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In piezoelectric energy harvesting systems, energy harvesting circuits are the interface 
between piezoelectric devices and electrical loads. The conventional view of this 
interface is based on the concept of impedance matching. In fact, in the power supply 
circuit can also apply as an electrical boundary conditions, such as voltage and charge, 
to piezoelectric devices for each energy conversion cycle. The major drawback of 
piezoelectric power harvesting have low-power relationships in systems within (in the 
range of μW to mW), then system also have significantly reduced any potential losses 
in circuits that make up the EH system, whereas other condition into careful selection 
of circuits and components can enhanced the energy harvesting performance and 
electricity consumption. In the study of energy harvesting systems, it is an energy 
harvesting system approach that using active and passive electronic circuit to control 
voltage and or charge on piezoelectric devices as proposed and review to mechanical 
inputs for optimized energy conversion. Several factors in the practical limitation of 
active and passive energy consumption, due to device limitations and the power 
efficiency of electronic circuits, will be introduced and have played an important role 
into to enhance optimum and increase efficiency of energy harvesting system. 
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1. Introduction 
 

The most fundamental and ideal solution is one that can effectively collect energy from the 
surrounding environment and convert it to electricity using piezoelectric materials as a means of 
gathering energy from the environment that can be efficiently collected, the need to use means of 
storing the energy generated is generally required. Consequently, energy-harvesting technology that 
can effectively harvest human motion energy is necessary. Without accumulating a significant 
quantity of energy, the energy harvesting system would be ineffective as a power source for the 
majority of electronic devices. However, energy harvesting systems typically operate at low voltage 
(below 1.0 V) and very low power (below 1.0 mW), which is lower than the power of the majority of 
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electronic applications [1-3]. Therefore, a few proficient passive or active interface circuits are 
suggested and have been predicted as ac-dc harvesting circuit sources for the purpose of harvesting 
high power from piezoelectric energy harvesters. 

The evolution of piezoelectric harvesting circuitry from passive multiplication to active 
multiplication techniques used in piezoelectric energy harvesting systems will be reviewed in 
chronological order. Current literature [2-4] has demonstrated an interest in enhancing the efficiency 
of circuitry by incorporating various harvesting circuit techniques. These techniques can be classified 
as passive [6-7] and active harvesting circuitry [8-10] rectification and multiplication techniques, 
respectively.  The voltage multiplier circuit is an alternative technique for multiplying voltage supply 
[11-13]. By combining the stages of the Villard and Dickson circuits, it is possible to multiply the supply 
voltage. In 2012, Anil and Ravi [14] studied a variety of multiplier circuits, including the function of a 
multi-stage circuit utilising a charge-switching transistor. Studies comparing the efficacy of DC 
multiplier circuits and DC boost converters were conducted to establish their suitability [15-16]. 

In addition, energy harvesting systems have become increasingly popular in recent years due to 
their ability to convert ambient energy sources, such as solar, thermal, and mechanical energy, into 
usable electrical energy. However, these systems often suffer from low efficiency and limited power 
output, which can be a major challenge in practical applications. Secondly, to improve the 
performance of energy harvesting systems, circuit techniques are employed to optimize the energy 
conversion process, increase the efficiency of the system, and enhance the power output. There are 
two main types of circuit techniques: passive and active. Passive circuit techniques rely on passive 
components such as resistors, capacitors, and inductors to enhance the performance of the system. 
Active circuit techniques, on the other hand, use active components such as transistors, amplifiers, 
and voltage regulators to increase the efficiency of the system. Therefore, this project is important 
because it aims to review and compare the different circuit techniques used to improve the 
performance of energy harvesting systems. By doing so, this research studies can identify the most 
effective techniques for enhancing the efficiency and power output of these systems. Ultimately, this 
can lead to the development of more reliable and efficient energy harvesting systems, which can 
have a significant impact on various fields, such as renewable energy, wireless sensor networks, and 
Internet of Things (IoT) devices. 
 
2. Review of Passive and Active AC-DC Rectification Techniques 
 

In this study, the choice between a "passive" or "active" solution for correction is examined and 
tabulated. Several researchers in recent studies [17-19] focused on the implementation of self-
powered circuits for power management. In some of them, the problem of reusing the energy 
collected in the reservoir to power the circuit has been solved [20]. Thus, the majority of extant 
energy harvesting circuits, such as conventional diode rectifier with voltage doubler, are primarily 
passive [21-23]. For full-wave conductors in practical energy harvesting systems, however, the 
possibility of a full-powered circuit is a crucial factor to consider [24-27]. The first is typically a diode 
bridge, whereas the second is a toggling power converter [28-29]. Piezoelectric micropower 
generators with modified power conversion circuits [30-32] include a half-wave synchronous rectifier 
with a voltage doubler, a full-wave synchronous rectifier, and a passive full-wave rectifier circuit. 

Passive circuit techniques typically have a very low power harvesting capability deficiency [33-
35]. Therefore, in order to increase the harvested energy, the active technique and its components, 
including MOSFET, thyristor, and transistor, have been recommended, proposed, and depending on 
the type, the energy harvesting interface circuit has been suggested [36-37].  Therefore, the designed 
interface circuits comprise of a piezoelectric element with an input vibration source, an AC-DC 
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thyristor double rectifier circuit, and a DC-DC boost converter employing a thyristor with a storage 
device [38-41]. In comparison to conventional diode rectifier circuits, these passive and active 
rectifier circuits exhibit significant advancements.  In general, synchronous rectification techniques 
fabricated using the complementary metal-oxide-semiconductor (CMOS) process are based on active 
rectifiers and have a high output power efficiency when coupled with a piezoelectric micro-power 
generator. It provides the utmost efficiency for active rectification circuits at the micropower level in 
active rectifiers. This active rectification technique entails greater complexity and the highest cost, 
but it is particularly attractive because it provides the opportunity to harvest energy and, indirectly, 
surmount the weakness of passive solutions. 

 
3. Passive AC-DC Rectification 
 

A passive circuit is a type of energy harvesting circuit. It is made up of capacitive and inductive 
parts, and the rapid power transfer is always from the device to the electrical circuit. Conventional 
electrical interfaces, like passive energy gathering, focus on power conditioning ideas, which often 
include AC-DC rectification and voltage regulation. Most popular and simple AC-DC rectification 
circuits are full-wave rectifiers and voltage multipliers [42–45]. The full bridge diode rectifier (FBDR) 
circuit topology [46–48] is made up of four passive p-n diodes. Voltage multipliers are another type 
of AC-DC design that can produce a higher output voltage than half-wave or full-wave AC-DC 
converters. 

Figure 1 shows the harvesting circuits, which are made up of a full-wave rectifier with an output 
capacitor, an electrochemical battery, and a switch-mode DC-DC converter that handles the energy 
transfer into the battery [49–51]. To put the optimal power transfer theory into practise and get the 
most power out of the battery, adaptive control methods must be used continuously.  

 

 
Fig. 1. AC-DC rectifier and load into piezoelectric model [52] 

 
It has been found what the relationship is between the output voltage of the interface, the open-

circuit voltage of the piezoelectric element, and the load. An FBDR circuit and a filter capacitor are 
what make up the interface circuit. As shown in [53–55], complete bridge diode rectifier and voltage 
double are the most popular interface circuits for piezoelectric energy harvesters. Researchers have 
also found many ways to change rectifier circuits, such as the switch-only rectifier [56–59] and the 
bias-flip rectifier [60–61]. To make a synchronous rectifier circuit, diode-connected transistors are 
changed with full bridge active diode circuits [62–64], active voltage double [65–66], or cross-coupled 
MOSFETs [67–69]. High reverse current usually hurts low-voltage Schottky diodes, but it doesn't kill 
low-voltage low-power energy gathering circuits. Also, MOSFET-based rectifying diodes have 
replaced Schottky diodes. They are easy to use and work with CMOS manufacturing methods, which 
makes them good for low power supplies. But the input voltages of these MOSFET-based full wave 
rectifiers are limited by the cut-off voltages of the transistors. Table 1 gives an overview of passive 
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AC-DC rectification methods, and Table 2 gives an overview of passive rectification techniques to 
compare their features and performance evaluations based on current research. 
 
  Table 1 
  Summary of passive AC-DC rectification technique for harvesting circuit 

Authors and Year Technique Efficiency 

In 2006, Le et al., [70] Full wave rectifier 66% 
In 2008, Torah et al., [71] 
In 2013, Gleeson et al., [72] 

Five stage Dickson multiplier 
circuit using Schottky diode 

65% 

In 2013, Roscoe et al., [73] Cockcroft Walton doubler 
circuit using Schottky diode 

63% 

In 2015, Ud Din et al., [74] Full wave rectifier 53.4% 
In 2014, Kushino et al., [75] Voltage double circuit 19% higher than in output power compared to 

standard full bridge rectifier 
In 2016, Mostafa et al., [76] 57 mW 
In 2013, Baby et al., [77] Full wave rectifier 38.08% 

 
  Table 2   
  Summary of passive rectification techniques in energy harvesting circuitry 

Passive Rectification technique Features and Performances Evaluation 

Standard FBDR circuit Simple circuit configuration, no external supply, higher loss from diodes, low 
efficiency, less compatible for low voltage application 

Voltage Doubler circuit Simple circuit configuration, less diode in circuit configuration, improve efficiency 
again FBDR, high DC voltage output, no external supply 

 
3.1 Review of Transformer as Passive Circuits Technique 
 

Transformers are considered as an alternative to buck-boost converters for boosting the AC 
voltage produced by piezoelectric transducers. In this investigation, the performance of piezoelectric 
transducer inputs connected to each medium frequency low voltage transformer will be evaluated. 
The signal voltage will be amplified by transformers connected to the input of each piezoelectric. The 
amplified signal voltages are then connected to a rectifier circuit, which converts the AC signal to a 
DC signal and regulates the signal's level in order to generate a higher voltage output. 

According to Camarda et al., [78], the energy harvesting capability of a piezoelectric transformer 
(PT) in 2014 is 74 mV for the input minimal activation voltage and 106.4 kHz for the measured 
oscillation frequency. Ahola et al., [79] studied the energy harvesting efficacy of a switch mode power 
supply with a current transformer in 2008. Energy harvesting is possible with the current transformer, 
which can be manufactured with low-cost materials and is a viable option for powering electronic 
components affixed to an electric motor. 

In 2015, Macrelli et al., [80] proposed a circuit with a low-voltage step-up oscillator with a step-
up transformer in battery-less micropower operating at low-voltages and examined the use of bond 
wire micromagnetic in energy harvesting applications. Figure 2 depicts the toroidal structure of a 
step-up transformer with a minimum starting input voltage of 100 mV. The primary coil has n1 turns 
and the secondary coil has n2 turns. 

This section intends to review, analyze, categorize, and classify various step-up or step-down 
transformers based on their characteristics, specifications, and voltage-boosting techniques in order 
to demonstrate a clear configuration and construction of the working principle and framework of the 
development of step-up transformers used in energy harvesting systems. Finally, a comparison of the 
various transformer design methods and a summary of the comparative study of various voltage-
boosting techniques are presented in Table 3. 
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Fig. 2. Schematic of the designed low-voltage step-up oscillator with a step-up 
transformer and parasitic capacitances [80] 

 
  Table 3  
  Summary of the reviewed transformer design in energy harvesting system 
Reference/Techniques Input voltage and 

frequency 
Output voltage 

In 2014, Camarda et al., [78] 
Start-up oscillator and n-channel JFETs with a 
piezoelectric transformer 

73 mV 
104.6 kHz 

1.83 V 

In 2008, Ahola et al., [79] 
Switch mode power supply ultilizing current 
transformer 

1.50 V 
50 Hz 

3.0 V 

In 2015, Macrelli et al., [80, 143] 
The bond wire micromagnetic low-voltage step-
up oscillator is composed of the step-up 
transformer and a depletion n-type MOSFET, IC 
MOSFET in STMicroelectronics 0.32 µm 
technology 

100 mV, ≈ 
2.88 MHz 
 

- 

In 2014, Teh et al., [81] 
The oscillator is composed of the step-up 
transformer and a thin-film thermoelectric 
generators (TEG) in STMicroelectronics 0.13 µm 
technology  

21 mV 
55 kHz 

1 V 
2 mW 
74% 

In 2015, Camarda et al., [82] 
Piezoelectric transformer  with thermoelectric 
generators (TEGs) and on JFET and MOSFET 

69 mV 
 106.814 kHz 

- 

In 2016, Martinez et al., [83] 
Armstrong oscillator with a piezoelectric 
transformer and a normally on MOSFET 

12 mV 
 55 kHz 

1 V 

 
3.2 Active AC-DC Rectification 
 

Active rectification techniques can also be defined as the replacement of standard diodes with 
active diodes. On the other hand, an active diode is shown that can be built to work like an ideal 
diode and has the potential to solve the forward-bias voltage drop problem. In the same way, the 
active produces a bidirectional switch-mode converter to control or change the voltage or charge on 
the piezoelectric device electrodes. Also, the piezoelectric device's voltage or current patterns are 
easier to control. At the same time, active-diode-based AC-DC rectifiers, also called synchronous 
rectifiers, were widely reported, including by [84] to improve efficiency by reducing conduction loss. 
The active diode method could have very low turn-on voltages and minimum reverse leakage. But 
active diodes have a major drawback in that the comparison needs an external power source.  Recent 
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energy-scavenging systems, which are also called "energy harvesting," need a constant source of 
energy and rely on their own mechanism for self-starting (boot-strapping) from a state of being 
completely depleted. 

Despite the fact that the comparator requires external power sources, such as batteries the 
amount of power it uses is usually quite low and depends on how much current is going through the 
switch device. (i.e. MOSFET). Since the on-resistance of a switch MOSFET is usually a lot lower than 
the corresponding resistance of a passive diode, an active diode can provide more efficient 
rectification [85-86]. Recent studies [87-88] have suggested the synchronous switch harvesting on 
inductor (SSHI), which is made using CMOS technology. By adding a digital switch and an inductor to 
a piezoelectric element in series (S-SSHI) [89–93] or parallel (P-SSHI) [94–99], the SSHI method 
becomes one of the most important nonlinear electronic interfaces. Figure 3(a) [100-101] shows the 
case of a normal circuit, while Figure 3(b) [100-101] shows an SSHI parallel circuit. (b). Adding a switch 
in combination with the piezoelectric structure is needed. At extreme amounts of mass displacement, 
an electronic switch turns on.  Figure 3(c) shows the series-SSHI interface, which is a different version 
of the SSHI interface. This series-SSHI circuit is made by connecting a switching device in series to the 
piezoelectric structure. 
 

 
Fig. 3. (a) A standard harvesting circuit (b) A parallel-SSHI 
harvesting circuit (c) A series-SSHI harvesting circuit [102] 

 
In similar studies [103-108], double synchronised switch harvesting (DSSH) was devised by adding 

a buck-boost converter to the parallel-SSHI concept. Figure 4 illustrates this general circuit 
demonstrating the DSSH technique's fundamentals. 
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Fig. 4. Energy harvesting double synchronized switch 
harvesting (DSSH) [109] 

 
The effects of using DC-DC converters with control algorithms as self-powered adaptive circuits 

to maximise the power output of piezoelectric elements have been studied in [110-112]. Using their 
adaptive circuit, Ottman et al. [113] discovered in 2002 that the rate of energy extraction was four 
times that of direct charging without converters. As shown in Figure 5, the DC-DC converter is 
situated between the rectifier's output and the battery for optimal voltage performance at the 
rectifier's output. 
 

 
Fig. 5. Adaptive energy harvesting circuit [113] 

 
The electrical equivalent circuit and fundamental block diagram of the piezoelectric power 

harvesting system are depicted in Figure 6(a). It includes piezoelectric generators, DC-DC converters, 
rectifiers, energy storage and charging devices [114]. To enhance the performance of the system, 
each block can be designed with distinct strategies. In 2009, Balpande et al., [115] devised an 
effective power harvesting model utilising PZT as an alternative power source for active RFID tags. 
Using dynamic threshold MOS technology and supercapacitors as storage devices, this model 
employs the Villard 6-stage voltage multiplier circuit shown in Figure 6(b) along with supercapacitors 
as storage devices. This circuit is used to multiply and rectify the input voltage using a diode and 
capacitor, as well as to model a voltage multiplier circuit with DTMOS. The input voltage of 200 mVp-

p was utilised and the output of 1.2 Vdc was detected. 
In general, active AC-DC rectification utilised techniques such as synchronous rectifier circuits, 

synchronous rectifier switching circuits, self-powered switching circuits, and self-powered adaptive 
circuits. In an active rectifier circuit, a transistor is used in lieu of a passive diode to reduce the diode's 
conduction loss. Since the majority of transistors exhibit low resistance, the use of active rectifier 
circuits has been strongly recommended. Table 4 is a summary of the active rectifier circuit used in 
piezoelectric harvesting circuitry, with a focus on the operation principle or method and the efficacy 
of these circuits. 
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Fig. 6. (a) Basic block diagram of piezoelectric energy harvesting [115] 

 

 
Fig. 6. (b) Villard six-stage voltage multiplier circuit [115] 

 
  Table 4   
  Summary of several active AC-DC rectification technique for harvesting circuit 

Synchronous rectifier circuit 

Author and Techniques Efficiency  
In Ulusan, [55]  
-Active voltage doubler,  
-MOSFET based switching,  
-90 nm CMOS technology 

67% 

In Le et al., [70] recommended   
-Active full bridge rectifier,  
-MOSFET based switching,  
-0.35 μm CMOS technology 

86% 

In Ud Din et al., [74],  
-Active full bridge rectifier,  
-0.18 μm CMOS rectifier using symmetric flipping technique 

80% 

In Baby et al., [77], -Active full bridge rectifier with switch control, -Four 
MOSFET based rectifying diodes 

93.3% 

In Han et al., [116] proposed, -Active full bridge rectifier with comparator, 
-Four MOSFET based rectifying diodes, -Four stage charge pump 

A maximum output power of 18.8 µW 
can be extracted from a single 
piezoelectric MPG, with 92% efficiency 
in the rectifier stage 

In Dallago  et al., [117] suggested , -Active voltage double with AC-DC 
converter, -Two MOSFET based rectifying diodes, -switches are driven by 
two comparators, -diffused in the BCD6s technology with  0.35µm 

91% 

In Dallago et al. [118] introduced, -Active voltage doubler, -0.35 μm CMOS 
technology, -MOSFET based switching 

94% 

In Cheng et al., [119] presented , -Active voltage doubler, -MOSFET based 
switching 

>80% 
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Yang et al., [120] presented, -Cross-coupled active full bridge rectifier, -
NMOS based switching, -0.18 μm CMOS technology 

91% 

In Sun et al., [121], -Active full bridge rectifier, -MOSFET based switching 
-0.18 μm CMOS technology 

90% 

In Rao et al., [122], -Active voltage doubler, -0.5 µm CMOS technology 87% 
Synchronous rectifier switching circuit 
Lallart et al., [109],  
-Double synchronized switch harvesting (DSSH),  
-Externally battery powered 

-Power extraction efficiency 500% 
higher than of a standard FBDR circuit 

Guyomar et al., [123],  
-Parallel –SSHI,  
-Two comparator use to detect polarity change of piezoelectric devices, 
-Externally powered 

-Power extraction efficiency 5.8 times 
higher than of a standard FBDR circuit 

Becker et al., [124], -Synchronized switching interface circuit, -Direct 
energy injection technique without addition energy storage element 

-There results show that an efficiency 
benefit by a factor of 3, compared to 
standard devices can be achieved by 
the presented device [76] 

Do et al., [125],  
-Parallel  
–SSHI integrated with active full bridge rectifier,  
-PMOS and NMOS base rectifying diode,  
-Externally battery powered 

-92.6% power efficiency 
-Power extraction 4.5 times higher than 
of a standard FBDR circuit 

Singh et al., [126],  
-Parallel –SSHI,  
-Externally battery powered 

-Power extraction efficiency 4.72 over 
the standard FBDR circuit 

Wu et al., and Hsieh et al.,[127-128],  
-Parallel –SSHI retifier 
-0.25 μm CMOS technology,  
-SSHI switching control,  
-Externally battery powered 

-The circuit extracts 336% more power 
compared with the full bridge rectifier 
-Output power can reach up to 43.42 
μW at 120 Hz 

Chen et al., [129],  
-Series-SSHI-phi interface circuit,  
-With a 0.25 µm CMOS HV process 

60% 

Self-powered switching circuit 
Shen et al., [130], -Enhanced SSHI, -Modification of DSSHI technique -Power extraction efficiency by 300% 

higher than of a standard rectifier 
-71% of power efficiency 

Chen et al., [131] 
-Velocity control SSHI (VSSHI) 
-MOSFET switch 

-Power extraction efficiency by 200% 
higher than of a standard FBDR circuit 

Kong et al., [132] 
-Discontinuous conduction mode (DCM) flyback converter 

72% 

Chen et al., [133] 
-SSDI technique with velocity sensing 

86% 

Darmayuda et al., [134] 
-Buck-boost converter  

54% 

Self-Powered Adaptive Circuit 
Ottman et al., [113] 
-Adaptive control technique full bridge and dc–dc converter 

-Adaptive dc–dc converter increases 
power transfer by over 400% as 
compared to without  the dc–dc 
converter 

Tabesh et al., [135] 
-Adaptive energy-harvesting circuit with open-loop voltage-doubler 
rectifier, a step-down switching converter, 
and an analog controller 

-Power extraction efficiency 60% 
-Output power 0.5 mW with 250 Hz 

Alvarez-Carulla et al.,  [136] -Max power transfer 140 µW 
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Adaptive control technique Analog Control Unit with full bridge and a 
capacitor 
Chew et al., [137] 
-Adaptive circuit include full bridge (FB) rectifier, buck converter, 
analogue MPPT controller, and energy aware interface (EAI) 
-batteryless 

-Power extraction efficiency 66% 
 

Chew et al., [138] 
-Adaptive circuit include full bridge (FB) rectifier, buck converter, 
analogue MPPT controller, and energy aware interface (EAI) 
-Full analogue Power management circuit (PMM) with adaptive circuit 

-Energy transfer efficiency at 70 to 80% 

Li et al., [139] 
-Closed loop control method based on the voltage doubler interface 
circuit 
-DC-DC input voltage as the feed-forward signal to adjust the switching 
duration 
-Adaptive Self-powered stand-alone system 

-Harvested power was only 0.78 mW 
with the efficiency of 16% by using this 
control strategy. 

 
Table 5 provides an overview of active rectification techniques for comparing feature and 

performance evaluation based on current research analyses.  
 
  Table 5 
  Summary of active rectification techniques in energy harvesting circuitry 

Active Rectification 
technique 

Features and Performances Evaluation 

Synchronous rectifier 
circuit 

Replace diode with MOSFET transistor, power conversion efficiency > 80%, requires 
external supply, compatible for low voltage application 

Synchronous rectifier 
switching circuit 

Improve power extraction efficiency, use peak detector, use controlled-switch and 
inductor, high power extraction efficiency >90%, requires external  supply, complex circuit 
configuration, compatible for low voltage configuration 

 
4. Summary of Literature Review on Passive and Active Rectification Energy Harvesting 
 

The passive diode-rectifier circuit is therefore the simplest technology with the lowest efficiency 
[135-139]. In a semi-active circuit, the output voltage can be processed nonlinearly by a switched 
control (MOS field effect transistor and inductor) circuit to increase its magnitude and change its 
phase based on the construction synchronised switching damping principle, but at the expense of 
complexity and high-energy consumption. In the active circuit [140-142], the system is not dependent 
on an external power supply or external comparators; however, an appropriate set of electrical 
boundary conditions applied to the piezoelectric element can drive the extracted energy to the limits 
of the piezoelectric harvester [143,144]. The characteristics of vibration-based energy harvesting 
system interfaces, efficiencies, and features are compared in Table 6. 
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  Table 6  
  Comparing the features of different piezoelectric energy harvesters 

Method Features and performance evaluation 

Synchronized rectifier (full bridge 
or voltage double) [70] 

Improve efficiency (37% higher), but the efficiency is still low since the circuit is 
not adaptive; stand-alone operation; single supply voltage, sensorless; 
implemented and demonstrates as a CMOS micro-chip 

Optimized energy harvester for a 
full bridge rectifier using step-
down converter [101] 

Non-adaptive; stand-alone (for Pin> 10 mW and Voc> 30 V);no external sensor; 
multi-supply voltage; efficiency(<20% for Pin<50 mW, 60% for Pin>10 mW); fairly 
compatible for micro-scale integration 

Adaptive energy harvester for a 
full bridge rectifier using step-
down converter [113, 140] 

External sensor (current); adaptive; non-stand alone; need multi supply voltage 
(for sensing circuit); efficiency and the total circuits power losses have not been 
reported; fairly compatible for micro-scale integration 

Simple passive rectifier (standard 
full bridge rectifier) [135] 

Low efficiency, non-adaptive; stand-alone operation; sensorless; no external 
supply required; highly compatible for micro-scale integration 

Synchronized switch harvesting 
[123, 141] 

External sensor (to determine switching time with respect to displacement); 
non-adaptive; stand-alone; possibly needs multi supply voltage (for sensing 
circuit, details of circuitry has not been provided); efficiency 70% (peak power 
300 mW; circuit consumes 5% of extracted power (Max power loss 15 mW)); 
fairly compatible for micro-scale integration 

Adaptive energy harvesting using 
voltage doubler rectifier [135] 

Stand-alone (Pin>0.5 mW and Voc> 8 V); adaptive; non-external sensor; single 
supply voltage; efficiency 60% for Pin>0.5 mW (independent of load and 
piezoelectric parameters); fairly compatible for micro-scale integration 

Buck-boost sensorless energy 
harvester [142-143] 

Sensorless; non-adaptive; stand-alone; single supply voltage; efficiency; above 
84% for the power range 0.2-1.5 mW (for a given load and piezoelectric 
parameters); fairly compatible for micro-scale integration [142] 

 
5. Current Challenges and Future Direction of Energy Harvesting 
 

There are several current challenges related to improving the performance of energy harvesting 
systems using active and passive circuit techniques, as well as several potential future directions for 
research and development in this field. First, one of the major challenges facing energy harvesting 
systems is limited power output, which can limit their practical applications. Increasing the power 
output of energy harvesting systems is a major research focus. Secondly, energy harvesting systems 
need to be adaptable to various energy sources and environmental conditions. Developing systems 
that can adapt to different energy sources and environmental conditions is another research 
direction. Despite significant advances in circuit techniques, energy harvesting systems still suffer 
from low efficiency. Therefore, review of several active and passive circuit is producing ideas for 
researchers. improving the efficiency of these systems. Lastly, the cost and size of develop energy 
harvesting systems can be a limiting factor in practical applications. Developing cost-effective and 
compact energy harvesting systems is a major challenge. 

The potential future direction of energy harvesting is implementation of multiple energy sources 
for harvesting energy is bring a lot of advantages compare to single source energy harvesting which 
is a promising direction for the development of energy harvesting systems. This approach can 
increase the power output and efficiency of the systems. Hybrid techniques which involved 
combining active and passive circuit techniques to enhance the performance of energy harvesting 
systems is another research direction. Thus, by developing effective energy storage systems is critical 
for energy harvesting systems. Research on new energy storage technologies is a promising direction 
for future development and design of wireless power transfer is aims promising approach for 
powering low-power devices using energy harvesting. Developing efficient wireless power transfer 
systems is a promising future direction for this field as well. In summary, the current challenges and 
future directions related to improving the performance of energy harvesting systems using active 
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and passive circuit techniques include addressing power output, efficiency, adaptability, cost, and 
size limitations, as well as exploring multi-source harvesting, hybrid techniques, energy storage, and 
wireless power transfer. 
 
6. Conclusions 
 

In conclusion regarding the review of the current piezoelectric energy harvesting technique, the 
majority of researchers are concentrating on active devices, resulting in a dearth of research into 
passive devices.  The piezoelectric power harvesters have limited power, so the efficacy of AC-DC 
converter devices must be enhanced by optimising the power harvesting at all levels. The maximal 
power transfer in either mechanical or electrical energy is dependent on the physical properties of 
the piezoelectric material and other operating conditions. Passive techniques that incorporate 
filtering levels consisting of inductors and/or capacitors to reduce the amplitude of low-frequency 
signals are intriguing due to their simple design structure, small size, and increased dependability. On 
the other hand, the active techniques proposed to date are partially adequate, but the design 
complexity and cost of additional circuits are frequently insufficient for low-power applications. In 
current research, the use of self-powered circuits has successfully overcome the disadvantages of 
external power source problems, but the circuit configuration is complex and entails high overheads, 
such as controller circuits and switching devices, without significant improvements in circuit 
efficiency. 

The standard FBDR circuit has a flaw in that the load resistor and the supply source do not share 
a point that can be earthed. When a minor voltage needs to be rectified, the circuit is unsuitable. 
Similarly, the recommendation of a transformer to supplant an active rectifier circuit necessitates an 
external power supply in order for the active diodes to function. Even the low resistance 
characteristics of the active diode contribute to the circuit's decreased conduction losses. This 
research lacuna convinces the author to conduct a thorough investigation of passive devices. This 
method has the benefit of requiring no additional energy sources for energy conversion. It is to 
ensure an original study has been conducted after all possible comparable studies have been 
examined. Indeed, it is evident from prior research that the use of piezoelectric materials for energy 
harvesting systems in the process of energy extraction from sources of ambient vibration is natural. 
Piezoelectric can convert mechanical force into an electric charge without the need for additional 
power. 
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