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Electromyography (EMG) is a powerful tool for studying muscle activity, but there is 
limited research on EMG signals in the muscles of the human forearm, which poses 
challenges for prosthetic hand development. This study utilized the maximum voluntary 
contraction (MVC) normalization method to analyze the flexor carpi radialis muscle 
during handgrip and swinging motions. The MVC indices revealed a significant 
proportion of high-amplitude MVC results. We conducted three statistical analyses to 
validate the indices. One-way ANOVA showed significant differences in mean values 
among the seven subjects during the percent MVC test. RMS study demonstrated a 
linear correlation between muscle contraction and movement. Boxplot analysis 
revealed variations within the interquartile range and median values across the entire 
MVC range. To achieve these results, we employed an eighth-order Gaussian function 
for curve fitting and exponential weighted moving average. The median interquartile 
range showed high discrepancies, while the differences between MVC increments were 
minimal, providing reliable indices for swinging motion. This suggests that the fat layer 
thickness may influence the muscle signal's frequency characteristics. In summary, our 
study highlights the untapped potential of EMG signals in the forearm muscles for 
prosthetic hand development. By employing MVC normalization and conducting 
rigorous statistical analyses, we uncovered significant findings that contribute to 
advancements in this field. Our insights provide hope and inspiration for researchers 
and practitioners seeking to enhance prosthetic technology. 
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1. Introduction 
 

Muscle activity plays a pivotal role in our daily lives, influencing our ability to perform various 
tasks. Understanding and monitoring this activity is crucial, which is why electromyography (EMG) 
has emerged as a powerful tool. By evaluating and recording the electrical signals produced during 
muscle contractions, EMG provides valuable insights into neuromuscular activities [1,2]. With a 
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frequency range of up to 5000 Hz, it captures the myoelectric signals that directly correlate with our 
body movements, such as hand gestures (see Figure 1). 

Recent studies have primarily focused on healthy individuals, harnessing EMG as an input source 
for control modalities like prosthetic hands, grip control, finger movements, and arm swings [2,3]. 
Remarkably, these advancements have yielded impressive levels of accuracy, reaching up to 95% [2]. 
By utilizing EMG signals, researchers aim to enhance the control and precision of these modalities, 
revolutionizing the way we interact with technology. 

However, it is important to acknowledge the challenges that researchers face in achieving even 
greater accuracy. Signal noises, data collection methods, and environmental factors pose significant 
hurdles that must be overcome to ensure the robustness and reliability of EMG pattern recognition 
[4-6]. To address these challenges, researchers have relied on key references such as "Human lower 
limb activity recognition techniques, databases, challenges and its applications using sEMG signal" by 
Vijayvargiya et al., [7], and "The study of principle component of the surface electromyography signal 
of the Bicep Brachii muscle" by Sabri et al., [8]. In the pursuit of accurate EMG analysis, the 
development of recommendations for SEMG sensors and sensor placement procedures by Hermens 
et al., [9] and study of EMG sensor to muscle serves as a valuable resource [10-12]. Additionally, 
studies by Corbett et al., [13], as well as Yahya et al., [14], have shed light on the extraction of neural 
strategies from surface EMG and the associations between motor unit action potential features and 
surface electromyography parameters. 

Harnessing the potential of EMG technology not only holds tremendous promise for the field of 
prosthetics but also opens exciting avenues for applications in rehabilitation, sports performance, 
and ergonomics. By capitalizing on the wealth of information provided by EMG signals, we can unlock 
new insights into the human body's capabilities and design innovative solutions that enhance our 
quality of life [15-18]. In summary, EMG is a game-changing technology that empowers us to delve 
deeper into the intricacies of muscle activity. By leveraging its capabilities and drawing upon the 
latest research in the field, researchers and innovators are paving the way for groundbreaking 
advancements in various fields [19]. Through persistent efforts, we are poised to conquer the 
challenges and unlock the full potential of EMG, revolutionizing the way we interact with and 
understand the human body. 
 

 
Fig. 1. The forearm with cross section area showing the muscles properties [17] 

 
Myoelectric (EMG) signals are generated in human skeletal muscle during contraction of the 

muscle fibre, which is always random [20]. These EMG signals provide evidence of the anatomy and 
functional activity of a muscle [21-24]. 

Figure 2, shows basic blocks of pattern recognition for EMG signal. The acquisition block which 
also refers to detection and recording of the EMG signals. Meanwhile, processing the signal is 
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required to align the suitability of the collected EMG data in terms of their amplitude, frequency, or 
space. Important transformation of raw signal or data into a set of a new column with reliable 
information known as feature extraction. Usually, the accuracy of the result from the feature 
extraction is affected greatly due to the noise environment and error. Lastly, signal normalization is 
important to categorize all EMG data acquired from different samples. 
 

 
Fig. 2. The block diagram of basic electromyography signal processing 

 
The raw EMG signal, although informative, is highly susceptible to artefacts and data distortions. 

Its inadequacy as a reliable feature source has hindered advancements in signal processing and 
analysis. But fear not, as the breakthrough technique of sEMG holds the key to unlocking a new realm 
of possibilities. Feature extraction of EMG signals has shed light on the variations of signal 
information, including artefacts, which depend on the signal strength. Studies have demonstrated 
the effectiveness of extracting features in both the time and frequency domains [25]. However, 
achieving a set of robust features has remained an elusive goal, challenged researchers and limited 
progress in the field. Numerous review papers by esteemed researchers have highlighted these 
challenges and called for innovative solutions [26,27]. The recognition and analysis of EMG patterns 
are profoundly affected by these inconsistencies, hindering the development of reliable and accurate 
methodologies. By utilizing specialized external sensors or electrodes, sEMG enables the capture of 
high-quality signals, untethered by the limitations of the raw EMG. This breakthrough technology 
offers a path to unparalleled precision and accuracy in muscle activity analysis [28]. 
 
2. Methodology 
2.1 Materials and Methods 
 

With the ability to capture electrical potentials across a broad muscle area, EMG sensors provide 
invaluable insights despite challenges such as low-frequency components (20-500Hz), resolution 
limitations, and susceptibility to artefacts. Harnessing the SENIAM standard operating procedure, we 
unlock a realm of possibilities [29,30]. 

Unveiling the Power of Seven Exceptional Volunteers. Our meticulously selected team consists of 
four remarkable males and three extraordinary females. Their impeccable health records, devoid of 
musculoskeletal disorders or nerve diseases, guarantee the integrity of our study. With a shared trait 
of right-handedness, they embody precision and dexterity. Aged between 21 and 25 years, their 
youthful energy and enthusiasm fuel our research. The day before the experiment, they were 
conscientiously advised to abstain from rigorous forearm or hand exercises. Together, we forge 
ahead, ready to uncover groundbreaking insights into muscle activity. 

Empowering Progress through Thorough Documentation. We meticulously recorded essential 
details, including gender, weight, dominant hand, age, and height, ensuring comprehensive future 
references. Our commitment to excellence extends to the data collection setup, meticulously 
optimized for subject comfort and efficiency. By minimizing fatigue and streamlining preparation 
time, we prioritize an environment conducive to groundbreaking discoveries [31,32]. Together, we 
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pave the way for transformative advancements. Devices used for the data collection is multiple-
channel surface EMG system known as Vernier Labquest mini (See Figure 3(b)). Before the electrode 
placement, the subject is advised to calm and rest. The alcohol swab applied to the subject skin, to 
clean the surface and prevent high impedance. This will prevent any harm to the skin from rashes. 
Several disposable EMG electrodes are used in the experiment (Nihon Kohden). The size of electrode 
diameter is 10mm, but the recording surface estimated around 5mm in area covered. The EMG 
sensor is placed on the right forearm, wrist while electrodes placed on two muscle groups on 
forearm, which are flexor carpi radialis and flexor pollicis longus as shown in Figure 3(c). Subjects 
were instructed to sit on a chair with adjustable armrest position, to suit their comfort. Subjects were 
asked to perform a swing with handgrip force using Vernier hand dynamometer. To get the effective 
signals, each channel using bipolar configuration and distance between two electrodes is chosen at 
15mm [30]. 
 

 
Fig. 3. The Example of electrodes placement for EMG sensors and the muscles; (a) 
Electrode placement for the extensor muscles, ECRL and EDC, (b) data acquisition 
system with hand dynamometer for subject force measurement, and (c) Electrode 
placement and sensor cable connection for flexor muscles FDC and FCR 

 
Feature extraction is one of the challenging parts in surface EMG pattern recognition [14,32]. It 

is important to reduce noise in EMG signal. Usually, EMG signal contains a great amount of noise and 
robust features are needed to get the best surface EMG indices for further assessment [33]. The 
selected features are described as follows 

 
i. Means absolute value (MAV) is used for calculation of mean value of the linear envelope. It 

can be express as 
 

𝑀𝐴𝑉 =  
1

𝑁
∑ |𝑋𝑛|𝑁

𝑁=1             (1) 

 
ii. Root mean square (RMS) is modeled by the amplitude modulated Gaussian random process. 

It can be computed as 
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𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑋𝑛

2𝑁
𝑛=1             (2) 

 
where N represents the length of the signal and 𝑋𝑛 stands for the EMG signal in specific 
segment. 
 

iii. Standard deviation feature represents EMG signal confidence interval between statistical 
data. It can be express as 
 

𝑆𝑇𝐷 = √
1

𝑁−1
∑ 𝑋𝑛

2𝑁
𝑛=1             (3) 

 
where N represents the length of the signal and 𝑋𝑛 stands for the EMG signal in specific 
segment. 
 

iv. Modified mean absolute value 1 (MMAV 1) is a assemble feature based on MAV and it can be 
expressed in mathematical form as 
 

𝑀𝑀𝐴𝑉 =
1

𝑁
∑ 𝑤𝑛|𝑁

𝑛=1 𝑥𝑛|           (4) 

 

𝑤𝑛 = {
1, 𝑖𝑓 0.25𝑁 ≤ 𝑛 ≤ 0.75𝑁

0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          (5) 

 
where N is the length of signal; 𝑤𝑛 is the weighing window function of sampling signal and 
𝑥𝑛 represents the EMG signal in a specific segmentation. 
 

v. Modified mean absolute value 2 (MMAV 2) is an assemble feature based on MAV with 
continuous weighing window function and it can be expressed in mathematical form as 
 

𝑀𝑀𝐴𝑉 =
1

𝑁
∑ 𝑤𝑛|𝑁

𝑛=1 𝑥𝑛|           (6) 

 

{

1, 𝑖𝑓 0.25𝑁 ≤ 𝑛 ≤ 0.75𝑁 
4𝑛

𝑁
,                       𝑖𝑓 0.25𝑁 > 𝑛

4(𝑛−𝑁)

𝑁
, 𝑖𝑓 0.75𝑁 < 𝑛

          (7) 

 
where N is the length of signal; 𝑤𝑛 is weighing window function of sampling signal and 𝑥𝑛 
represents the EMG signal in a specific segmentation. 

 
Several experiment and trials were done, for data collection and to analyse the performance of 

the feature to be used as EMG indices. Each of the experiment is associated with two main objectives 
of this study. At first, to analyse the EMG signal using statistical analysis methods, and to increase the 
efficiency of pattern recognition by finding an optimal feature as EMG indices. After all the required 
EMG signal is collected from the experiment, the signal is then analysed [34]. Statistical analysis 
proven to be good at indicating muscular activities which makes the process easier to make analysis 
on muscle activation. There are three methods that will be applied to approach statistical analysis 
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and according to previous studies, these methods have shown good results. The methods are the 
ANOVA, root mean square (RMS), and boxplot analysis [34,35]. 
 
3. Results 
 

The raw EMG signal has been processed for further analysis. As shown in Figure 4, the times of 0 
to 4 seconds, demonstrate that the hand muscle EMG signal amplitude is relatively small, due the 
relaxed condition of a subject. After four seconds of relaxing phase, subject was asked to perform 
task as instructed for 0%, 50% and 100% MVC. This can be seen whenever the percentage of MVC 
increases, the normalized amplitude of the spinal EMG signal is also increased. This means that the 
contraction of the muscle increases as the handgrip force increases as there is no swinging motion. 
A swinging motion occurs from 4 to six seconds, and the graphs in Figure 4(c) shows an enormous 
increase in normalized amplitude, as subject was asked for 100% MVC. There's a holding period from 
six to ten seconds as shown in graphs (Figure 4), indicates that the normalized amplitude has started 
to decrease thus showing that it becomes unstable. Most of this transition periods have been 
discussed by much research as muscle fatigue [34-37]. All data collected is further processed for the 
indices assessment. 

The one-way ANOVA analysis is performed at the average percentage of each MVC handgrip and 
swinging level. The significant level was observed based on the setting level; p < 0.05 to allocate 
variance with respect to the various data set. The findings indicate statistically significant difference 
between mean and variance for 100% MVC and 50 % MVC. Additionally, it is noted that not all 
subjects have the same mean and variance. The null hypothesis, H_ostate is rejected for the 
methodology and sampling. This disparity was due to unstable condition of the subject body. Based 
on ANOVA analysis, it shows that linear identification is impossible for different subject as indices 
being provided by each subject at the same percentage of MVC, are nonlinear. 

The RMS analysis is performed at the average percentage of MVC handgrip and swinging level. 
Table 1 tabulates the results with the estimation of the RMS value. The RMS is determined to rectify 
the useful information about the EMG signal amplitudes. Higher MVC level will result to the higher 
RMS indices, as shown in Table 1. This reveals that, the percentage RMS value of MVC excited from 
muscle function increase as the contraction is increased. In swinging phase motion, the percentage 
of each MVC are analysed using the boxplot. Figure 5 displayed the percentage of MVC for 0%, 50% 
and 100% and their respective boxplot analysis. In boxplot, the x-axis corresponds to different 
percentages of MVC while the y-axis corresponds to the normalized EMG signal amplitude. In 
boxplot, the red line in the box represents the median for each respective box. In addition, the boxes 
display the maximum and minimum uniform amplitude for any unit MVC. 100% MVC has the highest 
mean, interquartile range, and average standardized amplitude compared to those in Table 2. The 
difference of average median of 0% MVC to 100% MVC is 77.34mV, while interquartile range (IQR) 
difference is 266.54667mV in average, for the same MVCs. This can be concluded that the median is 
linearly correlated with the percentages of MVC. 
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(a) 

 
(b) 

 
(c) 

Fig. 4. Average of (a) 0% MVC, (b) 50% MVC, and (c) 100% 
MVC. Graph plotted using MATLAB software 
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Fig. 5. Boxplot analysis of %MVC 

 
Table 1 
RMS and Mean results (%MVC) 
 0% MVC 50% MVC 100% MVC 

Mean (mV) -81.35 287.1 491 
RMS (mV) 93.1 306.8 505.3 

 
Table 2 
AQR difference and average median 
MVC (%) Median difference (mV) IQR difference (mV) 

0-50 661.86 103.65 
50-100 136.78 51.03 
Total 799.64 154.68 
Average 266.54667 77.34 

 
Table 3 shows the 8th order of Gaussian function for the 0%, 50%, and 100% MVC. The difference 

in average median from 0% to 100% MVC is noted to be at 129.367mV while the difference of IQR 
average median from 0% to 100% MVC is 37.645mV. However, the average amplitude is 656.4mV. 
 

Table 3 
3 (8th order Gaussian function) boxplot analysis 
MVC (%) Median (mV) IQR (mV) Max. Amplitude (mV) 

0 -61.013 68.313 -30.325 
50 340.591 150.95 405.91 
100 469.51 221.54 656.43 

 
Standard deviation is used in statistical analysis for quantifying the sum of variance in a dataset. 

Results analysed shown that difference between median and IQR indicates a lowest variations in 
standard deviation error. In addition, the IQR gap indicates the lowest deviation in normal condition. 
Based on the results tabulated in tables, it shows that median and IQR indicates very high 
concentrations in their average value and difference value. Since the EMG was analysed with 8th 
Gaussian function, the average IQR difference from 0% to 100% are the lowest, 47.397mV while the 
signal undergoes the highest exponential weight moving average filter, 72.34mV. This was due to the 
low quality of data but offers more variable values. 

The implementation of exponential weight moving average filter resulted for maximum 
amplitude, 743.79mV, in between three different boxplot analysed. In addition, for EMG signal that’s 
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applied for 8th order of Gaussian function resulted for higher average mean difference from 0% to 
100% MVC which is 133.20475mV, while 124.118475mV for mean average of moving average filter. 
The value for median shows the highest increment from 0% to 100% MVC compared to IQR based on 
results. Thus, the median value is the perfect indices to exhibits the differences in MVC percentages. 
These produces identical and consistent data after the boxplot analysis is performed. Based on 
findings in median, standard deviation, and IQR difference, there is the need for multiple references 
to calculate perfect MVC value for swinging motion. 
 
4. Conclusions 
 

Unveiling the Secrets of MVC Tests. we delve into the fascinating differences between MVC tests, 
uncovering their hidden intricacies. The results paint a compelling picture: during swinging motions, 
a significant increase in normalized amplitude is observed. This surge can be attributed to the 
heightened percentage of MVC, signifying greater muscle contraction induced by higher loads. 
Consequently, muscles generate a substantial amount of myoelectric activity. These findings shed 
light on an important aspect: the average mean of the 7 subjects does not exhibit significant 
correlation. Hence, the MVC standardization approach emerges as the preferred method for 
evaluating EMG signals in swinging motions. Moreover, direct recognition based on indices proves 
unfeasible due to the inherent variabilities in EMG signals across subjects at the same percentage 
MVC. The analysis of RMS further supports these observations, showcasing heightened muscle 
activity with increased muscle contraction. Prepare to embark on an engaging journey that unravels 
the mysteries of MVC tests, offering profound insights into the dynamic world of muscles. 
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