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Surface Mount Technology (SMT) pin solder joint defects are hard to detect since the 
joints are smaller and denser and have high similarity between defect samples and 
standard samples in solder joint images. We propose an improved YOLOv5 defect 
detection algorithm embedding Cascade Shuffle Space to Depth (CSSD), Coordinate 
Attention (CA) mechanism module, and K-means++ algorithm. The proposed improved 
Yolov5 significantly impacts the loss and model parameter reduction and higher 
positioning precision of the defect location on the disk. The optimum anchor box 
produces better clustering and stability. Compared with the original YOLOv5 under the 
same test conditions, the method in this paper improves the precision by 12.2%, recall 
by 9.4%, mAP by 9.0%, and model parameters reduced by 1.3M. In conclusion, the 
experimental results show that the algorithm proposed in this paper has a better 
detection effect and a smaller parameter scale. It also can better meet the defect 
detection and model deployment in the actual industrial production environment. 
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1. Introduction 
 

With the development of computer technology, artificial intelligence, 5G communication, and 
other emerging technologies, electronic products have become an indispensable part of social life 
[1,2]. The rapid development of emerging technologies puts forward higher requirements for the 
performance and quality of electronic products. Surface Mount Technology (SMT) chips are widely 
used in various electronic devices and are essential in electronic circuits. In the production process, 
SMT chip pins are soldered onto the PCB by soldering tin, which is prone to produce some defects 
during soldering, such as insufficient defects and pin shifting defects [3], as shown in Figure 1. These 
defects will cause electronic equipment to fail to operate normally, so detecting solder joint defects 
of SMT chips is crucial. Traditional solder joint detection adopts manual detection, which is easy to 
reduce the detection rate due to the visual fatigue of workers, and the labor cost is high. There are 
two significant difficulties in SMT chip pin solder joint defect detection.  
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i. Compared with component solder joints, SMT chip pin solder joints are smaller and 
denser. Smaller defect areas and lower image resolution make detection more difficult.  

ii. No significant difference exists between qualified and defective solder joints. Based on 
these difficulties, this paper proposes a solder joint defect detection method based on a 
lightweight deep learning object detection algorithm, which has a good detection effect 
on SMT chip pin solder joint defects.  

 
The machine vision system embedding machine vision technology is widely used in various 

industrial product defect detection scenarios because of its high detection efficiency and the 
advantages of reducing labor costs [4-6]. The detection of solder joint defects based on machine 
vision can be divided into three categories: the feature-based method [7], the statistic-based method 
[8], and the deep-learning-based method [9]. The deep learning method has been used extensively 
in this research area, especially in developing a lightweight deep neural network (DNN) model.  

The types of lightweight DNN models can be divided into two stages and single-stage. Although 
the two-stage object detection represented by Faster R-CNN performs well in detection accuracy, its 
model is relatively complex and has poor real-time performance. It is hard for a two stages 
architecture to meet the speed requirements in industrial scenarios. Zhang et al., [10] applied a 
Faster R-CNN algorithm to inspect solder joints in the connectors. Based on the Faster R-CNN 
algorithm, ResNet-101 is used to replace VGG-16. The method has produced better accuracy; 
however, the processing speed is low. Ding et al., [11] proposed a tiny defect detection network 
(TDD-Net) based on Faster R-CNN to improve the performance of PCB defect detection. The original 
Faster R-CNN network structure was improved. The online hard sample mining was used to 
effectively utilize the data information to realize the high-precision detection of PCB defects. Han et 
al., [12] used Mobile-Net as the primary feature extraction network of Tiny-YOLOv3 for aerospace 
electronic solder joint defects, which improved the detection accuracy while maintaining the 
detection speed. However, the overall detection accuracy still needs to be improved. The SMT pin 
solder joint defect detection method based on deep learning is rare.  

In 2018, [13] proved that a cascade-based deep learning algorithm reduces the training's memory 
usage and time requirements compared to traditional end–end backpropagation. It circumvents the 
vanishing gradient problem by learning feature representations that have an increased correlation 
with the output on every layer. Cai et al., [14] designed a cascade deep learning network framework 
with three convolution neural networks. Through the trained CNN framework, the potential features 
of IC solder joints are adaptively extracted to achieve an accurate prediction. [15] implements 
cascade neural networks to associate between typical defect characteristics and the substation types 
of equipment to avoid manual selection for preliminary image annotation. Ye et al., [16] propose a 
cascade neural network for diagnosing malignant tumors in histopathological sections of common 
eyelid tumors, improving detection accuracy. Tang et al., [17] proposed a spatiotemporal cascade 
neural network for video salient object detection, a cascade of two complete convolution networks 
to evaluate visual saliency from spatial and temporal cues, resulting in the optimal video saliency 
prediction. Dong et al., [18] proposed a cascade neural network for object detection in high-
resolution remote sensing images, which combines the first-order statistical features of samples with 
the BP neural network model to improve the recognition effect of detection methods. Although 
cascade-based deep learning algorithms have shown efficiency, there is still room for improvement.  

YOLO is a single-stage object detection algorithm combining the two stages of generating 
candidate regions and detection. It only needs one step to get the position of the object to be 
detected and can perform faster detection speed. YOLO model uses adaptive anchor frame 
calculation and multi-semantic fusion detection mechanism to integrate rich high-level semantic 
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information quickly and effectively with low-level location information to achieve rapid object 
detection [19]. YOLOv5 has the advantages of a small model, fast speed, and high accuracy [20]. In 
order to meet the need for real-time detection of industrial production lines, this paper selects the 
YOLOv5 algorithm to improve detection accuracy. 
 

   
(a) Insufficient defect (b) Foot shifting defect (c) Qualified samples 

Fig. 1. Insufficient defect(a), foot shifting defect(b) and qualified(c) solder joint samples in 
dataset. 

 
YOLOv5 has a relatively serious phenomenon of missing detection in the detection of small target 

defects. The reason is that in the process of feature extraction, the convolution kernel performs the 
convolution operation in two strides resulting in omittion of some important features such as small 
target and its important medium, shallow texture and contour information. Reducing the convolution 
stride can retain more effective features without being missed, but it will greatly increase the number 
of the model parameters. F. Chollet [21] proposes a depthwise separable convolution, which consists 
of depthwise convolution and pointwise convolution. The input feature map is grouped by depthwise 
convolution, the number of input channels and the output channels are kept consistent. Pointwise 
convolution through 1×1 normal convolution changes the number of input channels. It can reduce 
the number of parameters and the computational complexity of the model, and improve the 
efficiency of the use of convolution kernel parameters. Zhang et al., [22] proposed a shuffle 
operation. The shuffle operation is a feature fusion method. This method shuffles and rearranges the 
features from the convolution of different channels to help information flow between different 
channels. It is proved that the channel shuffle operation is more conducive to the performance 
improvement of the model, and further verifies the importance of feature fusion between different 
channels. Sajjadi et al., [23] proposed a space to depth transformation idea for video super-resolution 
tasks, extracts shifted low resolution grids from the image and places them into the channel 
dimension. This method can be used for down-sampling. Compared with ordinary down-sampling, it 
can retain more features and realize down-sampling operation with less computational cost.  

Based on the above ideas, this paper proposes a Cascade Shuffle Space to Depth (CSSD) module 
to enhance the feature extraction ability of YOLOv5, reduce the loss of effective features in the 
feature extraction process. It can extract features more comprehensively and control the surge of 
model parameters. 

The major innovations and contributions of this research are as follows: 
 

i. In order to improve the detection ability of YOLOv5 for solder joint defects, a CSSD module 
is proposed, which integrates into the backbone network and neck network of YOLOv5. 
While improving the feature extraction ability of the model for defective targets, the 
model parameters are reduced. 

ii. In order to enhance the precise positioning ability of the model to the defect location, the 
CA attention mechanism module is introduced to enhance the receptive field, and three 
CA module embedding structures are proposed to improve the defect detection accuracy. 
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iii. In order to obtain priori anchor boxes that is more consistent with the solder joint defect 
and improve the efficiency of network training, K-means++ algorithm is used to analyze 
the solder joint defect dataset, overcomes the poor clustering effect and stability caused 
by the random selection of initial values in K-means algorithm, and reduces the error 
caused by the size of the anchor boxes. 
 

The rest of the paper is arranged as follows: Section 2 introduces the basic network structure of 
the original algorithm YOLOv5; introduces the improvement strategy of CSSD-YOLO in detail, 
including the composition of CSSD module and the embedding of CA attention mechanism module; 
Section 3 introduces data collection, experimental environment, comparative experiment, ablation 
experiment results and analysis; Section 4 summarizes the work and puts forward the follow-up work 
and improvement direction.  

 
2. Methodology  
2.1 YOLOv5 

 
This paper comprehensively considers the model size, parameter quantity, etc. YOLOv5s model 

is selected as the solder joint defect detection network. YOLOv5 network structure is composed of 
Backbone network, Neck feature fusion network and detection head [24]. Its network structure is 
shown in Figure 2. 
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Fig. 2. YOLOv5 network structure 
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2.1.1 Backbone network 
 
YOLOv5 uses the backbone network of Cross Stage Partial Network (CSP) network structure. CSP 

network structure includes convolution operation and CSP. The CSP structure uses the idea of 
DenseNet network structure to combine gradient information into the feature map. This structure 
can not only effectively use a large number of image features, but also reduce the redundancy in the 
network structure.  
 
2.1.2 Neck network 

 
YOLOv5 uses the Path Aggregation Network (PAN) + Feature Pyramid Network (FPN) structure in 

the Neck network part. The FPN structure outputs the feature maps between different layers in the 
backbone network to obtain the features between different layers. The PAN structure is based on 
the acquisition of the lower sampling features of the FPN and then adds the upper sampling for 
feature fusion. In YOLOv5, the PAN+FPN structure can make full use of and fuse the features 
extracted from the backbone network, so as to obtain better detection performance. 
 
2.1.3 Head network 

 
The head part is usually designed to detect the position and category of the target through the 

feature map extracted from the backbone network or fused from the neck network. YOLOv5 uses 
three 1×1 convolution layer replaces the full connection layer for prediction and classification, 
respectively at 20×20, 40×40 and 80×80. The corresponding category probability, target confidence 
and prediction frame coordinates of the three anchor boxes are predicted on the feature map of 
three scales. 

 
2.2 Proposed Method 

 
To improve the detection accuracy of YOLOv5 for solder joint defects, this paper proposes an 

improved YOLOv5 namely CSSD-YOLO that integrated the newly design CSSD module in the YOLOv5 
framework. It is used to improve the Backbone and Neck network of YOLOv5, reduce the loss of local 
feature information during feature extraction, and reduce the size of model parameters. The CA 
attention mechanism module is embedded to enhance the precise positioning ability of the backbone 
network and reduce the missed detection rate of the defective target. K-means++ is used to optimize 
anchor box sizes and overcome the poor clustering effect and stability caused by the random 
selection of initial values in K-means algorithm. 

 
2.2.1 Proposed CSSD module 

 
The CSSD module is composed of CS and SD sub-modules, as shown in the Figure 3. The function 

of the CS (Cascade and Shuffle) module is to reduce the loss of information during feature extraction 
and to inhibit the growth of model parameters. In some previous work, there are many lightweight 
networks, such as Mobile-Nets [25] and Xception [26]. One of the important ideas to reduce model 
parameters is deep separable convolution. Deep separable convolution consists of deepwise 
convolution and pointwise convolution. Deepwise convolution is used to reduce the amount of 
calculation and improve the calculation speed. However, due to its independent convolution 
operation on each channel of the input layer, the information of the feature map in the spatial 
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position is difficult to be effectively utilized, so pointwise convolution is used to weight and combine 
the feature map in the depth direction to generate a new feature map. 

 

CBS DSConv Concat Shuffle

slice

slice

slice

slice

Concat

CSSD = CS SD

CS =

SD =

 
Fig. 3. CSSD module structure 

 
The structure of the CS module is shown in Figure 4. First, the input feature map is convolved 

(CBS), and then the output feature map is deeply separable convolved (DSConv). Then, the processed 
feature map is spliced with the output after the first convolution (Concat). Finally, the final output is 
obtained by shuffling and recombining the spliced results (Shuffle). The purpose of this design is to 
fuse the features processed by ordinary convolution with the deep separable convolution features, 
reduce the possibility of local feature information loss, and improve the information association 
between channels. 

 

CBS DSConv Concat Shuffle

 
Fig. 4. Composition of the CS block 

 
In the original YOLOv5 framework, the step size of the convolution layer in the CBS module is set 

to 2. Therefore, the effect after processing is equivalent to the down-sampling operation, which will 
inevitably lead to the omission of feature information, as shown in Figure 5 (b), especially in the scene 
with a small area target detection or low resolution. To reduce the information omission and enhance 
the convolution layer's feature extraction, we set the step size to 1. The process is illustrated in Figure 
5 (a). However, this setting is bound to lead to a surge in parameters. Thus, the concept of Space to 
Depth (SD) is introduced [23]. SD transfers spatial information to a channel, as shown in Eq. (1), thus, 
avoiding any information loss in the spatial dimension reduction. In the SD process, firstly, each of 
the other pixel in the feature map input is went through a sampling process. In this way, four groups 
of feature maps can be obtained as shown in Figure 5 (c). A feature map has 3-dimensions, width (w), 
height (h) and channel (c). The purpose of SD is to convert the information from w and h to c that is 
also known as depth (d). When the four groups of feature maps are spliced in the channel direction, 
the information on the w-h plane is converted to the c dimension, as shown in Figure 5 (c). Such 
processing can reduce the size of image space without losing feature information.  
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𝑀𝑠 : [0,1]𝑠𝐻×𝑠𝑊×𝐶 →  [0,1]𝐻×𝑊×𝑠2𝐶              (1) 
 
where,  
Ms = Feature map 
sH = The height of the input feature map 
sW = The width of the input feature map 
C =  The channel of the input feature map 
H = The height of the output feature map 
W = The width of the output feature map 
S = Pooling block size 
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5×5 input 
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(a) Stride = 1 (b) Stride = 2 (c) Space to depth 

Fig. 5. Three different convolution methods 

 
The SD module is shown in Figure 6 showing that the feature map is divided into four slices before 

concatenation. 
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Fig. 6. Composition of the SD block 

 

Feature map 
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The integration method of the CSSD is to replace the original CBS module located prior to each 
C3 module with the CSSD module in the backbone network of the YOLOv5 framework. In the Neck 
network, the first two CBS modules are replaced with CS sub-modules, and the last two CBS modules 
are replaced with CSSD modules, as shown in Figure 7. 
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Fig 7. Integration mode of CSSD module 

 
2.2.2 Embedded design of Coordinate Attention attention module 

 
The Coordinate Attention (CA) mechanism [27] has made targeted improvements based on the 

Squeeze Excitation (SE) attention mechanism [28] and retains the feature location information of the 
image. Compared with the SE attention module, this module can not only obtain the long-range 
dependence in the spatial direction but also enhance the position information expression of features 
and increase the global receptive field of the network. As shown in Figure 8, the input features are 
pooled by one-dimensional adaptive averaging in the X-axis and Y-axis directions to obtain 
independent directional sensing features that retain the X-axis and Y-axis information.  
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Fig. 8. Coordinate attention block architecture 

 
One spatial direction captures long-range dependence, while the other retains accurate position 

information. The two one-dimensional features obtained are spliced on the w dimension through a 
convolution and nonlinear activation function. Then the features are split in the channel dimension. 
Two feature maps with specific spatial directions and long-range dependence are obtained through 
the convolution and sigmoid activation functions. These two feature maps can complementarily be 
applied to the input feature map to enhance the interested target. The feature map with attention 
weight in the w and h directions is finally obtained through feature fusion with the original feature. 

In this paper, three kinds of integration structures of the CA module are designed, and the CA 
module is embedded in different parts of the improved YOLOv5 structure. These three structures are 
CSSD-YOLO-A, CSSD-YOLO-B, and CSSD-YOLO-C, as shown in Figure 9. In Figure 9(a), the CA module 
is embedded in the C3 module to form the C3CA module, as shown in Figure 9(d). Furthermore, all 
C3 module in the Backbone network is replaced by the C3CA module. In Figure 9(b), replace three 
output C3 modules in the Neck network with C3CA modules. In Figure 9(c), each output C3 module 
in the Neck network is directly connected to the CA module. 
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(a) Modified region of CSSD-YOLO-A algorithm             (b)Modified region of CSSD-YOLO-B algorithm 
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Fig. 9. Three kinds of CSSD-YOLO models embedded in CA modules 

 
2.2.3 Anchors sizes optimization by k-means++ 

 
The YOLOv5 algorithm must preset the anchor box sizes before training and prediction. The 

detection accuracy is affected by the initial anchor setting. It is imperative to preset the anchor in the 
algorithm. In the original YOLOv5 algorithm, the clustering anchor uses the K-means algorithm. The 
K-means clustering [29] adaptively sets the anchor size in line with the data set, making the model 
training easier to converge. However, the results of the K-means algorithm are greatly affected by 
the selection of initial points. Usually, it requires multiple clustering to obtain more stable 
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convergence results. To obtain a priori frame that is more consistent with the solder joint defect and 
improve the efficiency of network training, we use the K-means++ algorithm [30] to analyze the 
solder joint defect dataset and obtain nine groups of anchor box sizes, as shown in Table 1. K-
means++ overcomes the poor clustering effect and stability caused by the random selection of initial 
values in the K-means algorithm. It reduces the error caused by the size of the last frame. 

 
Table 1 
Dimensions of anchor box 
Feature map 20×20 40×40 80×80 

Dimensions of anchor box 

(34,41) (21,99) (55,57) 

(29,59) (37,68) (20,185) 

(37,53) (26,117) (32,171) 

 
3.Results and Discussion  
3.1 Experimental Framework 

 
The performance of CSSD-YOLO is evaluated on the solder joint dataset. The experiment shows 

that the design of CSSD-YOLO is reasonable and effective and has practical application value in 
industrial scenarios. 

 
3.1.1 Dataset 

 
The sample image data set are collected from an electronic storage device production factory. 

473 defective SMT chip images are collected by a CCD industrial camera. These SMT chip images 
include 3154 defective solder joints. There are two kinds of defects, insufficient defect and pin 
shifting defect. 

 
3.1.2 Experimental environment  

 
The whole system experiments are carried out with Intel(R) Core™ i5-12400F CPU @ 2.50GHz, 16 

GB RAM, NVIDIA RTX 3060 12GB display memory and Windows 10 Pro as the operating system. The 
software environment is CUDA 11.3, cudnn 8.0, Python 3.9, and PyTorch 1.13.1.  

 
3.1.3 Evaluation criterion 

 
At present, the mainstream general indicators for evaluating the performance of object detection 

algorithms include precision, recall, mAP (Mean Average Precision), parameters (the number of 
parameters in model), and so on. In this experiment, we choose precision, recall, mAP, and 
parameters, to evaluate the algorithm. Precision, recall, and mAP are calculated using Eq. (2) to Eq. 
(4). TP, FP, TN, and FN stand for true positive, false positive, true negative, and false negative.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                             (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
              (3) 

 

𝑚𝐴𝑃 =
∑ 𝐴𝑃𝑖

𝑁
𝑖=1

𝑁
𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑅

1

0
           (4) 
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3.2  Experimental Results 
3.2.1 Comparative experiment 

 
In order to compare the detection effect of three schemes of attention mechanism integration, a 

comparative experiment was conducted. In this experiment, the train set and validation set for the 
solder joint dataset in CSSD-YOLO-A, CSSD-YOLO-B, and CSSD-YOLO-C are used in the three model 
schemes proposed in Section 2.2.2. The performance of the model is compared and evaluated on the 
test set. The experimental results are shown in Table 2. On the precision indicator, CSSD-YOLO-B is 
1.0% and 2.8% higher than CSSD-YOLO-A and CSSD-YOLO-C, respectively. On the recall indicator, 
CSSD-YOLO-B is 4.9% and 4.4% higher than CSSD-YOLO-A and CSSD-YOLO-C, respectively. On the mAP 
index, CSSD-YOLO-B is 3.2% and 1.3% higher than CSSD-YOLO-A and CSSD-YOLO-C, respectively. By 
comparing the performance of CSSD-YOLO-A, CSSD-YOLO-B, and CSSD-YOLO-C model schemes, 
CSSD-YOLO-B has the best detection effect. So, we use CSSD-YOLO-B as our final improvement 
scheme. 

 
Table 2 
The experimental results were compared by different models embedded in CA modules 

Network model  
Precision/% Recall/% mAP/% 

Insufficient Shifting All Insufficient Shifting all Insufficient Shifting all 

CSSD-YOLO-A 92.5 92.7 92.6 94.5 87.0 90.8 96.5 89.5 93.0 
CSSD-YOLO-B 91.6 95.6 93.6 99.5 91.9 95.7 97.2 95.2 96.2 
CSSD-YOLO-C 86.3 95.2 90.8 96.6 86.0 91.3 96.0 93.8 94.9 

 
 In order to verify the advantages of the improved algorithm, we used the same dataset to train 

under different networks and used the classic two-stage network Faster R-CNN [31], one-stage 
network YOLOv4 [32], YOLOv5 [33], YOLOv7 [34] and YOLOv8 [35] for comparative experiments. The 
experimental results are shown in Table 3. The CSSD-YOLO proposed in this paper performs the best 
in the three indicators of precision, recall, and mAP among the above six algorithms. Precision has 
increased 17.4%, 12.2%, 21.9%, 15.4% and 8.9% respectively compared with YOLOv4-tiny, YOLOv5, 
YOLOv7-tiny, YOLOv8s and Faster R-CNN. Recall increased by 22.1%, 9.4%, 6.6%, 16.0% and 0.6% 
respectively compared with YOLOv4-tiny, YOLOv5, YOLOv7-tiny, YOLOv8s and Faster R-CNN. 
Compared with YOLOv4-tiny, YOLOv5, YOLOv7-tiny, YOLOv8s and Faster R-CNN, mAP increased by 
14.8%, 9.0%, 14.5%, 12.0% and 13.5% respectively. CSSD-YOLO has the least parameter quantity 
compared to the above five algorithms, only 5.7M, 1.3M less than the original YOLOv5. Based on the 
above experimental results, the CSSD-YOLO algorithm proposed in this paper is a solder joint defect 
detection algorithm with better detection accuracy and smaller model parameters. It has excellent 
comprehensive performance and high application value. 

 
Table 3 
Comparison results of detection performance of different algorithms 

 Precision/% Recall/% mAP/% Para
mete
rs 
(M) 

 Insufficient Shifting all Insufficient Shifting all Insufficient Shifting all 

YOLOv4-tiny 82.3 70.1 76.2 87.4 59.8 73.6 90.6 72.2 81.4 6.1 
YOLOv5s 87.7 75.0 81.4 98.6 73.9 86.3 96.5 77.9 87.2 7.0 
YOLOv7-tiny 87.2 56.2 71.7 99.5 78.3 89.1 95.6 67.9 81.7 6.2 
YOLOv8s 87.8 68.5 78.2 98.2 60.9 79.7 96.6 71.7 84.2 11.1 
Faster R-CNN 87.3 82.0 84.7 98.7 91.5 95.1 90.1 75.3 82.7 41.1 
CSSD-YOLOv5 91.6 95.6 93.6 99.5 91.9 95.7 97.2 95.2 96.2 5.7 
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Figure 10 shows the defect detection effect of the two algorithms, YOLOv5s and CSSD-YOLO. The 
YOLOv5s algorithm has missed detection and does not detect the pin shifting defect of the first solder 
joint and the third solder joint, while the CSSD-YOLO algorithm has good detection effect and can 
meet the accuracy rate of solder joint defect detection in actual production. 

 

 
(a) YOLOv5s 

 
(b) CSSD-YOLO 

Fig. 10. Comparison of the detection results of YOLOv5s (a) and CSSD-YOLO(b) in the solder joint dataset 

 
3.2.2 Ablation tudy 

 
In order to more comprehensively analyze the advantages of each improved module in CSSD-

YOLO for solder joint defect detection, this paper designs the ablation experiment based on the 
original YOLOv5. The K-means++, CSSD module, and CA attention mechanism module are added to 
the original YOLOv5, respectively, and the original algorithm is used as the control group. The specific 
experimental content and test results are shown in Table 4. Using the K-means++ algorithm to select 
priori anchor boxes will improve the detection precision by 3.8%, recall by 6%, and mAP by 6%. 
Integrating the CSSD module into the Backbone and Neck network reduces the loss of feature 
information, reduces the number of parameters, and improves the detection effect of small defects 
and low-resolution defects compared with the original YOLOv5 algorithm. Increase detection 
precision by 8.9%, recall by 6.9%, and mAP by 6%. The CA attention mechanism module is integrated 
into the C3 module in the Neck network to improve the network representation ability while 
highlighting the characteristics of critical locations and effectively solving the problem of harrowing 
feature extraction. Compared with the original YOLOv5, the detection precision is improved by 6.4%, 
recall by 4.6%, and mAP by 7.2%. Through the comparison of ablation experiments, it is found that 
the performance improvement of the model after adding each improved module, CSSD-YOLO 
proposed in this paper, is the most significant. Both types of defect detection objects have achieved 
good detection results, which verifies the effectiveness of the algorithm in this paper for solder joint 
defect recognition. 
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Table 4 
Ablation study on solder joint dataset 

 Precision/% Recall/% mAP/% 

 Insufficient Shifting all Insufficient Shifting all Insufficient Shifting all 

YOLOv5 87.7 75.0 81.4 98.6 73.9 86.3 96.5 77.9 87.2 
YOLOv5 + Kmeans++ 90.3 80.2 85.2 98.6 88.0 93.3 97.2 89.2 93.2 
YOLOv5 + CSSD  91.4 89.2 90.3 99.5 87.0 93.2 98.4 88.0 93.2 
YOLOv5 + CA 91.2 84.4 87.8 99.2 82.6 90.9 98.9 89.9 94.4 
YOLOv5 + CSSD + CA+ 
Kmeans++ 

91.6 95.6 93.6 99.5 91.9 95.7 97.2 95.2 96.2 

 
4. Conclusions 

 
This research has developed a high-precision detection of two common defects in the SMT solder 

joint defect dataset, which utilizes a modified deep-learning algorithm of YOLOv5. A CSSD module is 
proposed, integrated into the backbone and neck networks of YOLOv5 architecture to improve the 
feature extraction ability and reduce the model parameters. The CA attention mechanism module's 
embedded structure is designed to improve further the feature extraction ability and positioning 
accuracy of the network for solder joint defects. K-means++ algorithm is used to cluster the prior 
anchor boxes instead of the K-means algorithm, and the best anchor box sizes are obtained, which 
improves the detection accuracy. Finally, the experimental results show that the improved method 
proposed in this paper can accurately detect different defects in the solder joint image. Compared 
with the original YOLOv5s under the same test conditions, the method in this paper improves the 
precision by 12.2%, recall by 9.4%, mAP by 9.0%, and model parameters reduced by 1.3M. Compared 
with the general object detection model, it also significantly improved. This method provides 
valuable help for solder joint defect detection. However, there are still some things that could be 
improved. The model proposed in this paper still has room for improvement in the detection 
precision of defects. The detection ability for small defect targets needs to be further enhanced. 
Future research will continue to improve the detection effect of the model on small targets and 
further improve the detection accuracy of solder joint defects. 
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