop in output power occurred for both the uncoated and ZnO coated 
LPG sensor. A blue shift in the spectrum is also observed for both the uncoated and the ZnO coated 
LPG sensor when immersed in liquids with increasing values of RI when immersed in liquids of 
different RI. 

The change in the surrounding RI showed significant effect on the transmission of light through 
the fiber. The observed outputs agree with previous studies reported by other researchers [19,20]. 
Figure 5(a) and Figure 5(b) presents the graph of the RI versus the output power and wavelength 
respectively. From both graphs, it can be observed that the ZnO coated LPG sensor demonstrated 
higher sensitivity towards changes in the surrounding RI. The output power at 1556 nm for different 
values of RI was plotted in Figure 5(a). Output power was normalized in order to perform better 
comparison. Both sensors demonstrated high linearity of higher than 90% in their correlation graphs. 
It was observed that the ZnO coated LPG sensor had a sensitivity that was 35% higher that the 
uncoated LPG sensor. 

The wavelength shifts of ZnO coated LPG sensor also demonstrates a significant increase in 
sensitivity when compared to the uncoated LPG sensor. A sensitivity of 160 nm/RIU was recorded for 
the uncoated LPG sensor while a sensitivity of 276 nm/RIU was recorded for the ZnO coated sensor. 
Form the data obtained, it can be concluded that the ZnO coating significantly increases the 
sensitivity of the LPG based RI sensor. This is due mainly to the ZnO layer, which has a higher RI than 
the cladding, causes light that is propagating in the cladding to be extracted from the cladding. This 
is due to the face that the total internal reflection conditions are no longer met.  Changes in the RI 
values around the ZnO layer in turn causes the effective index of the layer to change. This change in 
turn affects the light spectrum at the output of the fiber. 

 
 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 30, Issue 2 (2023) 154-162 

159 
 

 
(a) 

 
(b) 

Fig. 4. Spectrum of the LPG with different surrounding RI (a) Uncoated 
(b) ZnO coated 
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(a) 

 
(b) 

Fig. 5. (a) RI against output power (b) RI against wavelength 

 
5. Conclusions 
 

In conclusion, an LPG fiber sensor deposited with ZnO nanomaterial was successfully developed 
and tested with liquids of varying RIs. The seeding method used proved to be effective in producing 
an even and consistent layer with good adherence to the curved surface of the fiber. Results obtained 
from this research adds strength to the current trend in the application of nanomaterial coatings to 
improve the performance of optical sensors. 
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