

Journal of Advanced Research in Applied Sciences and Engineering Technology 49, Issue 1 (2025) 77-94

77

Journal of Advanced Research in Applied
Sciences and Engineering Technology

Journal homepage:
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index

ISSN: 2462-1943

A Comparative Study on Testing Optimization Techniques with
Combinatorial Interaction Testing for Optimizing Software Product Line
Testing

Nur Farrahin Maidin1,*, Sa’adah Hassan1, Salmi Baharom1, Abu Bakar Md. Sultan1

1 Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

ARTICLE INFO ABSTRACT

Article history:
Received 12 July 2023
Received in revised form 19 September 2023
Accepted 24 June 2024
Available online 25 July 2024

A software product line (SPL) is a combination of software products that have
similarities in features and functions. These combinations usually result in many
feature combinations that challenge the testing process. The explosion of the
combination of features can lead to exhaustive testing. This exhaustive testing will
affect the time and cost for the product to be delivered to the market. This paper aims
to identify the best algorithm and interaction strength to avoid exhausting testing and
reduce the time and cost of the testing process. An experiment has been conducted on
the most commonly used optimization algorithms in previous studies. The optimization
algorithms we explored are the Genetic Algorithm, Cuckoo Search algorithm, Ant
Colony algorithm, and Particle Swarm Optimization algorithm. Each algorithm has been
tested with different combinatorial interaction strengths from two to six. This paper
aims to get the best meta-heuristic algorithm and the optimum number of interaction
strengths for optimizing the number of configurations in the SPL testing. Results show
the best optimization algorithm is the Genetic Algorithm and the optimum interaction
strength is t=5. This interaction strength achieves the optimum number of features
combination that is sufficient for the testing process and thus can avoid the exhaustive
testing in SPL testing. By using the best optimization algorithm with the optimum
number of interaction strengths, the complexity of the SPL testing process could be
reduced without prejudicing the quality of the software system itself.

Keywords:
Software Testing; Software Product Line;
Testing Optimization; Combinatorial
Interaction Testing

1. Introduction

Software Product Line (SPL) is an approach used in software product development to form a new
product by reusing the existing features from the other software product that share the commonality
of functions and core assets. SPL gives many benefits to the software developer, such as reduces the
time and cost of the development, maintenance cost gives the best quality of software. However,
employing the SPL approach contributes issues in testing process. SPL is a massive software system
made up of intricate interactions between all of the system's features, which cause the number of
test cases to skyrocket [1]. The number of features exponentially influences the number of valid

* Corresponding author.
E-mail address: gs57343@student.upm.edu.my

https://doi.org/10.37934/araset.49.1.7794

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

78

configurations; as features increase, so do the configurations. It is almost impossible to verify each
setup due to the rise in the number of configurations. Therefore, an optimization approach has been
introduced to optimize the number of configurations that need to be evaluated to decrease the
testing effort. SPL testing optimization has been considered active research for the past five years
[2]. SPL testing optimization reduces the number of configurations in the test suites by using a meta-
heuristic algorithm, evolutionary algorithm, and mathematical linear.

A meta-heuristic algorithm is utilized in most studies in addressing the optimization issue in SPL
testing [3-6]. A meta-heuristic algorithm is based on the nature of the animal or plant. This meta-
heuristic algorithm used the combinatorial objective, which means the fitness function is in the form
of any combination of functions such as an orthogonal array, mixed covering array, or uniform
strength covering array. The meta-heuristic algorithm has been proposed as a solution to the non-
deterministic polynomial-time hard (NP-hard) problem. Meta-heuristic is a generic algorithm
framework or a black box optimizer that can be applied to almost all optimization problems [7]. It
has two primary functions, exploration and exploitation. Exploration tends to search for the best
solutions in surrounding areas, while exploitation will invade the new search area for the solutions.

Furthermore, the number of feature combinations for SPL testing can be decreased via
combinatorial interaction testing (CIT) [8]. CIT is also known as t-ways testing, where the t indicates
the interaction strength, and the value of the strength is usually between two and six. The higher the
value of strength the better results will be given, but it can be more complex compared to the lower
strength. CIT will select the possible pairs of configurations based on the feature model (FM) included
in the test data, however testing all the combinations chosen in the test suite can be an NP-hard
problem. Thus, combining the CIT and optimization algorithm can generate more accurate and
efficient number of test configurations that need to be tested. Combination of meta-heuristic
algorithm and combinatorial interaction testing has shown promising results in optimizing the
number of configurations in the test suite to be tested in SPL [9]. Most meta-heuristic algorithms
need predefine software products as the seeds or the initial population to run it. By Combining with
CIT, it will define the initial population using the covering array (CA) and get the valid initial population
instead of the random initial population. This combination can help increases the accuracy of the
results.

This paper aims to:

i. find meta-heuristic algorithm that can give the best optimization for SPL testing
ii. find the optimum number of the interaction strength.

In this work, the meta-heuristic algorithms were combined with CIT method to optimize the

number of configurations in SPL testing. The CIT presents all the valid configurations that were
selected from the FM and then used as an initial population in the meta-heuristic algorithm to
optimize the testing process. The selected meta-heuristic algorithms used in this study are based on
the comparison analysis carried out earlier. The selected algorithms were compared to determine
the best algorithm, and the most optimum interaction strength of CIT that can be implemented in
the SPL testing process. An experiment has been conducted to four different meta-heuristic
algorithms and using interaction strength (i.e., between 2 to 6). Each of the algorithms were run on
ten different case studies for accurate results. Using the best algorithm with the optimum number of
interaction strength are important aspects for optimization in SPL testing process. In which, we can
optimize the number of configurations, consequently, it reduces the time and cost of testing. Besides,
software testers do not have to try every single algorithm and interaction strength to get the best-
optimized results during the testing process.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

79

The remaining of this paper is structured as follows: Section 2 provides a literature review of this
study. Section 3 highlights the related work and section 4 describes the experiment conducted. The
finding and discussion are presented in section 5, and finally, section 6 concludes this work and
highlights future work.

2. Literature Review

This section provides literature review on optimization algorithms for SPL testing and

combinatorial interaction testing as the foundation for this study.

2.1 Optimization Algorithms

Meta-heuristic algorithms have been developed and implemented for optimizing the number of

test cases, such as Tabu search [10], Genetic Algorithm [11], Ant Colony Optimization [12], Particle
Swarm Optimization [13], Simulated Annealing [14], Harmony Search [15], Flower Pollination [16,17],
Bee Algorithm [18], BAT Algorithm [19], Cuckoo Search [20], and Firefly Algorithm [21]. A study has
been conducted to identify which meta-heuristic algorithms that mostly used in SPL testing in the
recent 5 years. The results show that the Genetic Algorithm (GA) has a higher percentage at 40%,
followed by Particle Swarm Optimization (PSO) at 34%. While only 10% used Ant Colony Optimization
(ACO), and 7 % used Cuckoo Search (CS). Whereas it is less than 4% for the BAT, Black Hole, and
Harmony Search. Thus, this study focuses on the first four optimization algorithms to compare their
performance. Each of the algorithms is described in the following sub-sections. There is an existing
study that uses Weighted Optimization in achieving the minimization by using the weighted GP
model. This model consists of the objective function and the goal constraints [47].

2.1.1 Genetic algorithm

GA is computational modelling that stimulates biological development through Darwin's theory

of genetic selection. In recent years, GA has emerged as a valuable tool for the heuristic solution for
optimization problems. This algorithm is based on the principle of natural evolution. GA became a
meta-heuristic search method for complex optimization problems. The ability to handle a large
sample size has been an excellent advantage for optimizing SPL. Besides, GA is an ideal solution for
optimization due to its ability to search in a vast and highly non-linear space. GA has a simple
computational, which is decisive for improving searching operations. This algorithm begins with the
initialization of the population, which represents the chromosome by generating it randomly. The
binary string represents the chromosome. Then, a series of genetic operations are applied to the
solution in the generated population.

The three main genetic operations in GA are selection, crossover, and mutation [49]. Figure 1
shows the pseudocode of the GA. The selection plays a part in selecting the chromosome from the
population to be parents for crossover. Darwin's theory said the best chromosome could survive and
create new offspring during the crossover operation [22]. The selection process could happen by
using Roulette Wheel Selection [23]. This Roulette Wheel selection method will select the parents
based on their fitness; if the chromosome has high fitness, the higher chances of being selected. The
second operation is a crossover, the process of selecting the chromosome as parents will swap their
bits. Usually, the rate of crossover used is from 0.5 to 1. It is performed by choosing random genes
along the chromosome and switching them with other one-chromosome genes. After the swap, the
new genes are produced known as offspring. Then, mutation operation is implemented. Mutation

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

80

operation is the process of flipping the bits of the offspring from 1 to 0 and other ways around. This
process usually used 0.001 for the mutation rates. The use of GA to generate automatic data has
attracted many researchers in recent years. This method has been proven as efficient and effective
in generating test data. GA is also flexible and robust due to the optimization of its structured
problems and does not need a specific formula to generate test data.

Fig. 1. GA pseudocode

2.1.2 Particle Swarm Optimization (PSO) algorithm

Particle Swarm Optimization (PSO) is an optimization algorithm design by Kennedy and Eberhart

[24] is one of the earliest meta-heuristic algorithms explored by the researcher to use in the
optimization problem. PSO imitates birds' behaviours by using a population in which birds or particles
search for the best food sources from the information of inertia, knowledge itself, and knowledge
from the swarm. The algorithm uses random positions and searching for the optimum (best) position
by the given fitness function. The velocity and iteration are updated based on the previous and global
best positions. PSO is an evolutionary algorithm, like GA, as it initializes with random candidates of
populations, and the searching process happens by updating the generations. However, PSO does
not have an evolutionary operator (e.g., crossover and mutations) and only required a few parameter
settings [25]. Figure 2 shows the associated pseudo code of PSO.

Algorithm 2 Particle Swarm Optimization

1 For each Particle Pi
2 Initialize Pi
3 End for
4 Do
5 For each Particle Pi
6 Compute Fitness;
7 If fitness > it is personal best
8 Update current values as the new personal best;
9 End If
10 End For
11 Select the particle P with the best fitness value of all as the global best;
12 For each Particle Pi
13 Compute Vid using Equation 3;
14 Compute Pid using Equation 2;
15 End For
16 While {the termination criteria are not attained;}

Fig. 2. PSO pseudocode

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

81

Eq. (1) and Eq. (2) update the iteration’s velocity (V) and position (S). Where t is the counter, C is
the acceleration coefficients and R is the random number between (0, 1). The objective function will
evaluate the particle, and after several iterations, the best values will return as optimal solutions.

Vid(t+1) = Vid(t) + C1R1(Pid – Sid(t)) + C2R2(Pgd – Sid(t)) (1)

Sid(t + 1) = Sid (t) + Vid (t + 1) (2)

Eq. (3) is used to update the inertia weight, where Wmx and Wmi are the minimum numbers and

maximum values W can take, I is the current iterations, and Imx is the total number of iterations.

W = Wmx – ((Wmx – Wmi)?Imx)*1. (3)

 PSO algorithm has a few advantages, such as fast convergence, few parameters, and high

efficiency. Further:

i. the algorithm itself does not depend on specific information, and it has strong versatility
ii. it is simple and easy to implement

iii. the ability to store and retain the best information of an individual. However, it also has
disadvantages, such as poor local search ability and accuracy [26].

2.1.3 Cuckoo Search (CS) algorithm

Yang and Deb [27] introduced Cuckoo Search (CS) in 2009, an optimization algorithm based on

the natural behaviours of the cuckoo bird, which has a host bird and a brood-parasitic nature. A
cuckoo laid an egg in another host bird’s nest. This bird selects the nest where the host bird most
recently laid an egg to lay her eggs. The cuckoo egg often hatches slower than the egg of the host
bird. To raise the share of the food the host bird provides, the cuckoo chick will push the other egg
outside the nest after hatching. Cuckoos choose a random nest to place their egg in. Future
generations will inherit the nest with the highest-quality eggs. The host egg has a chance of
recognizing the cuckoo eggs (Pa [0, 1]). Each egg in the nest represents a new solution, and the
number of eggs reflects the total number of solutions. The worst of the existing solutions will be
replaced with the new one if it produces a superior outcome. The nest may contain multiple eggs
representing a group of solutions.

CS offers more trustworthy and cost-effective solutions compared to other meta-heuristic
algorithms. This algorithm provides a delicate compromise between convergence and
unpredictability with fewer control parameters. CS algorithm uses three basic rules;

i. the nest is initially chosen at random

ii. only the nest that produces the highest caliber eggs will survive into succeeding
generations

iii. there is a chance that the host bird will spot the egg, leave the nest, and build a new one.
The CS algorithm pseudocode is as shown in Figure 3.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

82

Algorithm 3 Cuckoo Search Algorithm
1 Set value of an objective function, initial population, step size, range of

input and maximum generation
2 Initialize the population using the initial population
3 Repeat step from 4 to 11 until the number of iterations exceeds the

maximum generation or stopping criterion reached
4 Select a cuckoo randomly and generate a new solution using Le’vy flight
5 Calculate fitness value (Fi) of the solution using the objective function
6 Randomly select a nest from the available nest (say j)
7 If fitness value (Fi) is better than fitness value (Fj), then
8 Replace j with the new solution
9 End if
10 Abandon a fraction (Pa) of the worst solution
11 Keep track of the best solutios, rank them, and find the current best
12 List out the result

Fig. 3. CS pseudocode

Wildlife such as birds and animals naturally use the foraging trail to find food. It is a random walk

because the next step depends on the current situation and the likelihood of the transition to the
next place. The CS algorithm’s performance has been improved by switching from ordinary random
walk to Le’vy flight. The Le’vy Flight Eq. (4), has been used to create a mathematical model of this
computation. Where a present the step size, and its values must always be positive. Generally, the
value a is 1. The symbols of (denote the entry -wise multiplication. The random step of the Le’vy
flight can be found using the Eq. (5) [28].

Xi

(t+1)= xi(t)+aÅLe’vy (l) (4)

Le’vy ~ u + t-l, (1 <l£3) (5)

2.1.4 Ant Colony Optimization algorithm

Ant colony optimization is a meta-heuristic approach proposed in 1990 to address combinatorial

optimization issues [29]. This concept is inspired by how ants move about searching for food sources.
The ant spreads the pheromone throughout its route to find food sources. This pheromone trail
benefits the ant in two ways: first, it indicates the path for a different ant that moves randomly, and
second, it can serve as a map for the ant to return to the sources at any time. Other ants that can
detect the pheromone will follow it and add pheromone to it. It increases the number of pheromones
along the trail. Due to the ongoing pheromone evaporation, the other ant will select the path leaving
the most extensive pheromone trail. The evaporation will make it easier for the ant to choose the
regionally ideal solution. If the path is long, more pheromones will evaporate, causing the leftover
pheromone to decrease. As a result, the other ants will take the shortest route based on how many
pheromones are still there. The first ant to get back to its sources is the one that randomly moves
and takes the quickest route. The amount of pheromone along the trail has risen due to this forward
and backward movement, making it the best route for the ant to travel. Ant colony optimization
refers to this action of the ants travelling backwards and forwards from the colony to the food
sources. Figure 4 illustrates the procedure. Their study shows that ACO is more economical than GA.
[48]

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

83

Algorithm 4 Ant Colony Optimization
1 Begin
2 Initialize
3 While stop criteria are not satisfied
4 Do
5 Initialize ant population
6 Repeat
7 For each node
8 Do
9 Choose next node by applying updates on the transition
10 Update pheromone
11 End
12 For every node
13 Update best solution

Fig. 4. ACO pseudocode

2.2 Combinatorial Interaction Strength

Combinatorial interaction testing (CIT), commonly referred to as t-way or t-wise testing, has been

utilized to reduce the interaction explosion caused by feature explosion and exhaustive testing. CIT
is introduced to detect the problem from the parameter interaction due to the most failure cause by
the interaction of the parameters. CIT is highly suitable for managing the complexity and feature
explosion in the SPL and optimizing the number of test cases for the testing process. It focuses on
creating test cases that account for every potential interaction between each system feature. CIT is
a systematic strategy for sampling extensive test data domains. It is based on the finding that
interactions between relatively few factors cause most problems. The definition of pairwise (or 2-
wise) testing results from this. By choosing the set of all combinations, this method ensures that the
test data set has every pair of possible variable values. The t-wise testing, which samples the input
domain to cover all t-wise combinations, has generalized pairwise testing. This involves choosing the
smallest group of items for SPL testing; where each t-wise features interaction occurs at least once.

The most optimum number for test case optimization can be achieved by combining the t-way
testing technique with the meta-heuristic algorithm. Thus, the effectiveness of software testing can
be increased [30]. The meta-heuristic algorithm work as a technique that will sample an optimization
set of test cases from large combinatorial values that get from the interaction strength (t). The meta-
heuristic algorithm starts the process by using the existing test cases and then implements the natural
movement based on the inspired algorithm to improve the number of test cases. This movement
process will run until the selected test cases have covered all the parameter interactions.

3. Related Work

In this section, related works on comparative studies on algorithms in SPL testing optimization

are discussed.
A study conducted by Lopez-Herrejon et al., [10] analysed and compared the Non-dominated

Sorting Genetic Algorithm (NSGA-II), Multi-Objective Cellular Genetic Algorithm (MOCell), Strength
Pareto Evolutionary Algorithm (SPEA2), and Pareto Achieved Evolution Strategy (PAES) algorithm to
identify the best algorithm. This study only concentrates on the strength of pairwise interactions.
The interaction strength of the CIT has been compared to get the most optimum number of

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

84

interaction strengths that can be used for the SPL testing to optimize the testing process and avoid
exhausting testing.

In addition, Carvalho et al., [32] also conducted a comparative study to select hyper-heuristics for
multi-objective optimization problems. This study compared nine meta-heuristic algorithms and
compared the performance to determine the most suitable in the real world of the multi-objective
optimization problem. It shows that the meta-heuristic performs better than the single hyper-
heuristic optimization algorithm. This study did not use CIT method with the meta-heuristic algorithm
in optimizing the testing process.

While Panteleev et al., [31] conducted a comparative study of meta-heuristic algorithms that
focuses on the Whale Optimization Algorithm (WOA), Grey Wolf optimizer (GWO), and Perch School
Search (PSS). It analyses the performance of the three algorithms to get the most suitable
optimization methods for global algorithm accuracy and convergence pattern. This study differs from
our study as it did not find the optimum number of interaction strengths that can give better
optimization results in SPL testing.

Up to date, it can be concluded that there is lack of comparative study on meta-heuristic
algorithms with the combination of combinatorial interaction strength. Moreover, the comparison
and analysis are based on the reduced number of configurations, and there is no discussion on the
optimum number of configurations and coverage of the test suite.

4. The Experiment

This section discusses on the experiment that we conducted for optimizing the number of test

configurations in SPL testing. The aim of this study is to determine the best optimization algorithm
and the optimum number of interaction strengths for SPL testing optimization. This section describes
the experimental materials and procedures carried out for this study. This study was driven by the
following research questions (RQs):

i. RQ1: What is the meta-heuristic algorithm that can optimize the optimal number of test

cases?
ii. RQ2: What is the best interaction strength for combinatorial interaction strength in

optimizing the number of test cases?

4.1 Case Study

Internet of Things (IoT) product is complex, and it will take more time to perform testing using

the usual methods. IoT is still evolving for both academia and industry [50] Thus, optimization
techniques must be applied to minimize and optimize the number of test cases to be tested.
Therefore, IoT of the Home system seems suitable as a case study for this experiment. The feature
model (FM) of the Home Interactive System (HIS) was taken from [33] is used for this experiment.
The feature model has 23 features, as shown in Figure 9. Each feature model is divided into three
categories: mandatory, optional, and alternative. This is crucial to get a valid configuration from the
FM. The children that inherit the mandatory features are also required in the configurations. Optional
features operate differently from alternative features in that even when the parent feature of the
optional feature is selected, the children can still be selected or deselected.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

85

Fig. 5. Feature Model of Home Interactive System

The Home Interactive System (HIS) consists of two groups of features, as shown in Table 1, divided

by 1-valued parameter and two-valued parameters. The 1-valued parameter will hold only one value
(i.e., True) for the configurations, which are HIS, services, devices, light control, control system,
instruction notification, and fire notification. The 2- valued parameters (i.e., True or False) are
appliance control, temperature control, supervision system, internet, sensor, sprinkler, transmitter,
alarm, phone call, SMS, Email, Intrusion, Fire, TCP, UDP, and water.

Table 1
The Home Interactive System configurations
System configuration Values
1-valued parameter (HIS, services, devices, light control, control
system, instruction notification, fire notifications) True

2-valued parameter (appliance control, Temperature control,
Supervision system, Internet, Sensor, Sprinkler, Transmitter,
Alarm, Phone call, SMS, Email, Intrusion, Fire, TCP, UDP, water)

True False

The possible number of the configurations for Home Interactive System can be generated for the

testing is 17 x 216 = 65536 configurations. Besides, the number of configurations grows with the
increase of features in the FM. Looking at this number of configurations, it seems impossible to test
every configuration without increasing the time to deliver the system to market and the development
cost. Commonly, the cost of testing takes 50% to 60% of the overall development cost. Thus, test
case optimization is needed to reduce the time and cost of the testing process.

Covering array (CA) is the mathematical calculation used for t-way strategies. CA consists of four
parameters: N, t, p and v. This parameter represents the CA’s parameters, values, and interaction
strength [14]. For example, CA (2, 1, 216) represents the test suite containing 2 x 16 arrays. For this
experiment, the binomial coefficient formula been used to calculate the new number of
configurations based on the CA listed from the FM. Eq. (6) shows the equation of the binomial
coefficient, where n represents the population, and k is the subset of n. This formula shows number
of samples of k elements gained from a larger set of n. Table 2 shows the list of CA used for the FM
and the number of configurations.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

86

C(n,k) = !!"" = !!
("!(!%")!)

 (6)

Table 2
New number of configurations after
implementing the t-way strategy
Covering Array (CA) No. of configurations
CA (2, 17 x 216) 136
CA (3, 17 x 216) 680
CA (4, 17 x 216) 2380
CA (5, 17 x 216) 6188
CA (6, 17 x 216) 12376

4.2 Experimental Setup

The four optimization algorithms were executed for optimizing the number of configurations

generated earlier by using the new number of configurations using t-way approaches. The set of
attributes and parameters listed in Tables 3, 4, 5, and 6 were used for the experiment. For reliable
results, each algorithm has been calibrated to be standardized. All algorithms in this study have
proven statistically significant after 20 iterations. Besides, all the experimental parameters used are
based on the previous studies, in which parameter value for the GA from [8,34], PSO from [8], Cuckoo
search from [8,35], and ACO parameter values from [8,36].

Table 3
Parameter of GA optimization algorithm

Parameter Value
Size of chromosome 10
Number of populations 136, 680, 2380, 6188, 12376
Selection 0.8
Crossover 0.75
Mutation 0.03
Number of generations 1000

Table 4
Parameter of the CUCKOO optimization algorithm
Parameter Values
Number of populations 136, 680, 2380, 6188, 12376
Maximum number of iterations 1000
Probability of alien egg 0.25
Beta 1.5
Alpha 1

Table 5
Parameter of PSO optimization algorithm
Parameter Data size
No of population 136, 680, 2380, 6188, 12376
Inertia weight 0.9
Minimum inertia weight 0.9
Minimum inertia weight 0.4
Lower bound 1
Upper bound 20
Number of iterations 1000

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

87

Table 6
Parameter of ACO optimization algorithm

Parameter Values
Number of populations 136, 680, 2380, 6188, 12376
Number of generations 1000
Initialization of pheromone 1.6
Pheromone persistence 0.5
Pheromone amount 0.01
Initial pheromone 0.4

Pareto optimal set has been used to find the optimum number of configurations that need to be

tested in recent studies [37-39]. There are two objectives for this experiment; coverage, and test
suite size and both are equally important. The set of solutions is considered non-dominated if it non-
dominates another. The Pareto optimal set is a non-dominated solution that non-dominates each
other in the search space. The Pareto optimal set will find the optimal solution for both objectives
and give the best optimization results.

Table 7 demonstrates how each method maximized the number of configurations from the case
study, with interaction strength ranging from two to six. The quantity of configurations that must be
tested during the testing process is decreased. As this experiment uses the Pareto optimum set to
obtain the best solutions, this number has achieved the optimum number to be tested. The ACO
algorithm has the most significant number of optimum configurations for interaction strength, t=2.
In contrast, the CS algorithm has the fewest configurations for an interaction strength t=3, and the
same is true for an interaction strength t=6. Out of the five interaction strengths, PSO is the most
optimal.

Table 7
Number of configurations after implementing optimization algorithm
Interaction strength No. of configurations GA PSO ACO Cuckoo
2 136 80 94 77 91
3 680 480 484 465 430
4 2380 1750 1622 1090 1198
5 6188 4298 3908 4138 5099
6 12376 8516 8207 8864 8154

Table 8 compares the optimization for each algorithm and level of interaction by listing the

number of reductions. Another eight feature models were added which are, WS, EC, James [40],
Smart Mobile [41], Car audio system [42], Vendor Machine [43], Gold Kid Bus [44], and Snake FOP
Games [45]. Since the experiment used a large FM, it is essential to remember that a smaller FM can
achieve 90–100% coverage because the number of reductions is also minimal. In this experiment we
did not compare the performance in terms of time as the evaluation can be unfair due to the various
fitness evaluations for each strategy.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

88

Table 8
Number of configurations for all FM

FM t-wise Algorithm
GA PSO ACO CUCKOO

HIS 2 80 94 77 91
3 480 484 465 430
4 1750 1622 1090 1198
5 4298 3908 4138 5099
6 8516 8207 8864 8154

WS 2 219 171 198 201
3 1258 1329 1321 1493
4 7093 6985 6319 6715
5 25131 23413 20397 24993
6 41736 33976 30512 40179

EC 2 165 107 139 171
3 813 532 798 625
4 4129 3725 4469 3975
5 12461 10710 11371 8293
6 19532 21743 35915 20431

James 2 65 52 41 57
3 262 205 195 239
4 631 429 315 503
5 1091 615 964 1153
6 942 815 1173 713

Smart Mobile 2 43 39 37 51
3 139 113 127 141
4 299 235 319 326
5 405 392 384 422
6 260 239 241 219

Car Audio system 2 99 79 82 75
3 433 385 379 321
4 1217 1041 997 1184
5 2842 2099 1817 2537
6 2519 3078 2456 4193

Vendor Machine 2 139 141 129 97
3 784 761 607 523
4 2719 2583 2713 2663
5 8348 8098 7593 7919
6 9077 9765 15342 13219

Gold Kid Bus 2 36 32 41 37
3 98 87 113 95
4 174 199 197 180
5 213 226 239 237
6 143 159 268 170

Snake FOP Game 2 105 93 82 95
3 530 421 524 495
4 1721 1683 1592 1565
5 4017 3918 3652 3773
6 4103 3915 3817 3972

The information in Table 9 shows the coverage matric to compare the coverage of the

configuration for the interaction strength and the algorithms. The necessary test suite metrics are
the high number of coverage as well as the lower number of configurations. It is crucial to achieving
a higher value for this metric because it is expected to cover all expected configurations.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

89

Table 9
Number of coverages for the optimization
FM t-wise Algorithm

GA PSO ACO CUCKOO
HIS 2 0.59 0.69 0.57 0.67

3 0.71 0.71 0.68 0.63
4 0.74 0.68 0.46 0.50
5 0.69 0.63 0.67 0.82
6 0.69 0.66 0.71 0.66

WS 2 0.94 0.74 0.85 0.87
3 0.81 0.86 0.85 0.96
4 0.96 0.95 0.86 0.91
5 0.95 0.88 0.77 0.94
6 0.55 0.45 0.40 0.53

EC 2 0.86 0.56 0.73 0.90
3 0.71 0.46 0.70 0.54
4 0.85 0.76 0.92 0.82
5 0.80 0.69 0.73 0.53
6 0.50 0.56 0.92 0.52

James 2 0.83 0.65 0.52 0.73
3 0.92 0.72 0.68 0.84
4 0.88 0.60 0.44 0.70
5 0.85 0.48 0.75 0.89
6 0.55 0.47 0.68 0.41

Smart Mobile 2 0.78 0.71 0.67 0.92
3 0.84 0.68 0.77 0.85
4 0.91 0.71 0.97 0.98
5 0.88 0.85 0.83 0.91
6 0.56 0.52 0.52 0.47

Car Audio system 2 0.94 0.75 0.78 0.71
3 0.95 0.85 0.83 0.71
4 0.89 0.76 0.73 0.87
5 0.94 0.69 0.60 0.84
6 0.50 0.61 0.49 0.84

Vendor Machine 2 0.91 0.92 0.84 0.63
3 0.96 0.93 0.74 0.64
4 0.89 0.84 0.88 0.92
5 0.97 0.94 0.88 0.92
6 0.49 0.53 0.83 0.71

Gold Kid Bus 2 0.80 0.71 0.91 0.82
3 0.81 0.73 0.94 0.80
4 0.83 0.95 0.94 0.86
5 0.85 0.90 0.95 0.67
6 0.51 0.57 0.96 0.61

Snake FOP Game 2 0.59 0.69 0.57 0.67
3 0.71 0.70 0.68 0.63
4 0.74 0.68 0.46 0.50
5 0.69 0.63 0.67 0.82
6 0.69 0.66 0.71 0.66

In this experiment, we used the total coverage of the configuration as if the main goal for the

study was only in the testing, with the focus being the subset of all possible configurations as the
main target. This metric was calculated by using Eq. (7) as below:

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

90

𝑐𝑐/𝑐 (7)
cc: No. of configuration covered by t
 c: No. of configuration

4.3 Threats to Validity

There are some efforts taken to reduce such threats. Firstly, the meta-heuristic algorithms

involved in this study are based on the analysis of research publications gathered from the preceding
five years. This portion of the primarily employed algorithm comes from our findings, which may not
agree with those of other researchers.

Secondly, the parameters used in this study are referring to earlier research work by different
researchers. We relied on the parameter values employed in most prior studies that addressed issues
from related scientific literature. However, changes in the values might affect the experiment's
outcome, which does not apply to this study. Retuning the parameters may therefore be helpful to
get the best results.

Thirdly, is about the choice of the case study for the feature model. The outcomes of various case
studies may vary. Since IoT is a practical topic, we chose a case study with actual industry problems
for this study. It is one of the SPL products with various properties that interact with one another and
is appropriate for this experiment. We could not achieve the high number of characteristics included
in this study due to the combination of significant aspects in this case study. A smaller case study will
be used for the experiment to compare the results for future work.

The final threat to validity comes from the study's statistical analysis. The best values from the
experiment were used in the study's statistical analysis, not the mean values. As a result, it is possible
that the meta-heuristic algorithm's random generation led to the best result by accident, which could
affect the conclusion of this study.

5. Discussion

The Friedman Test [8] has been applied in this study to check whether the differences between

all these four algorithms are statistically significant or just a matter of chance. By using a confidence
level of 95% (p-value under 0.05) as shown in Table 10. According to Friedman’s null hypothesis, all
the strategies are equivalent, so a rejection of these strategies shows differences in the performance
of all the strategies. The null hypothesis is rejected if the Friedman statistic exceeds the critical value.
It can be concluded that the results obtained are significant, and there are differences between each
of the algorithms and CIT. It is statistically proven that these experimental results are valid.

Table 10
Friedman test for Table 8
Friedman Test Conclusion
Degree of freedom = 3,
a = 0.05
Critical value = 0.56415
Friedman statistic (c2) = 2.04

2.04 > critical value, reject Ho

Based on the findings, it helps to answer RQ1. It can be concluded that the best meta-heuristic

algorithm is the GA as from the nine FMs; seven of them show the best optimization results by using
the GA. Another two FMs show best results for Ant Colony Optimization and Cuckoo Search. The two
FMs have number of features 11 and 10 compared to the other seven, which are 23, 24, 22, 14, 21,

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

91

18 and 21. Thus, we can conclude that GA has better performance in handling the bigger FM
compared to other algorithms. The average of the performance for each interaction strength also
showed that GA has better performance with interaction strength of 2 to 6.

In term of coverage, GA shows the higher coverage in most of the interaction strength for every
single FM. This coverage has reached the ideal number, by adding the configuration in the test suite;
it would not increase the coverage. It shows that the coverage of the configuration for the case study
will be lower when the reduction is bigger because the number of reductions affected the coverage.
As mentioned earlier, the metric should be higher coverage with low number of configurations. It is
not appropriate to evaluate based on the total reduction only as the coverage play an important role
to ensure the quality of the system that we test. For instance, if the reduction rate is high but the
coverage is low, it may leave out critical configurations that need to be evaluated, in which could
affect the product's quality.

Concerning RQ2, the combinatorial interaction strength t = 5 results in higher coverage rates than
other strengths. It has been established that stronger interactions lead to better optimization
outcomes [46]. Based on the experiment results, six of the FM show high coverage in the interaction
strength t = 5, while one for interaction strength t = 4, and another two for interaction strength t = 3.
For the interaction strength t = 6, the coverage is the lowest among all interaction strengths as the
reduction of configuration is quite a big number of it. Most of the results show that the coverage is
only at 0.5, which means half of the configurations. This is because of the explosion of the
configuration number in the interaction strength t = 6, the optimization reduces almost half of the
configuration. The average coverages between 5 and 6 interaction strengths reveal huge variations.
Even though the number of configurations in the interaction strength t= 6 is higher than the
interaction strength t= 5, it is crucial to focus on the coverage as insufficient test coverage will result
in poor of system performance when delivered to the market. The higher the number of interaction
strengths will give the better performance, but it is enough to do testing in the optimal strength to
reduce the number of the test suite and the time to deliver the product to market as we have
achieved the higher optimization coverage. Thus, the t-way = 5 gives an optimal number of the test
suite and sufficient coverage for the configuration that needs to be tested.

6. Conclusion and Future Work

One of the main problems of SPL testing is the explosion combination of features number to be

tested. This paper has identified four optimization algorithms that have mostly been used for
optimizing the number of test suites for SPL testing. An experiment has been conducted to compare
the performance of the four algorithms with different interaction strengths, t. The result has been
evaluated based on the number of test case reductions and coverage. Based on the findings, it can
be concluded that we cannot only consider the reduction rate; as the higher the reduction, the lower
the test case coverage. The coverage should also be in consideration to get the best number of test
cases for the testing process. By using the optimal Pareto set to get the optimum number of coverage
and from the results it can be concluded that the Genetic Algorithm has the best performance
compared to the other three algorithms, with interaction strength t = 5 for the optimum coverage.

This study suggests the best meta-heuristic algorithm that can be used in SPL testing optimization
and the best interaction strength that satisfies the reduction number of the configuration and
maintains high coverage for the configuration. By applying the interaction strength, t = 5, the
optimum number of configurations with high coverage can be achieved. Therefore, it can help
software testers use the most appropriate algorithm and combinatorial interaction strength based

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

92

on the optimum feature coverage for the SPL testing process. Besides, it reduces the time and cost
of testing.

For future work, this study will be taking data redundancy into consideration. Reducing test
redundancy also can significantly reduce the time and cost of testing while still ensuring software
quality and reliability [51]. This redundancy reduction can optimize the test configuration more as it
will ensure test configuration meet with the requirement without having unnecessary repetition.

Acknowledgement
The Ministry of Higher Education supported this work under the Fundamental Research Grant
Scheme (FRGS/1/2020/ICT01/UPM/02/1).

References
[1] Asadi, Mohsen, Samaneh Soltani, Dragan Gašević, and Marek Hatala. "The effects of visualization and interaction

techniques on feature model configuration." Empirical Software Engineering 21 (2016): 1706-1743.
https://doi.org/10.1007/s10664-014-9353-5

[2] Kumari, A. Charan. "Feature selection optimization in SPL using genetic algorithm." Procedia computer science 132
(2018): 1477-1486. https://doi.org/10.1016/j.procs.2018.05.082

[3] Ferreira, Thiago N., Jackson A. Prado Lima, Andrei Strickler, Josiel N. Kuk, Silvia R. Vergilio, and Aurora Pozo. "Hyper-
heuristic based product selection for software product line testing." IEEE Computational Intelligence Magazine 12,
no. 2 (2017): 34-45. https://doi.org/10.1109/MCI.2017.2670461

[4] Mateen, Ahmed, Marriam Nazir, and Salman Afsar Awan. "Optimization of test case generation using genetic
algorithm (GA)." arXiv preprint arXiv:1612.08813 (2016). https://doi.org/10.5120/ijca2016911703

[5] Alsariera, Yazan A., Mazlina A. Majid, and Kamal Z. Zamli. "SPLBA: An interaction strategy for testing software
product lines using the Bat-inspired algorithm." In 2015 4th international conference on software engineering and
computer systems (ICSECS), pp. 148-153. IEEE, 2015. https://doi.org/10.1109/ICSECS.2015.7333100

[6] Shingadiya, Chetan J. "Genetic algorithm for test suite optimization: an experimental investigation of different
selection methods." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 3 (2021): 3778-
3787. https://doi.org/10.17762/turcomat.v12i3.1661

[7] Sangaiah, Arun Kumar, Zhiyong Zhang, and Michael Sheng, eds. Computational intelligence for multimedia big data
on the cloud with engineering applications. Academic Press, 2018.

[8] Lopez-Herrejon, Roberto E., Stefan Fischer, Rudolf Ramler, and Alexander Egyed. "A first systematic mapping study
on combinatorial interaction testing for software product lines." In 2015 IEEE Eighth International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), pp. 1-10. IEEE, 2015.
https://doi.org/10.1109/ICSTW.2015.7107435

[9] Zamli, Kamal Z., Basem Y. Alkazemi, and Graham Kendall. "A tabu search hyper-heuristic strategy for t-way test
suite generation." Applied Soft Computing 44 (2016): 57-74. https://doi.org/10.1016/j.asoc.2016.03.021

[10] Díaz, Eugenia, Javier Tuya, and Raquel Blanco. "Automated software testing using a metaheuristic technique based
on tabu search." In 18th IEEE International Conference on Automated Software Engineering, 2003. Proceedings.,
pp. 310-313. IEEE, 2003.

[11] Lopez-Herrejon, Roberto Erick, Javier Javier Ferrer, Francisco Chicano, Evelyn Nicole Haslinger, Alexander Egyed,
and Enrique Alba. "A parallel evolutionary algorithm for prioritized pairwise testing of software product lines."
In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1255-1262. 2014.
https://doi.org/10.1145/2576768.2598305

[12] Biswas, Sumon, M. Shamim Kaiser, and S. A. Mamun. "Applying ant colony optimization in software testing to
generate prioritized optimal path and test data." In 2015 International Conference on Electrical Engineering and
Information Communication Technology (ICEEICT), pp. 1-6. IEEE, 2015.
https://doi.org/10.1109/ICEEICT.2015.7307500

[13] Jianqi, Shi, Huang Yanhong, Li Ang, and Cai Fangda. "An optimal solution for software testing case generation based
on particle swarm optimization." Open Physics 16, no. 1 (2018): 355-363. https://doi.org/10.1515/phys-2018-0048

[14] Wang, Kun, Yichen Wang, and Liyan Zhang. "Software testing method based on improved simulated annealing
algorithm." In 2014 10th International Conference on Reliability, Maintainability and Safety (ICRMS), pp. 418-421.
IEEE, 2014. https://doi.org/10.1109/ICRMS.2014.7107215

https://doi.org/10.1007/s10664-014-9353-5
https://doi.org/10.1016/j.procs.2018.05.082
https://doi.org/10.1109/MCI.2017.2670461
https://doi.org/10.5120/ijca2016911703
https://doi.org/10.1109/ICSECS.2015.7333100
https://doi.org/10.17762/turcomat.v12i3.1661
https://doi.org/10.1109/ICSTW.2015.7107435
https://doi.org/10.1016/j.asoc.2016.03.021
https://doi.org/10.1145/2576768.2598305
https://doi.org/10.1109/ICEEICT.2015.7307500
https://doi.org/10.1515/phys-2018-0048
https://doi.org/10.1109/ICRMS.2014.7107215

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

93

[15] Alazzawi, Ammar K., Helmi Md Rais, Shuib Basri, and Yazan A. Alsariera. "PhABC: A hybrid artificial bee colony
strategy for pairwise test suite generation with constraints support." In 2019 IEEE Student Conference on Research
and Development (SCOReD), pp. 106-111. IEEE, 2019. https://doi.org/10.1109/SCORED.2019.8896324

[16] Nasser, Abdullah B., Kamal Z. Zamli, AbdulRahman A. Alsewari, and Bestoun S. Ahmed. "Hybrid flower pollination
algorithm strategies for t-way test suite generation." PloS one 13, no. 5 (2018): e0195187.
https://doi.org/10.1371/journal.pone.0195187

[17] Ramli, Nuraminah, Rozmie Razif Othman, Zahereel Ishwar Abdul Khalib, and Muzammil Jusoh. "A review on recent
t-way combinatorial testing strategy." In MATEC Web of Conferences, vol. 140, p. 01016. EDP Sciences, 2017.
https://doi.org/10.1051/matecconf/201714001016

[18] Sharma, Sangeeta, and Pawan Bhambu. "Artificial bee colony algorithm: A survey." International Journal of
Computer Applications 149, no. 4 (2016): 11-19. https://doi.org/10.5120/ijca2016911384

[19] Hasan, Luma Salal. "Artificial Bee Colony Algorithm and Bat Algorithm for Solving Travel Salesman
Problem." Webology 19, no. 1 (2022): 4185-4193. https://doi.org/10.14704/WEB/V19I1/WEB19276

[20] Rakhshani, Hojjat, and Amin Rahati. "Snap-drift cuckoo search: A novel cuckoo search optimization
algorithm." Applied Soft Computing 52 (2017): 771-794. https://doi.org/10.1016/j.asoc.2016.09.048

[21] Pandey, Abhishek, and Soumya Banerjee. "Test suite optimization using chaotic firefly algorithm in software
testing." In Research Anthology on Recent Trends, Tools, and Implications of Computer Programming, pp. 722-739.
IGI Global, 2021. https://doi.org/10.4018/978-1-7998-3016-0.ch032

[22] Swathi, Baswaraju, and Harshvardhan Tiwari. "Integrated pairwise testing based genetic algorithm for test
optimization." International Journal of Advanced Computer Science and Applications 12, no. 4 (2021).
https://doi.org/10.14569/IJACSA.2021.0120419

[23] Guo, Jianmei, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang. "A genetic algorithm for optimized feature
selection with resource constraints in software product lines." Journal of Systems and Software 84, no. 12 (2011):
2208-2221. https://doi.org/10.1016/j.jss.2011.06.026

[24] Chen Xiang, Gu Qing, Wang Ziyuan, and Chen Daoxu. "Framework of Particle Swarm Optimization Based Pairwise
Testing." Journal of Software 22, no. 12: 2879-2893. https://doi.org/10.3724/SP.J.1001.2011.03973

[25] Afzal, Uzma, Tariq Mahmood, Ayaz H. Khan, Sadeeq Jan, Raihan Ur Rasool, Ali Mustafa Qamar, and Rehan Ullah
Khan. "Feature selection optimization in software product lines." IEEE Access 8 (2020): 160231-160250.
https://doi.org/10.1109/ACCESS.2020.3020795

[26] Liu, Congcong. "Research on Software Test Data Generation based on Particle Swarm Optimization Algorithm."
In 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), pp. 1375-1378. IEEE, 2021.
https://doi.org/10.1109/ICOEI51242.2021.9452870

[27] Yang, Xin-She, and Xingshi He. "Bat algorithm: literature review and applications." International Journal of Bio-
inspired computation 5, no. 3 (2013): 141-149. https://doi.org/10.1504/IJBIC.2013.055093

[28] Sharma, Sanjiv, S. A. M. Rizvi, and Vineet Sharma. "A framework for optimization of software test cases generation
using cuckoo search algorithm." In 2019 9th International Conference on Cloud Computing, Data Science &
Engineering (Confluence), pp. 282-286. IEEE, 2019. https://doi.org/10.1109/CONFLUENCE.2019.8776898

[29] Mohan, B. Chandra, and R. Baskaran. "A survey: Ant Colony Optimization based recent research and
implementation on several engineering domain." Expert Systems with Applications 39, no. 4 (2012): 4618-4627.
https://doi.org/10.1016/j.eswa.2011.09.076

[30] Ramgouda, P., and V. Chandraprakash. "Constraints handling in combinatorial interaction testing using multi-
objective crow search and fruitfly optimization." Soft Computing 23 (2019): 2713-2726.
https://doi.org/10.1007/s00500-019-03795-w

[31] Panteleev, A. V., I. A. Belyakov, and A. A. Kolessa. "Comparative analysis of optimization strategies by software
complex “Metaheuristic nature-inspired methods of global optimization”." In Journal of Physics: Conference Series,
vol. 2308, no. 1, p. 012002. IOP Publishing, 2022. https://doi.org/10.1088/1742-6596/2308/1/012002

[32] de Carvalho, Vinicius Renan, Ender Özcan, and Jaime Simão Sichman. "Comparative analysis of selection hyper-
heuristics for real-world multi-objective optimization problems." Applied Sciences 11, no. 19 (2021): 9153.
https://doi.org/10.3390/app11199153

[33] Grindal, Mats, Jeff Offutt, and Sten F. Andler. "Combination testing strategies: a survey." Software Testing,
Verification and Reliability 15, no. 3 (2005): 167-199. https://doi.org/10.1002/stvr.319

[34] Shiba, Toshiaki, Tatsuhiro Tsuchiya, and Tohru Kikuno. "Using artificial life techniques to generate test cases for
combinatorial testing." In Proceedings of the 28th Annual International Computer Software and Applications
Conference, 2004. COMPSAC 2004., pp. 72-77. IEEE, 2004.

[35] Miyake, Yuki, Wataru Kumagai, Kenichi Tamura, and Keiichiro Yasuda. "Search point ranking-based adaptive cuckoo
search." IEEJ Transactions on Electrical and Electronic Engineering 13, no. 7 (2018): 1075-1076.
https://doi.org/10.1002/tee.22667

https://doi.org/10.1109/SCORED.2019.8896324
https://doi.org/10.1371/journal.pone.0195187
https://doi.org/10.1051/matecconf/201714001016
https://doi.org/10.5120/ijca2016911384
https://doi.org/10.14704/WEB/V19I1/WEB19276
https://doi.org/10.1016/j.asoc.2016.09.048
https://doi.org/10.4018/978-1-7998-3016-0.ch032
https://doi.org/10.14569/IJACSA.2021.0120419
https://doi.org/10.1016/j.jss.2011.06.026
https://doi.org/10.3724/SP.J.1001.2011.03973
https://doi.org/10.1109/ACCESS.2020.3020795
https://doi.org/10.1109/ICOEI51242.2021.9452870
https://doi.org/10.1504/IJBIC.2013.055093
https://doi.org/10.1109/CONFLUENCE.2019.8776898
https://doi.org/10.1016/j.eswa.2011.09.076
https://doi.org/10.1007/s00500-019-03795-w
https://doi.org/10.1088/1742-6596/2308/1/012002
https://doi.org/10.3390/app11199153
https://doi.org/10.1002/stvr.319
https://doi.org/10.1002/tee.22667

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 49, Issue 1 (2025) 77-94

94

[36] Mueller, Carsten. "Multi-objective optimization of software architectures using ant colony optimization." Lecture
notes on software engineering 2, no. 4 (2014): 371. https://doi.org/10.7763/LNSE.2014.V2.152

[37] Jamil, Muhammad Abid, Mohamed K. Nour, Ahmad Alhindi, Normi Sham Awang Abhubakar, Muhammad Arif, and
Tareq Fahad Aljabri. "Towards software product lines optimization using evolutionary algorithms." Procedia
Computer Science 163 (2019): 527-537. https://doi.org/10.1016/j.procs.2019.12.135

[38] Ferreira, Thiago Nascimento, Silvia Regina Vergilio, and Jerffeson Teixeira de Souza. "Incorporating user
preferences in search-based software engineering: A systematic mapping study." Information and Software
Technology 90 (2017): 55-69. https://doi.org/10.1016/j.infsof.2017.05.003

[39] Sheng, Wanxing, Yongmei Liu, Xiaoli Meng, and Tianshu Zhang. "An Improved Strength Pareto Evolutionary
Algorithm 2 with application to the optimization of distributed generations." Computers & Mathematics with
Applications 64, no. 5 (2012): 944-955. https://doi.org/10.1016/j.camwa.2012.01.063

[40] Qian, Yekan, Cheng Zhang, and Futian Wang. "Selecting products for high-strength t-wise testing of software
product line by multi-objective method." In 2018 IEEE International Conference on Progress in Informatics and
Computing (PIC), pp. 370-378. IEEE, 2018. https://doi.org/10.1109/PIC.2018.8706270

[41] Al-Hajjaji, Mustafa, Jacob Krüger, Sandro Schulze, Thomas Leich, and Gunter Saake. "Efficient product-line testing
using cluster-based product prioritization." In 2017 IEEE/ACM 12th International Workshop on Automation of
Software Testing (AST), pp. 16-22. IEEE, 2017. https://doi.org/10.1109/AST.2017.7

[42] Matnei Filho, Rui A., and Silvia R. Vergilio. "A multi-objective test data generation approach for mutation testing of
feature models." Journal of Software Engineering Research and Development 4, no. 1 (2016): 1-29.
https://doi.org/10.1186/s40411-016-0030-9

[43] Tuglular, Tugkan, Mutlu Beyazıt, and Dilek Öztürk. "Featured event sequence graphs for model-based incremental
testing of software product lines." In 2019 IEEE 43rd Annual Computer Software and Applications Conference
(COMPSAC), vol. 1, pp. 197-202. IEEE, 2019. https://doi.org/10.1109/COMPSAC.2019.00035

[44] Tuglular, Tugkan, and Sercan Şensülün. "SPL-AT Gherkin: A Gherkin Extension for Feature Oriented Testing of
Software Product Lines." In 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC),
vol. 2, pp. 344-349. IEEE, 2019. https://doi.org/10.1109/COMPSAC.2019.10230

[45] CHEN, Xiang, Ji-Hong CHEN, Xiao-Lin JU, and Qing GU. "Survey of Test Case Prioritization Techniques for Regression
Testing."

[46] Sahid, Mohd Zanes, Abu Bakar Md Sultan, Abdul Azim Abdul Ghani, and Salmi Baharom. "Combinatorial Interaction
Testing of Software Product Lines: A Mapping Study." J. Comput. Sci. 12, no. 8 (2016): 379-398.
https://doi.org/10.3844/jcssp.2016.379.398

[47] Halim, Khadijah Mohd, and Wan Khadijah. "Hospital Bed Allocation using Three-Stage Weighted Optimization
Method for Government Hospital in Pulau Pinang." Journal of Advanced Research in Applied Sciences and
Engineering Technology 31, no. 1 (2023): 90-98. https://doi.org/10.37934/araset.31.1.9098

[48] Maddina, Suresh Babu, R. Thirunavukkarasu, and N. Karthik. "Optimization of Energy Storage Unit Size and Location
in a Radial Distribution Network to Minimize Power Loss Using Firefly Algorithm." Journal of Advanced Research in
Applied Sciences and Engineering Technology 31, no. 3 (2023): 25-42. https://doi.org/10.37934/araset.31.3.2542

[49] Majid, Hanafi, Syahid Anuar, and Noor Hafizah Hassan. "TPOT-MTR: A Multiple Target Regression Based on Genetic
Algorithm of Automated Machine Learning Systems." Journal of Advanced Research in Applied Sciences and
Engineering Technology 30, no. 3 (2023): 104-126. https://doi.org/10.37934/araset.30.3.104126

[50] Omar Alhazmi. “A Survivable Internet of Things Scheme” Journal of Advance Research in Computing and
Applications 13, no. 1 (2018): 19-26

[51] Rahman, Mizanur, Kamal Z. Zamli, Md Abdul Kader, Roslina Mohd Sidek, and Fakhrud Din. "Comprehensive Review
on the State-of-the-arts and Solutions to the Test Redundancy Reduction Problem with Taxonomy." Journal of
Advanced Research in Applied Sciences and Engineering Technology 35, no. 1 (2024): 62-87.
https://doi.org/10.37934/araset.34.3.6287

https://doi.org/10.7763/LNSE.2014.V2.152
https://doi.org/10.1016/j.procs.2019.12.135
https://doi.org/10.1016/j.infsof.2017.05.003
https://doi.org/10.1016/j.camwa.2012.01.063
https://doi.org/10.1109/PIC.2018.8706270
https://doi.org/10.1109/AST.2017.7
https://doi.org/10.1186/s40411-016-0030-9
https://doi.org/10.1109/COMPSAC.2019.00035
https://doi.org/10.1109/COMPSAC.2019.10230
https://doi.org/10.3844/jcssp.2016.379.398
https://doi.org/10.37934/araset.31.1.9098
https://doi.org/10.37934/araset.31.3.2542
https://doi.org/10.37934/araset.30.3.104126

