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In piezoelectric energy harvesting systems, energy harvesting circuits are the interface
between piezoelectric devices and electrical loads. The conventional view of this
interface is based on the concept of impedance matching. In fact, in the power supply
circuit can also apply as an electrical boundary conditions, such as voltage and charge,
to piezoelectric devices for each energy conversion cycle. The major drawback of
piezoelectric power harvesting have low-power relationships in systems within (in the
range of WW to mW), then system also have significantly reduced any potential losses
in circuits that make up the EH system, whereas other condition into careful selection
of circuits and components can enhanced the energy harvesting performance and
electricity consumption. In the study of energy harvesting systems, it is an energy
harvesting system approach that using active and passive electronic circuit to control
voltage and or charge on piezoelectric devices as proposed and review to mechanical
inputs for optimized energy conversion. Several factors in the practical limitation of
active and passive energy consumption, due to device limitations and the power
efficiency of electronic circuits, will be introduced and have played an important role
into to enhance optimum and increase efficiency of energy harvesting system.

1. Introduction

The most fundamental and

ideal solution is one that can effectively collect energy from the

surrounding environment and convert it to electricity using piezoelectric materials as a means of
gathering energy from the environment that can be efficiently collected, the need to use means of
storing the energy generated is generally required. Consequently, energy-harvesting technology that
can effectively harvest human motion energy is necessary. Without accumulating a significant
guantity of energy, the energy harvesting system would be ineffective as a power source for the
majority of electronic devices. However, energy harvesting systems typically operate at low voltage
(below 1.0 V) and very low power (below 1.0 mW), which is lower than the power of the majority of
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electronic applications [1-3]. Therefore, a few proficient passive or active interface circuits are
suggested and have been predicted as ac-dc harvesting circuit sources for the purpose of harvesting
high power from piezoelectric energy harvesters.

The evolution of piezoelectric harvesting circuitry from passive multiplication to active
multiplication techniques used in piezoelectric energy harvesting systems will be reviewed in
chronological order. Current literature [2-4] has demonstrated an interest in enhancing the efficiency
of circuitry by incorporating various harvesting circuit techniques. These techniques can be classified
as passive [6-7] and active harvesting circuitry [8-10] rectification and multiplication techniques,
respectively. The voltage multiplier circuit is an alternative technique for multiplying voltage supply
[11-13]. By combining the stages of the Villard and Dickson circuits, it is possible to multiply the supply
voltage. In 2012, Anil and Ravi [14] studied a variety of multiplier circuits, including the function of a
multi-stage circuit utilising a charge-switching transistor. Studies comparing the efficacy of DC
multiplier circuits and DC boost converters were conducted to establish their suitability [15-16].

In addition, energy harvesting systems have become increasingly popular in recent years due to
their ability to convert ambient energy sources, such as solar, thermal, and mechanical energy, into
usable electrical energy. However, these systems often suffer from low efficiency and limited power
output, which can be a major challenge in practical applications. Secondly, to improve the
performance of energy harvesting systems, circuit techniques are employed to optimize the energy
conversion process, increase the efficiency of the system, and enhance the power output. There are
two main types of circuit techniques: passive and active. Passive circuit techniques rely on passive
components such as resistors, capacitors, and inductors to enhance the performance of the system.
Active circuit techniques, on the other hand, use active components such as transistors, amplifiers,
and voltage regulators to increase the efficiency of the system. Therefore, this project is important
because it aims to review and compare the different circuit techniques used to improve the
performance of energy harvesting systems. By doing so, this research studies can identify the most
effective techniques for enhancing the efficiency and power output of these systems. Ultimately, this
can lead to the development of more reliable and efficient energy harvesting systems, which can
have a significant impact on various fields, such as renewable energy, wireless sensor networks, and
Internet of Things (loT) devices.

2. Review of Passive and Active AC-DC Rectification Techniques

In this study, the choice between a "passive" or "active" solution for correction is examined and
tabulated. Several researchers in recent studies [17-19] focused on the implementation of self-
powered circuits for power management. In some of them, the problem of reusing the energy
collected in the reservoir to power the circuit has been solved [20]. Thus, the majority of extant
energy harvesting circuits, such as conventional diode rectifier with voltage doubler, are primarily
passive [21-23]. For full-wave conductors in practical energy harvesting systems, however, the
possibility of a full-powered circuit is a crucial factor to consider [24-27]. The first is typically a diode
bridge, whereas the second is a toggling power converter [28-29]. Piezoelectric micropower
generators with modified power conversion circuits [30-32] include a half-wave synchronous rectifier
with a voltage doubler, a full-wave synchronous rectifier, and a passive full-wave rectifier circuit.

Passive circuit techniques typically have a very low power harvesting capability deficiency [33-
35]. Therefore, in order to increase the harvested energy, the active technique and its components,
including MOSFET, thyristor, and transistor, have been recommended, proposed, and depending on
the type, the energy harvesting interface circuit has been suggested [36-37]. Therefore, the designed
interface circuits comprise of a piezoelectric element with an input vibration source, an AC-DC
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thyristor double rectifier circuit, and a DC-DC boost converter employing a thyristor with a storage
device [38-41]. In comparison to conventional diode rectifier circuits, these passive and active
rectifier circuits exhibit significant advancements. In general, synchronous rectification techniques
fabricated using the complementary metal-oxide-semiconductor (CMOS) process are based on active
rectifiers and have a high output power efficiency when coupled with a piezoelectric micro-power
generator. It provides the utmost efficiency for active rectification circuits at the micropower level in
active rectifiers. This active rectification technique entails greater complexity and the highest cost,
but it is particularly attractive because it provides the opportunity to harvest energy and, indirectly,
surmount the weakness of passive solutions.

3. Passive AC-DC Rectification

A passive circuit is a type of energy harvesting circuit. It is made up of capacitive and inductive
parts, and the rapid power transfer is always from the device to the electrical circuit. Conventional
electrical interfaces, like passive energy gathering, focus on power conditioning ideas, which often
include AC-DC rectification and voltage regulation. Most popular and simple AC-DC rectification
circuits are full-wave rectifiers and voltage multipliers [42—-45]. The full bridge diode rectifier (FBDR)
circuit topology [46—48] is made up of four passive p-n diodes. Voltage multipliers are another type
of AC-DC design that can produce a higher output voltage than half-wave or full-wave AC-DC
converters.

Figure 1 shows the harvesting circuits, which are made up of a full-wave rectifier with an output
capacitor, an electrochemical battery, and a switch-mode DC-DC converter that handles the energy
transfer into the battery [49-51]. To put the optimal power transfer theory into practise and get the
most power out of the battery, adaptive control methods must be used continuously.
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Fig. 1. AC-DC rectifier and load into piezoelectric model [52]

It has been found what the relationship is between the output voltage of the interface, the open-
circuit voltage of the piezoelectric element, and the load. An FBDR circuit and a filter capacitor are
what make up the interface circuit. As shown in [53-55], complete bridge diode rectifier and voltage
double are the most popular interface circuits for piezoelectric energy harvesters. Researchers have
also found many ways to change rectifier circuits, such as the switch-only rectifier [56-59] and the
bias-flip rectifier [60—61]. To make a synchronous rectifier circuit, diode-connected transistors are
changed with full bridge active diode circuits [62—64], active voltage double [65-66], or cross-coupled
MOSFETs [67—69]. High reverse current usually hurts low-voltage Schottky diodes, but it doesn't kill
low-voltage low-power energy gathering circuits. Also, MOSFET-based rectifying diodes have
replaced Schottky diodes. They are easy to use and work with CMOS manufacturing methods, which
makes them good for low power supplies. But the input voltages of these MOSFET-based full wave
rectifiers are limited by the cut-off voltages of the transistors. Table 1 gives an overview of passive
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AC-DC rectification methods, and Table 2 gives an overview of passive rectification techniques to
compare their features and performance evaluations based on current research.

Table 1
Summary of passive AC-DC rectification technique for harvesting circuit
Authors and Year Technique Efficiency
In 2006, Le et al., [70] Full wave rectifier 66%
In 2008, Torah et al., [71] Five stage Dickson multiplier 65%
In 2013, Gleeson et al., [72] circuit using Schottky diode
In 2013, Roscoe et al., [73] Cockcroft Walton doubler 63%
circuit using Schottky diode
In 2015, Ud Din et al., [74] Full wave rectifier 53.4%
In 2014, Kushino et al., [75] Voltage double circuit 19% higher than in output power compared to
standard full bridge rectifier
In 2016, Mostafa et al., [76] 57 mW
In 2013, Baby et al., [77] Full wave rectifier 38.08%
Table 2

Summary of passive rectification techniques in energy harvesting circuitry
Passive Rectification technique Features and Performances Evaluation

Standard FBDR circuit Simple circuit configuration, no external supply, higher loss from diodes, low
efficiency, less compatible for low voltage application
Voltage Doubler circuit Simple circuit configuration, less diode in circuit configuration, improve efficiency

again FBDR, high DC voltage output, no external supply

3.1 Review of Transformer as Passive Circuits Technique

Transformers are considered as an alternative to buck-boost converters for boosting the AC
voltage produced by piezoelectric transducers. In this investigation, the performance of piezoelectric
transducer inputs connected to each medium frequency low voltage transformer will be evaluated.
The signal voltage will be amplified by transformers connected to the input of each piezoelectric. The
amplified signal voltages are then connected to a rectifier circuit, which converts the AC signal to a
DC signal and regulates the signal's level in order to generate a higher voltage output.

According to Camarda et al., [78], the energy harvesting capability of a piezoelectric transformer
(PT) in 2014 is 74 mV for the input minimal activation voltage and 106.4 kHz for the measured
oscillation frequency. Ahola et al., [79] studied the energy harvesting efficacy of a switch mode power
supply with a current transformer in 2008. Energy harvesting is possible with the current transformer,
which can be manufactured with low-cost materials and is a viable option for powering electronic
components affixed to an electric motor.

In 2015, Macrelli et al., [80] proposed a circuit with a low-voltage step-up oscillator with a step-
up transformer in battery-less micropower operating at low-voltages and examined the use of bond
wire micromagnetic in energy harvesting applications. Figure 2 depicts the toroidal structure of a
step-up transformer with a minimum starting input voltage of 100 mV. The primary coil has n1 turns
and the secondary coil has n; turns.

This section intends to review, analyze, categorize, and classify various step-up or step-down
transformers based on their characteristics, specifications, and voltage-boosting techniques in order
to demonstrate a clear configuration and construction of the working principle and framework of the
development of step-up transformers used in energy harvesting systems. Finally, a comparison of the
various transformer design methods and a summary of the comparative study of various voltage-
boosting techniques are presented in Table 3.
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Fig. 2. Schematic of the designed low-voltage step-up oscillator with a step-up
transformer and parasitic capacitances [80]

Table 3

Summary of the reviewed transformer design in energy harvesting system

Reference/Techniques Input voltage and Output voltage
frequency

In 2014, Camarda et al., [78] 73 mV 1.83V

Start-up oscillator and n-channel JFETs with a 104.6 kHz

piezoelectric transformer

In 2008, Ahola et al., [79] 1.50V 3.0V

Switch mode power supply ultilizing current 50 Hz

transformer

In 2015, Macrelli et al., [80, 143] 100 mV, = -

The bond wire micromagnetic low-voltage step- 2.88 MHz

up oscillator is composed of the step-up

transformer and a depletion n-type MOSFET, IC

MOSFET in STMicroelectronics 0.32 um

technology

In 2014, Teh et al., [81] 21 mVv 1V

The oscillator is composed of the step-up 55 kHz 2 mW

transformer and a thin-film thermoelectric 74%

generators (TEG) in STMicroelectronics 0.13 um

technology

In 2015, Camarda et al., [82] 69 mV -

Piezoelectric transformer with thermoelectric 106.814 kHz

generators (TEGs) and on JFET and MOSFET

In 2016, Martinez et al., [83] 12 mVv 1V

Armstrong oscillator with a piezoelectric 55 kHz

transformer and a normally on MOSFET

3.2 Active AC-DC Rectification

Active rectification techniques can also be defined as the replacement of standard diodes with
active diodes. On the other hand, an active diode is shown that can be built to work like an ideal
diode and has the potential to solve the forward-bias voltage drop problem. In the same way, the
active produces a bidirectional switch-mode converter to control or change the voltage or charge on
the piezoelectric device electrodes. Also, the piezoelectric device's voltage or current patterns are
easier to control. At the same time, active-diode-based AC-DC rectifiers, also called synchronous
rectifiers, were widely reported, including by [84] to improve efficiency by reducing conduction loss.
The active diode method could have very low turn-on voltages and minimum reverse leakage. But
active diodes have a major drawback in that the comparison needs an external power source. Recent
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energy-scavenging systems, which are also called "energy harvesting," need a constant source of
energy and rely on their own mechanism for self-starting (boot-strapping) from a state of being
completely depleted.

Despite the fact that the comparator requires external power sources, such as batteries the
amount of power it uses is usually quite low and depends on how much current is going through the
switch device. (i.e. MOSFET). Since the on-resistance of a switch MOSFET is usually a lot lower than
the corresponding resistance of a passive diode, an active diode can provide more efficient
rectification [85-86]. Recent studies [87-88] have suggested the synchronous switch harvesting on
inductor (SSHI), which is made using CMOS technology. By adding a digital switch and an inductor to
a piezoelectric element in series (S-SSHI) [89—93] or parallel (P-SSHI) [94—99], the SSHI method
becomes one of the most important nonlinear electronic interfaces. Figure 3(a) [100-101] shows the
case of a normal circuit, while Figure 3(b) [100-101] shows an SSHI parallel circuit. (b). Adding a switch
in combination with the piezoelectric structure is needed. At extreme amounts of mass displacement,
an electronic switch turns on. Figure 3(c) shows the series-SSHI interface, which is a different version
of the SSHI interface. This series-SSHI circuit is made by connecting a switching device in series to the
piezoelectric structure.

Piezoelectric Vibralor

Piezoelectric Vibralor

Piezo

-
Piezoelectric Vibralor

()
Fig. 3. (a) A standard harvesting circuit (b) A parallel-SSHI
harvesting circuit (c) A series-SSHI harvesting circuit [102]

In similar studies [103-108], double synchronised switch harvesting (DSSH) was devised by adding

a buck-boost converter to the parallel-SSHI concept. Figure 4 illustrates this general circuit
demonstrating the DSSH technique's fundamentals.
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Fig. 4. Energy harvesting double synchronized switch
harvesting (DSSH) [109]

The effects of using DC-DC converters with control algorithms as self-powered adaptive circuits
to maximise the power output of piezoelectric elements have been studied in [110-112]. Using their
adaptive circuit, Ottman et al. [113] discovered in 2002 that the rate of energy extraction was four
times that of direct charging without converters. As shown in Figure 5, the DC-DC converter is
situated between the rectifier's output and the battery for optimal voltage performance at the
rectifier's output.

r battery
+

= DC/DC
N Vieat Converter

Vhancry

Fig. 5. Adaptive energy harvesting circuit [113]

The electrical equivalent circuit and fundamental block diagram of the piezoelectric power
harvesting system are depicted in Figure 6(a). It includes piezoelectric generators, DC-DC converters,
rectifiers, energy storage and charging devices [114]. To enhance the performance of the system,
each block can be designed with distinct strategies. In 2009, Balpande et al., [115] devised an
effective power harvesting model utilising PZT as an alternative power source for active RFID tags.
Using dynamic threshold MOS technology and supercapacitors as storage devices, this model
employs the Villard 6-stage voltage multiplier circuit shown in Figure 6(b) along with supercapacitors
as storage devices. This circuit is used to multiply and rectify the input voltage using a diode and
capacitor, as well as to model a voltage multiplier circuit with DTMOS. The input voltage of 200 mV,.
p was utilised and the output of 1.2 V4. was detected.

In general, active AC-DC rectification utilised techniques such as synchronous rectifier circuits,
synchronous rectifier switching circuits, self-powered switching circuits, and self-powered adaptive
circuits. In an active rectifier circuit, a transistor is used in lieu of a passive diode to reduce the diode's
conduction loss. Since the majority of transistors exhibit low resistance, the use of active rectifier
circuits has been strongly recommended. Table 4 is a summary of the active rectifier circuit used in
piezoelectric harvesting circuitry, with a focus on the operation principle or method and the efficacy
of these circuits.
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Fig. 6. (a) Basic block diagram of piezoelectric energy harvesting [115]
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Fig. 6. (b) Villard six-stage voltage multiplier circuit [115]

Table 4

Summary of several active AC-DC rectification technique for harvesting circuit

Synchronous rectifier circuit

Author and Techniques

In Ulusan, [55]

-Active voltage doubler,

-MOSFET based switching,

-90 nm CMOS technology

In Le et al., [70] recommended

-Active full bridge rectifier,

-MOSFET based switching,

-0.35 um CMOS technology

In Ud Din et al., [74],

-Active full bridge rectifier,

-0.18 um CMOS rectifier using symmetric flipping technique

In Baby et al., [77], -Active full bridge rectifier with switch control, -Four
MOSFET based rectifying diodes

In Han et al., [116] proposed, -Active full bridge rectifier with comparator,
-Four MOSFET based rectifying diodes, -Four stage charge pump

In Dallago etal., [117] suggested , -Active voltage double with AC-DC
converter, -Two MOSFET based rectifying diodes, -switches are driven by
two comparators, -diffused in the BCD6s technology with 0.35um

In Dallago et al. [118] introduced, -Active voltage doubler, -0.35 um CMOS
technology, -MOSFET based switching

In Cheng et al., [119] presented , -Active voltage doubler, -MOSFET based
switching

Efficiency
67%

86%

80%

93.3%

A maximum output power of 18.8 pW
can be extracted from a single
piezoelectric MPG, with 92% efficiency
in the rectifier stage

91%

94%

>80%
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Yang et al., [120] presented, -Cross-coupled active full bridge rectifier, -

NMOS based switching, -0.18 um CMOS technology

In Sun et al., [121], -Active full bridge rectifier, -MOSFET based switching

-0.18 um CMOS technology

In Rao et al., [122], -Active voltage doubler, -0.5 um CMOS technology

Synchronous rectifier switching circuit

Lallart et al., [109],

-Double synchronized switch harvesting (DSSH),
-Externally battery powered

Guyomar et al., [123],

-Parallel =SSHI,

-Two comparator use to detect polarity change of piezoelectric devices,

-Externally powered
Becker et al., [124], -Synchronized switching interface circuit, -Direct
energy injection technique without addition energy storage element

Do etal., [125],

-Parallel

—SSHI integrated with active full bridge rectifier,
-PMOS and NMOS base rectifying diode,
-Externally battery powered

Singh et al., [126],

-Parallel =SSHI,

-Externally battery powered

Wu et al., and Hsieh et al.,[127-128],

-Parallel =SSHI retifier

-0.25 um CMOS technology,

-SSHI switching control,

-Externally battery powered

Chen et al., [129],

-Series-SSHI-phi interface circuit,

-With a 0.25 um CMOS HV process
Self-powered switching circuit

Shen et al., [130], -Enhanced SSHI, -Modification of DSSHI technique

Chenetal., [131]

-Velocity control SSHI (VSSHI)

-MOSFET switch

Kong et al., [132]

-Discontinuous conduction mode (DCM) flyback converter
Chenetal., [133]

-SSDI technique with velocity sensing

Darmayuda et al., [134]

-Buck-boost converter

Self-Powered Adaptive Circuit

Ottman et al., [113]

-Adaptive control technique full bridge and dc—dc converter

Tabesh et al., [135]

-Adaptive energy-harvesting circuit with open-loop voltage-doubler
rectifier, a step-down switching converter,

and an analog controller

Alvarez-Carulla et al., [136]

91%
90%
87%

-Power extraction efficiency 500%
higher than of a standard FBDR circuit

-Power extraction efficiency 5.8 times
higher than of a standard FBDR circuit

-There results show that an efficiency
benefit by a factor of 3, compared to
standard devices can be achieved by
the presented device [76]

-92.6% power efficiency

-Power extraction 4.5 times higher than
of a standard FBDR circuit

-Power extraction efficiency 4.72 over
the standard FBDR circuit

-The circuit extracts 336% more power
compared with the full bridge rectifier
-Output power can reach up to 43.42
UW at 120 Hz

60%

-Power extraction efficiency by 300%
higher than of a standard rectifier
-71% of power efficiency

-Power extraction efficiency by 200%
higher than of a standard FBDR circuit

72%

86%

54%

-Adaptive dc—dc converter increases
power transfer by over 400% as
compared to without the dc—dc
converter

-Power extraction efficiency 60%
-Output power 0.5 mW with 250 Hz

-Max power transfer 140 uyW
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Adaptive control technique Analog Control Unit with full bridge and a

capacitor

Chew et al., [137] -Power extraction efficiency 66%
-Adaptive circuit include full bridge (FB) rectifier, buck converter,

analogue MPPT controller, and energy aware interface (EAI)

-batteryless

Chew et al., [138] -Energy transfer efficiency at 70 to 80%
-Adaptive circuit include full bridge (FB) rectifier, buck converter,

analogue MPPT controller, and energy aware interface (EAI)

-Full analogue Power management circuit (PMM) with adaptive circuit

Lietal., [139] -Harvested power was only 0.78 mW
-Closed loop control method based on the voltage doubler interface with the efficiency of 16% by using this
circuit control strategy.

-DC-DC input voltage as the feed-forward signal to adjust the switching

duration

-Adaptive Self-powered stand-alone system

Table 5 provides an overview of active rectification techniques for comparing feature and
performance evaluation based on current research analyses.

Table 5

Summary of active rectification techniques in energy harvesting circuitry

Active Rectification Features and Performances Evaluation

technique

Synchronous rectifier Replace diode with MOSFET transistor, power conversion efficiency > 80%, requires
circuit external supply, compatible for low voltage application

Synchronous rectifier Improve power extraction efficiency, use peak detector, use controlled-switch and
switching circuit inductor, high power extraction efficiency >90%, requires external supply, complex circuit

configuration, compatible for low voltage configuration

4. Summary of Literature Review on Passive and Active Rectification Energy Harvesting

The passive diode-rectifier circuit is therefore the simplest technology with the lowest efficiency
[135-139]. In a semi-active circuit, the output voltage can be processed nonlinearly by a switched
control (MOS field effect transistor and inductor) circuit to increase its magnitude and change its
phase based on the construction synchronised switching damping principle, but at the expense of
complexity and high-energy consumption. In the active circuit [140-142], the system is not dependent
on an external power supply or external comparators; however, an appropriate set of electrical
boundary conditions applied to the piezoelectric element can drive the extracted energy to the limits
of the piezoelectric harvester [143,144]. The characteristics of vibration-based energy harvesting
system interfaces, efficiencies, and features are compared in Table 6.
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Table 6

Comparing the features of different piezoelectric energy harvesters

Method

Features and performance evaluation

Synchronized rectifier (full bridge
or voltage double) [70]

Optimized energy harvester for a
full bridge rectifier using step-
down converter [101]

Adaptive energy harvester for a
full bridge rectifier using step-
down converter [113, 140]
Simple passive rectifier (standard
full bridge rectifier) [135]
Synchronized switch harvesting

Improve efficiency (37% higher), but the efficiency is still low since the circuit is
not adaptive; stand-alone operation; single supply voltage, sensorless;
implemented and demonstrates as a CMOS micro-chip

Non-adaptive; stand-alone (for Pin> 10 mW and Voc> 30 V);no external sensor;
multi-supply voltage; efficiency(<20% for Pin<50 mW, 60% for Pin>10 mW); fairly
compatible for micro-scale integration

External sensor (current); adaptive; non-stand alone; need multi supply voltage
(for sensing circuit); efficiency and the total circuits power losses have not been
reported; fairly compatible for micro-scale integration

Low efficiency, non-adaptive; stand-alone operation; sensorless; no external
supply required; highly compatible for micro-scale integration

External sensor (to determine switching time with respect to displacement);

[123, 141] non-adaptive; stand-alone; possibly needs multi supply voltage (for sensing
circuit, details of circuitry has not been provided); efficiency 70% (peak power
300 mW; circuit consumes 5% of extracted power (Max power loss 15 mW));
fairly compatible for micro-scale integration

Stand-alone (Pin>0.5 mW and Voc> 8 V); adaptive; non-external sensor; single
supply voltage; efficiency 60% for Pin>0.5 mW (independent of load and
piezoelectric parameters); fairly compatible for micro-scale integration
Sensorless; non-adaptive; stand-alone; single supply voltage; efficiency; above
84% for the power range 0.2-1.5 mW (for a given load and piezoelectric
parameters); fairly compatible for micro-scale integration [142]

Adaptive energy harvesting using
voltage doubler rectifier [135]

Buck-boost sensorless energy
harvester [142-143]

5. Current Challenges and Future Direction of Energy Harvesting

There are several current challenges related to improving the performance of energy harvesting
systems using active and passive circuit techniques, as well as several potential future directions for
research and development in this field. First, one of the major challenges facing energy harvesting
systems is limited power output, which can limit their practical applications. Increasing the power
output of energy harvesting systems is a major research focus. Secondly, energy harvesting systems
need to be adaptable to various energy sources and environmental conditions. Developing systems
that can adapt to different energy sources and environmental conditions is another research
direction. Despite significant advances in circuit techniques, energy harvesting systems still suffer
from low efficiency. Therefore, review of several active and passive circuit is producing ideas for
researchers. improving the efficiency of these systems. Lastly, the cost and size of develop energy
harvesting systems can be a limiting factor in practical applications. Developing cost-effective and
compact energy harvesting systems is a major challenge.

The potential future direction of energy harvesting is implementation of multiple energy sources
for harvesting energy is bring a lot of advantages compare to single source energy harvesting which
is a promising direction for the development of energy harvesting systems. This approach can
increase the power output and efficiency of the systems. Hybrid techniques which involved
combining active and passive circuit techniques to enhance the performance of energy harvesting
systems is another research direction. Thus, by developing effective energy storage systems is critical
for energy harvesting systems. Research on new energy storage technologies is a promising direction
for future development and design of wireless power transfer is aims promising approach for
powering low-power devices using energy harvesting. Developing efficient wireless power transfer
systems is a promising future direction for this field as well. In summary, the current challenges and
future directions related to improving the performance of energy harvesting systems using active
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and passive circuit techniques include addressing power output, efficiency, adaptability, cost, and
size limitations, as well as exploring multi-source harvesting, hybrid techniques, energy storage, and
wireless power transfer.

6. Conclusions

In conclusion regarding the review of the current piezoelectric energy harvesting technique, the
majority of researchers are concentrating on active devices, resulting in a dearth of research into
passive devices. The piezoelectric power harvesters have limited power, so the efficacy of AC-DC
converter devices must be enhanced by optimising the power harvesting at all levels. The maximal
power transfer in either mechanical or electrical energy is dependent on the physical properties of
the piezoelectric material and other operating conditions. Passive techniques that incorporate
filtering levels consisting of inductors and/or capacitors to reduce the amplitude of low-frequency
signals are intriguing due to their simple design structure, small size, and increased dependability. On
the other hand, the active techniques proposed to date are partially adequate, but the design
complexity and cost of additional circuits are frequently insufficient for low-power applications. In
current research, the use of self-powered circuits has successfully overcome the disadvantages of
external power source problems, but the circuit configuration is complex and entails high overheads,
such as controller circuits and switching devices, without significant improvements in circuit
efficiency.

The standard FBDR circuit has a flaw in that the load resistor and the supply source do not share
a point that can be earthed. When a minor voltage needs to be rectified, the circuit is unsuitable.
Similarly, the recommendation of a transformer to supplant an active rectifier circuit necessitates an
external power supply in order for the active diodes to function. Even the low resistance
characteristics of the active diode contribute to the circuit's decreased conduction losses. This
research lacuna convinces the author to conduct a thorough investigation of passive devices. This
method has the benefit of requiring no additional energy sources for energy conversion. It is to
ensure an original study has been conducted after all possible comparable studies have been
examined. Indeed, it is evident from prior research that the use of piezoelectric materials for energy
harvesting systems in the process of energy extraction from sources of ambient vibration is natural.
Piezoelectric can convert mechanical force into an electric charge without the need for additional
power.
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