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The role of fog computing is to lessen the burden of Cloud and device computing. The 
purpose of this project is to solve the energy consumption and latency issues in the IoT 
6G device as well as propose an approach to match the fog nodes with the IoT devices 
in task-offloading. This project implemented the Gale Shapley Stable Marriage Matching 
Game with a task-offloading energy efficiency technique. One-to-one matching is 
applied, in four fog nodes and four IoT devices according to the size of the task in IoT 
devices and energy in fog nodes. Simulation results prove that the proposed approach 
improves energy consumption and latency by 36.15% and 37.5% respectively.   
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1. Introduction 
 

Fog computing is a viable technique for future 6G networks that can provide storage and 
computational capabilities [1]. Fog computing will be critical in supporting 6G's enormous Internet of 
Things (IoT) applications [2]. The primary goal of the 6G network is to link people to all apps, services, 
and things always and in all places. One of the unique advantages of 6G is intended to handle a higher 
number of mobile connections than the 5G capacity, which is around 10 x 105 per km2 [3,4]. Many 
proposals are aimed to cope with the massive energy consumption in the mobile network and cloud 
provider data centres to attain the high demand for a better Quality of Service (QoS) in the IoT 
environment [5-10]. Fog computing was proposed as an extension to the cloud for hosting 
applications as an extension to cloud computing. Fog computing provides enormous, scalable 
resources that allow computation and storage to be moved to the cloud from a physical location [11]. 
In addition, fog computing provides massive and scalable resources that enable the physical location 
of computation and storage to be moved to the cloud. It combines fog nodes and small cell networks 
which are installed in various areas by different mobile network operators (MNOs) to deliver various 
data services and applications to IoT devices and subscribers [12]. These IoT devices may select their 

 
* Corresponding author. 
E-mail address: syafizan@uitm.edu.my 
 
https://doi.org/10.37934/araset.36.2.199212 

mailto:syafizan@uitm.edu.my


Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 36, Issue 2 (2024) 199-212 

200 
 

MNOs as well as the associated Fogs Computing to improve their Quality-of-Experience (QoE) while 
consuming less energy. 

IoT consists of a diverse set of devices with different task sizes that are linked to the Internet and 
collaborate to be responsible for the desired services by creating and sharing data. Today, most 
mobile and IoT apps use a server-client architecture with front-end smart devices and back-end cloud 
[13]. Figure 1 depicts fog computing as the focal point of energy efficiency architecture. Cloud 
computing and device computing are believed to be conventional computing. This is due to the slow 
transmission speed because cloud servers are typically deployed in remote areas of traditional core 
networks [14]. The large transmission distance and low transmission rate between IoT devices and 
cloud servers cause a long transmission delay [15,16]. The second reason is that it causes a burden 
to the cloud and devices as it will contribute to big data in cloud servers. As the number of IoT devices 
grows, many tasks are uploaded to cloud servers, resulting in high load and low computing efficiency 
for the cloud servers [17]. Furthermore, with conventional computing, the energy required to 
transfer tasks is substantial since IoT devices have limited computing capacity, and tasks are 
transferred to cloud servers via wireless links in traditional networks. 

 

 
Fig. 1. Structure of fog computing 

 
Fog computing, also known as edge computing, involves distributing computing resources and 

services closer to the edge of the network, such as at the devices, gateways, or local servers. This 
decentralized approach offers several benefits in various real-world use cases such as applications of 
smart cities, industrial Internet of things (IIoT), healthcare and autonomous vehicles. Fog computing 
plays a crucial role in smart city initiatives. Sensors, cameras, and other IoT devices deployed 
throughout the city generate massive amounts of data. By implementing fog computing, data 
processing, and analysis can be performed at the edge, reducing latency and bandwidth usage. For 
example, in a smart traffic management system, fog nodes placed at intersections can analyze real-
time traffic data and control traffic signals locally, improving response times and reducing congestion. 

Fog computing is particularly beneficial in industrial settings where low latency and real-time 
processing is critical. In manufacturing plants, fog nodes placed near production machinery can 
collect and process sensor data locally, enabling real-time monitoring, predictive maintenance, and 
immediate response to anomalies. This approach reduces the need for transmitting large volumes of 
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raw data to the cloud, resulting in faster decision-making and lower bandwidth costs. Fog computing 
enhances healthcare services by bringing computation closer to patients and medical devices. For 
example, wearable health monitoring devices can collect vital signs and send them to nearby fog 
nodes for real-time analysis. These nodes can identify critical conditions and trigger immediate alerts, 
ensuring timely medical intervention. Fog computing also enables local storage and processing of 
patient data, maintaining privacy and security compliance while reducing reliance on a central cloud 
infrastructure. 

Fog computing is crucial for autonomous vehicles, where split-second decision-making is vital for 
safety. Fog nodes deployed along roadways can process sensor data from vehicles, analyze traffic 
patterns, and provide real-time information to autonomous cars. This approach reduces the 
dependence on cloud connectivity, enabling faster response times and more efficient navigation. 

These examples illustrate the wide-ranging applications of fog computing and how it brings 
computation closer to the edge, providing real-time processing, reduced latency, improved 
scalability, enhanced security, and cost savings. By leveraging the power of fog computing, 
organizations can unlock new possibilities and deliver more responsive and efficient services. 

In recent years, task offloading for fog computing has received significant attention in research. 
Accordingly, the following section presents several techniques proposed in recent years, which could 
assist potential researchers in bridging the research gap. Chen et al., [18] present the multi-user 
offloading problem in mobile-edge cloud computing and utilise game theory to accomplish effective 
offloading. Beraldi et al., [19] explore a situation of two eNBs cooperating on computation offloading. 
The trade-off policy is used to reduce data exchange while minimizing system congestion in this 
situation, which is stated as an M/M/2-2K queuing model. This cooperative technique, however, 
cannot be used for the proposed task offloading problem, but it could be applied to the D2D 
communication environment. Furthermore, task offloading must be implemented using an exact 
mathematical model in the above two studies. 

To reduce the processing time of users' apps, Miao et al., [20] offer a prediction-based compute 
offloading and task relocation technique. However, in such a dynamic and random MEC environment, 
it is impossible to accurately forecast future values. Yan et al., [21] investigate the problem of joint 
task offloading and resource allocation by taking both energy consumption and execution time into 
account. An effective bisection search policy is employed to compute optimal solutions in order to 
solve this challenge. It is, however, designed for offloading jobs with dependence linkages and cannot 
be utilised directly for independent tasks. Li et al., [22] look into the multi-user offloading problem in 
WPMEC and present a Lyapunov-based online computation rate maximisation (OCRM) technique for 
achieving optimal bandwidth allocation and low data transmission energy usage. Approaches based 
on Lyapunov optimization are well adapted to solving the challenge of long-term performance 
optimization. Each objective function performance, however, must be a time-average metric, such 
as average energy or power, average delay, and average cost. As a result, it can't be used in 
optimization problems with deterministic constraints, such as the job deadline constraint. Besides 
that, energy-aware task offloading also has been discussed by Li et al., in [23]. In their published 
articles, they proposed a novel energy- aware task offloading framework with MEC in IoT. Random 
pairing is done in the task offloading via ratio fog nodes and devices that follows 1:100 ratio. An 
architecture of task offloading also has been proposed according to their method. 

In this work, the proposed Gale-Shapley stable marriage matching technique for task offloading 
differs from other approaches through its preference-based optimization, stable matching, proximity 
and resource considerations, and scalability, resulting in reduced transmission time delay, energy 
consumption, and improved QoS in IoT-fog computing environments. Firstly, the Gale-Shapley 
algorithm is based on preference rankings of both IoT devices and fog nodes. In this case, by 
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considering factors such as the size of tasks and proximity, it optimizes the matching process to 
achieve desired outcomes. This preference-based approach differs from other methods that may use 
heuristics, random assignment, or static rules. Secondly, The Gale-Shapley algorithm ensures stable 
matches, where both IoT devices and fog nodes are mutually satisfied with their assignments. This 
stability contributes to consistent QoS by preventing frequent task reassignments or resource 
bottlenecks that could negatively impact performance. Following that, the matching process 
considers dual factors which are the proximity and resource availability of fog nodes to provide 
optimal QoS. This dual-factor approach sets it apart from other approaches that may only consider 
one of these factors, potentially leading to suboptimal QoS. By allocating tasks to nearby fog nodes 
(based on proximity) with sufficient resources (based on resource availability), the algorithm ensures 
that tasks experience lower latency, faster response times, and improved QoS. Finally, the Gale-
Shapley algorithm is scalable and can handle a large number of IoT devices and fog nodes. This 
scalability differentiates it from approaches that may struggle to efficiently manage a growing 
number of devices and nodes. 

 
2. Methodology  
2.1 Simulation Setting 

 
Figure 2 shows the architecture of task-offloading via the Internet of Things (IoT) Network. With 

the aid of fog servers (edge servers), IoT devices downloaded their computing tasks to the fog server 
to decrease the burden of the IoT devices.  

 

 
Fig. 2. Architecture of task offloading in fog computing 

 
The following is a summary of each component's roles in the task-offloading approach: 
 

i. IoT Devices: Several IoT devices (e.g., smartphones) surround the edge servers, with each 
IoT device (i=A, B, C, D…n!"). Each IoT device has a limited computing capability, as shown 
in the diagram (e.g., CPU cycles, battery). 

ii. Edge Server (Fog Server): The Fog servers are positioned at the network's edge to schedule 
task offloading for IoT devices, (i = 0,1,2… 	m1)with each edge server having restricted 
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processing capability, represented by i. When an IoT device offloads tasks, it connects with 
the fog server over a wireless connection.  

iii. Cloud Server: A cloud server may store material supplied by various mobile users and 
supply computational power to IoT devices. Cloud computing gives internet access to 
computer services, and the cloud server is hosted in faraway clouds. Wireless connections 
connect each IoT device and fog server to the cloud server. 

iv. Computing Task Delay or Latency: IoT devices produce many different sorts of tasks. In this 
simulation, the devices are arranged in ascending order according to the number of tasks.  

v. Wireless Channel: Wireless channels are used by IoT devices to interact with edge servers. 
k = (1,..., k,... K) denotes the set of orthogonal channels. Through the use of wireless 
channels, tasks are offloaded to edge servers. The performance of task offloading is 
proportional to the wireless channel's transmission bandwidth. 

 
In this simulation, task m conserves energy consumption, so the unit time cost to complete the 

task m is given by µ#. Moreover, based on the task division, the m is divided into several devices 
(Device A,B,C,D). Task m can be completed with low energy by matching the devices to the fog nodes 
(device-fog-offloading). The matchings are done via Gale Shapley matching. Table 1 displayed all the 
parameters and the values for simulation purposes. 
 

Table 1 
Simulation parameters 
Parameter Definition Value 

S!	 Size of tasks in IoT devices Device A = 1.1 kbytes 
Device B = 1.2 kbytes 
Device C = 1.3 kbytes 
Device D = 1.4 bytes  

µ# Transmission bandwidth in fog 4 GHz 
µ$	 Transmission bandwidth in 6G IoT devices 0.8 GHz 

w!,	w&		 Link bandwidth in fog and devices 40 MHz 
µ'	 Unit time cost to complete the task m 1000 mW 
P# The transmission power of fog 100 mW 
P$	 The transmission power of devices 100 mW 
α()  Offloading time α()  = 0, without offloading 

α()  = 1, with offloading 
 

2.2 Flowchart 
 
Figure 3 illustrates the flowchart of the proposed algorithm. This illustrated design is classified 

into eight phases. The first phase is the specification of tasks in IoT devices where each device has 
tasks of different sizes. The tasks are then displayed in ascending order based on their priority. In this 
project, four devices of varying sizes were applied. The following phase derived the energy 
consumption in fog nodes according to the size of the tasks. The third phase executes a matching 
game between fog nodes and IoT devices with Gale Shapley Stable Marriage Matching Algorithm. 
High-priority tasks of mobile devices are matched to the fog nodes that provide high energy and 
acceptable latency. Phase 4 involved the Matching condition where if the IoT devices suit the energy 
in fog nodes, the devices are considered engaged. However, if it does not engage, the process will be 
repeated until the IoT devices found their perfect stable matches, hence, the device and fog nodes 
need to go through the process starting from Phase 1 again. Following that, the tasks from the IoT 
devices are uploaded to the paired fog nodes (Task-offloading energy efficiency technique is applied). 
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Once the matching game is done, the tasks from the IoT devices are uploaded to the fog nodes, and 
the fog nodes will be the helper for the IoT devices in computing the given tasks. After the tasks 
offloading process, performance evaluation is carried out in terms of energy consumption and 
latency, and performance measurement is performed by displaying the results of energy 
consumption and latency to prove the effectiveness of the proposed task-offloading approach. 

 

 
Fig. 3. Flowchart of the proposed algorithm 

 
2.3 Details of the Offloading Strategy 

 
The purpose of this research is to construct an ideal task offloading strategy to minimize the 

consumption of energy. During its Time-to-Live (TTL), the goal is to reduce energy usage and increase 
the number of tasks accomplished within the time.  
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2.3.1 Latency in IoT devices and fog nodes analysis 
 
The completion time of task m that executes at the IoT device can be calculated by 

 
b$% = ∑ ( &*

'*
+ ()*

*+
)+

,-%                              (1) 

   
In addition, the completion task m that is executed at the fog server can be calculated by 

 
b$( = ∑ (&*

',
+ ()*

*-
)+

,-%                                (2) 

2.3.2 Energy consumption in IoT devices and fog nodes analysis 
 
The energy consumption in IoT devices with m tasks is expressed by 
 

c$% = ∑ (u# ×
)*
'*
+ 2s, × p%)+

,-%                                          (3) 

 
In addition, the cost of performing task m at the fog server as 

 
c$( = ∑ (u# ×

)*
',
+ 2s, × p()+

,-%                           (4) 

 
As a result,  

 
E[a$! ] = a$! × c$% + (1 − a$! ) × c$(                  (5) 
 
can be used to calculate the estimated energy consumption. 
 
2.3.3 Device-to-Fog Matching strategy with Gale Shapley 

 
This algorithm has a runtime complexity of O(n(), where n is the number of fog devices. The 

runtime is linear in the input size since the input preference lists have a size proportionate to n(. 
These iteration orders follow the process of Gale Shapley matching. In this process, the IoT devices 
are arranged in ascending order according to the task size. Fog nodes with high energy consumption 
will prefer the IoT devices with high latency and reject the IoT devices with low latency to ensure 
stable matching. Once the elimination is done, all the fog nodes and the IoT devices are matched 
according to their preferences and none of them is left unpaired. In this project, the fog and device 
are defined as a set I and J respectively. Set I is labelled as fog I={f., f%,f(.f1} and set J is labelled as 
group device J=	{A, B, C, D}. The pseudo-code for the stable matching is as follows: 

 
//f=fog 
//d=device 
Initialize all fog and device to be free 
While there exists a device that does not have a partner 
{ 
 f= d’s most preferred fog to whom it has not proposed yet 
 if f is does not have a partner 
      (f.d) become engaged 
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 else some pair (d’, f) already exists 
      if d prefers f to f’ 
  (f, d) become engaged 
  d’ become free 
      else 
  (d’, f) remain engaged 
       } 

 
2.3.4 Task offloading strategy  

 
After the matching game is executed, the task will be uploaded to the fog server. This is to lessen 

the burden of the device to hold the task. The task will be offloaded at a$! = 1 and the energy 
consumption in that process can be derived based on Eq. (3). Meanwhile, the energy consumption 
without task offloading is denoted as a$! = 0 .  
 
2.4 Limitation and Challenges 

 
Simulating Gale-Shapley's stable marriage matching technique within the context of IoT devices 

and fog nodes introduces additional limitations and challenges such as resource constraints, dynamic 
environment, heterogeneous preferences and constraints, scalability and network size, real-time 
constraints and latency. IoT devices and fog nodes typically have limited computational power, 
memory, and energy resources. Simulating the matching process within these constraints can be 
challenging, as the algorithm's execution and resource requirements need to be optimized to ensure 
feasibility on resource-constrained devices. IoT devices and fog nodes operate in dynamic and 
unpredictable environments. The availability and resource status of fog nodes may change 
dynamically due to device mobility, network conditions, or varying workloads. Simulating the 
matching algorithm in such dynamic environments and capturing the real-time changes can be 
challenging, requiring dynamic updates and adjustments to the matching process. 

IoT devices and fog nodes may have diverse preferences, capabilities, and constraints. Simulating 
and representing these heterogeneous preferences and constraints accurately can be complex. 
Assigning appropriate preference rankings and modelling constraints based on the characteristics of 
the IoT devices and fog nodes is essential for realistic simulations. The number of IoT devices and fog 
nodes in a network can be vast, leading to scalability challenges. The execution time and 
computational requirements of the matching algorithm may increase significantly as the network size 
grows. Efficient simulation techniques, such as parallelization or approximation algorithms, may be 
necessary to handle large-scale IoT deployments. Some IoT applications require real-time decision-
making and low-latency interactions. Simulating the matching process in real time and analyzing the 
impact of latency on the algorithm's performance becomes crucial. Accounting for real-time 
constraints and ensuring timely and efficient matching decisions can be challenging in IoT and fog 
computing environments. 

Addressing these limitations and challenges within the simulation of Gale-Shapley's stable 
marriage matching technique in IoT devices and fog nodes requires careful consideration of resource 
constraints, communication overhead, dynamic environments, heterogeneous preferences, 
scalability, privacy, security, and real-time constraints. It necessitates specialized simulation 
frameworks and techniques that account for the unique characteristics and constraints of IoT and 
fog computing environments. 
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2.5 Summary of Methodology 
 
The utilization of the Gale-Shapley Stable Marriage Matching Game for matching IoT devices with 

fog nodes is proposed that can contribute to improving end-to-end performance in terms of energy 
efficiency and transmission time. The flow of the approach starts with preference-based matching 
where each IoT device and fog node rank their preferences for potential matches based on specific 
criteria, in this work, it is based on the size of each task and proximity within the fog nodes and IoT 
devices. The following procedure is an iterative matching process. The Gale-Shapley algorithm 
proceeds iteratively, starting with each IoT device proposing its most preferred fog node. Fog nodes 
then evaluate their proposals and accept or reject them based on their own preferences and capacity 
constraints. Rejections prompt IoT devices to propose to their next preferred fog node, and this 
process continues until a stable matching is reached. 

This proposed matching game contributes to improving end-to-end performance such as energy 
efficiency and latency. By employing the Gale-Shapley algorithm, IoT devices can be efficiently 
matched with fog nodes that best meet their requirements. This reduces unnecessary energy 
consumption and communication overhead that would occur if devices were randomly assigned or 
inefficiently matched. Optimized device-node assignments help minimize energy expenditure, 
leading to improved overall energy efficiency in the IoT-fog computing environment. Matching IoT 
devices with nearby fog nodes can significantly reduce transmission distance and latency. By 
considering proximity as a preference criterion, the algorithm can allocate devices to nearby fog 
nodes, enabling faster data transmission and reduced communication delays. This reduction in 
transmission time contributes to lower latency, improved responsiveness, and enhanced real-time 
processing capabilities. By leveraging the Gale-Shapley Stable Marriage Matching Game, the process 
of matching IoT devices with fog nodes can be optimized, resulting in improved energy efficiency, 
reduced transmission time, better resource utilization, and enhanced system scalability. These 
benefits contribute to the overall performance and effectiveness of IoT-fog computing environments. 

 
3. Results  
3.1 Performances of Energy Consumption and Latency 
 

This section presents the performance analysis of energy consumption and latency. The 
transmission loss is considered negligence. During the offloading process, stable matching is required 
for the IoT devices and fog nodes. The stable matching is executed based on the IoT device and fog 
nodes’ energy value. Based on the stable matching, the IoT device with high latency will be paired 
with the fog with a high level of energy. The matching is considered stable due to the ability of the 
fog nodes’ energy to compute the tasks. Firstly, the latency of all the IoT devices is derived with Eq.  
(1). Table 2 shows the latency of the IoT device before offloading process. 
 

Table 2 
Latency before implementation of task 
offloading 
IoT devices Latency (in µs) 
A 30.25 
B 63.25 
C 99.50 
D 137.5 
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Secondly, the energy consumption in fog nodes before task offloading is derived and tabulated in 
Table 3. 

 
Table 3 
Energy consumption before implementation 
of task offloading 
Fog Tasks in kbytes Energy in kJ 
0 1.1 1.1 
1 1.2 2.3 
2 1.3 3.6 
3 1.4 5.0 

 
Thirdly, the fog nodes and the IoT devices will be paired according to the Gale Shapley Stable 

Marriage technique. The details of pairing are displayed in Table 4. 
 

Table 4 
Pairing order based on the device latency and fog nodes’ 
energy based on Gale Shapley matching 
Fog Device Pair order 
0 A 1st 
1 B 2nd 
2 C 3rd 
3 D 4th 

 
In this pairing and task offloading process, the tasks in the IoT devices and fog are shared based 

on a 3:2 ratio, which causes the reduction of tasks in IoT devices by 40%. Table 5 shows the new 
latency of the tasks in IoT devices after offloading process is carried out.  
 

Table 5 
Latency after implementation of task offloading 
IoT devices Latency (in µs) 
A 18.15 
B 37.95 
C 59.40 
D 82.50 

 
Next, the energy in devices without task offloading is also measured and summarized in Table 6. 

 
Table 6 
The energy consumption in devices without 
task offloading 
IoT Devices Energy consumption (J) 
A 220 
B 460 
C 700 
D 1060 

 
After the Stable Matching game of the fog nodes with the devices, the energy consumption in the 

IoT is reduced because some of the tasks are transferred to the fog nodes. The total energy 
consumption in IoT devices after stable matching and task offloading is displayed in Table 7.  
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Table 7 
Energy consumption before implementation 
of task offloading 
IoT Devices Energy consumption (J) 
A 132 
B 276 
C 432 
D 600 

 
Based on the results gained, it can be concluded that the Gale Shapley Stable Marriage Matching 

game that is implemented in task offloading has contributed to low latency and energy consumption 
in IoT devices. In addition, based on the ratio division, the latency and energy consumption in IoT 
devices are reduced up to 37.5% and 36.15% respectively after the task offloading method. This is 
due to the task being transferred to the fog nodes from the devices. Before the task offloading 
approach is implemented, the IoT devices only go through local computing, which is also known as 
the conventional method of computing. As a result, the IoT devices will have the burden to process 
all the data and it is simply inefficient because it will contribute to high energy consumption and 
latency in the task computing; thus, it gives a low QoS in the IoT devices.  

With the implementation of fog computing, much of the processing in fog computing happens in 
a data hub on a smart mobile device or at the network's fog in a smart router or other gateway 
devices. Hence, some of the data and tasks are transferred to fog nodes and this will reduce the 
burden of the IoT devices to compute the tasks and this process will contribute to minimising energy 
consumption. In order to evaluate and verify the results, the graph of latency and energy 
consumption are displayed in Figure 4 and 5 respectively. The red line legends show the energy and 
latency in IoT devices before the offloading process and the blue line legends show the vice versa. 

 

 
Fig. 4. Performance evaluation of latency 
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Fig. 5. Performance evaluation of energy consumption 

 
4. Conclusions 

 
By using the Gale-Shapley stable marriage matching technique, the proposed approach optimizes 

the allocation of tasks to fog nodes based on proximity and resource availability. This reduces latency 
since tasks are processed closer to the devices, resulting in faster response times. Moreover, this 
technique also helps in minimizing energy consumption. By offloading tasks to nearby fog nodes 
instead of transmitting data to distant cloud servers, the energy required for data transmission is 
reduced. This is particularly beneficial for IoT devices with limited energy resources, as it helps extend 
their battery life. Overall, the Gale-Shapley stable marriage matching technique applied to task 
offloading in fog computing within IoT devices and fog nodes optimizes resource allocation, reduces 
latency, and minimizes energy consumption, resulting in improved performance and efficiency in IoT 
deployments. Based on simulation results, The proposed approach reduces energy usage and delay 
by 36.15% and 37.5%, respectively, according to simulation results.  

For future works, more comprehensive and rigorous evaluations of the proposed Gale-Shapley 
Stable Marriage Matching task offloading technique will be performed. The proposed algorithm will 
be further enhanced to evaluate the performance of the technique in terms of energy consumption 
and latency with different percentages of partial offloading based on task sizes which is a crucial step 
in understanding its effectiveness and efficiency. This type of analysis will provide valuable insights 
into the behaviour of the technique under varying conditions and workload characteristics. We are 
planning such evaluations as part of our future work. 
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