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A software product line (SPL) is a combination of software products that have 
similarities in features and functions. These combinations usually result in many 
feature combinations that challenge the testing process. The explosion of the 
combination of features can lead to exhaustive testing. This exhaustive testing will 
affect the time and cost for the product to be delivered to the market. This paper aims 
to identify the best algorithm and interaction strength to avoid exhausting testing and 
reduce the time and cost of the testing process. An experiment has been conducted on 
the most commonly used optimization algorithms in previous studies. The optimization 
algorithms we explored are the Genetic Algorithm, Cuckoo Search algorithm, Ant 
Colony algorithm, and Particle Swarm Optimization algorithm. Each algorithm has been 
tested with different combinatorial interaction strengths from two to six. This paper 
aims to get the best meta-heuristic algorithm and the optimum number of interaction 
strengths for optimizing the number of configurations in the SPL testing. Results show 
the best optimization algorithm is the Genetic Algorithm and the optimum interaction 
strength is t=5. This interaction strength achieves the optimum number of features 
combination that is sufficient for the testing process and thus can avoid the exhaustive 
testing in SPL testing. By using the best optimization algorithm with the optimum 
number of interaction strengths, the complexity of the SPL testing process could be 
reduced without prejudicing the quality of the software system itself. 
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1. Introduction 
 

Software Product Line (SPL) is an approach used in software product development to form a new 
product by reusing the existing features from the other software product that share the commonality 
of functions and core assets. SPL gives many benefits to the software developer, such as reduces the 
time and cost of the development, maintenance cost gives the best quality of software. However, 
employing the SPL approach contributes issues in testing process. SPL is a massive software system 
made up of intricate interactions between all of the system's features, which cause the number of 
test cases to skyrocket [1].  The number of features exponentially influences the number of valid 
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configurations; as features increase, so do the configurations. It is almost impossible to verify each 
setup due to the rise in the number of configurations. Therefore, an optimization approach has been 
introduced to optimize the number of configurations that need to be evaluated to decrease the 
testing effort. SPL testing optimization has been considered active research for the past five years 
[2]. SPL testing optimization reduces the number of configurations in the test suites by using a meta-
heuristic algorithm, evolutionary algorithm, and mathematical linear.  

A meta-heuristic algorithm is utilized in most studies in addressing the optimization issue in SPL 
testing [3-6]. A meta-heuristic algorithm is based on the nature of the animal or plant. This meta-
heuristic algorithm used the combinatorial objective, which means the fitness function is in the form 
of any combination of functions such as an orthogonal array, mixed covering array, or uniform 
strength covering array. The meta-heuristic algorithm has been proposed as a solution to the non-
deterministic polynomial-time hard (NP-hard) problem. Meta-heuristic is a generic algorithm 
framework or a black box optimizer that can be applied to almost all optimization problems [7]. It 
has two primary functions, exploration and exploitation. Exploration tends to search for the best 
solutions in surrounding areas, while exploitation will invade the new search area for the solutions.  

Furthermore, the number of feature combinations for SPL testing can be decreased via 
combinatorial interaction testing (CIT) [8]. CIT is also known as t-ways testing, where the t indicates 
the interaction strength, and the value of the strength is usually between two and six. The higher the 
value of strength the better results will be given, but it can be more complex compared to the lower 
strength. CIT will select the possible pairs of configurations based on the feature model (FM) included 
in the test data, however testing all the combinations chosen in the test suite can be an NP-hard 
problem. Thus, combining the CIT and optimization algorithm can generate more accurate and 
efficient number of test configurations that need to be tested. Combination of meta-heuristic 
algorithm and combinatorial interaction testing has shown promising results in optimizing the 
number of configurations in the test suite to be tested in SPL [9]. Most meta-heuristic algorithms 
need predefine software products as the seeds or the initial population to run it. By Combining with 
CIT, it will define the initial population using the covering array (CA) and get the valid initial population 
instead of the random initial population. This combination can help increases the accuracy of the 
results.  

This paper aims to:  
 

i. find meta-heuristic algorithm that can give the best optimization for SPL testing 
ii. find the optimum number of the interaction strength.  

 
In this work, the meta-heuristic algorithms were combined with CIT method to optimize the 

number of configurations in SPL testing. The CIT presents all the valid configurations that were 
selected from the FM and then used as an initial population in the meta-heuristic algorithm to 
optimize the testing process. The selected meta-heuristic algorithms used in this study are based on 
the comparison analysis carried out earlier. The selected algorithms were compared to determine 
the best algorithm, and the most optimum interaction strength of CIT that can be implemented in 
the SPL testing process. An experiment has been conducted to four different meta-heuristic 
algorithms and using interaction strength (i.e., between 2 to 6). Each of the algorithms were run on 
ten different case studies for accurate results. Using the best algorithm with the optimum number of 
interaction strength are important aspects for optimization in SPL testing process. In which, we can 
optimize the number of configurations, consequently, it reduces the time and cost of testing. Besides, 
software testers do not have to try every single algorithm and interaction strength to get the best-
optimized results during the testing process.  
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The remaining of this paper is structured as follows: Section 2 provides a literature review of this 
study. Section 3 highlights the related work and section 4 describes the experiment conducted. The 
finding and discussion are presented in section 5, and finally, section 6 concludes this work and 
highlights future work.  

 
2. Literature Review 

 
This section provides literature review on optimization algorithms for SPL testing and 

combinatorial interaction testing as the foundation for this study. 
 

2.1 Optimization Algorithms 
 
Meta-heuristic algorithms have been developed and implemented for optimizing the number of 

test cases, such as Tabu search [10], Genetic Algorithm [11], Ant Colony Optimization [12], Particle 
Swarm Optimization [13], Simulated Annealing [14], Harmony Search [15], Flower Pollination [16,17], 
Bee Algorithm [18], BAT Algorithm [19], Cuckoo Search [20], and Firefly Algorithm [21]. A study has 
been conducted to identify which meta-heuristic algorithms that mostly used in SPL testing in the 
recent 5 years. The results show that the Genetic Algorithm (GA) has a higher percentage at 40%, 
followed by Particle Swarm Optimization (PSO) at 34%. While only 10% used Ant Colony Optimization 
(ACO), and 7 % used Cuckoo Search (CS). Whereas it is less than 4% for the BAT, Black Hole, and 
Harmony Search. Thus, this study focuses on the first four optimization algorithms to compare their 
performance. Each of the algorithms is described in the following sub-sections. There is an existing 
study that uses Weighted Optimization in achieving the minimization by using the weighted GP 
model. This model consists of the objective function and the goal constraints [47]. 

 
2.1.1 Genetic algorithm 

 
GA is computational modelling that stimulates biological development through Darwin's theory 

of genetic selection. In recent years, GA has emerged as a valuable tool for the heuristic solution for 
optimization problems. This algorithm is based on the principle of natural evolution. GA became a 
meta-heuristic search method for complex optimization problems. The ability to handle a large 
sample size has been an excellent advantage for optimizing SPL. Besides, GA is an ideal solution for 
optimization due to its ability to search in a vast and highly non-linear space. GA has a simple 
computational, which is decisive for improving searching operations. This algorithm begins with the 
initialization of the population, which represents the chromosome by generating it randomly. The 
binary string represents the chromosome. Then, a series of genetic operations are applied to the 
solution in the generated population. 

The three main genetic operations in GA are selection, crossover, and mutation [49]. Figure 1 
shows the pseudocode of the GA. The selection plays a part in selecting the chromosome from the 
population to be parents for crossover. Darwin's theory said the best chromosome could survive and 
create new offspring during the crossover operation [22]. The selection process could happen by 
using Roulette Wheel Selection [23]. This Roulette Wheel selection method will select the parents 
based on their fitness; if the chromosome has high fitness, the higher chances of being selected. The 
second operation is a crossover, the process of selecting the chromosome as parents will swap their 
bits. Usually, the rate of crossover used is from 0.5 to 1. It is performed by choosing random genes 
along the chromosome and switching them with other one-chromosome genes. After the swap, the 
new genes are produced known as offspring. Then, mutation operation is implemented.  Mutation 
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operation is the process of flipping the bits of the offspring from 1 to 0 and other ways around. This 
process usually used 0.001 for the mutation rates. The use of GA to generate automatic data has 
attracted many researchers in recent years. This method has been proven as efficient and effective 
in generating test data. GA is also flexible and robust due to the optimization of its structured 
problems and does not need a specific formula to generate test data. 

 

 
Fig. 1. GA pseudocode 

 
2.1.2 Particle Swarm Optimization (PSO) algorithm 

 
Particle Swarm Optimization (PSO) is an optimization algorithm design by Kennedy and Eberhart 

[24] is one of the earliest meta-heuristic algorithms explored by the researcher to use in the 
optimization problem. PSO imitates birds' behaviours by using a population in which birds or particles 
search for the best food sources from the information of inertia, knowledge itself, and knowledge 
from the swarm. The algorithm uses random positions and searching for the optimum (best) position 
by the given fitness function. The velocity and iteration are updated based on the previous and global 
best positions. PSO is an evolutionary algorithm, like GA, as it initializes with random candidates of 
populations, and the searching process happens by updating the generations. However, PSO does 
not have an evolutionary operator (e.g., crossover and mutations) and only required a few parameter 
settings [25]. Figure 2 shows the associated pseudo code of PSO.  

 
Algorithm 2 Particle Swarm Optimization 

1 For each Particle Pi 
2 Initialize Pi 
3 End for 
4 Do 
5 For each Particle Pi 
6 Compute Fitness; 
7 If fitness > it is personal best 
8 Update current values as the new personal best; 
9 End If 
10 End For 
11 Select the particle P with the best fitness value of all as the global best; 
12 For each Particle Pi 
13 Compute Vid using Equation 3; 
14 Compute Pid using Equation 2; 
15 End For  
16 While {the termination criteria are not attained;} 

Fig. 2. PSO pseudocode 
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Eq. (1) and Eq. (2) update the iteration’s velocity (V) and position (S). Where t is the counter, C is 
the acceleration coefficients and R is the random number between (0, 1). The objective function will 
evaluate the particle, and after several iterations, the best values will return as optimal solutions. 

 
Vid(t+1) = Vid(t) + C1R1(Pid – Sid(t)) + C2R2(Pgd – Sid(t))          (1) 

 
Sid(t + 1) = Sid (t) + Vid (t + 1)                                               (2) 

 
Eq. (3) is used to update the inertia weight, where Wmx and Wmi are the minimum numbers and 

maximum values W can take, I is the current iterations, and Imx is the total number of iterations. 
 

W = Wmx – ((Wmx – Wmi)?Imx)*1.                       (3) 
 
 PSO algorithm has a few advantages, such as fast convergence, few parameters, and high 

efficiency. Further:  
 

i. the algorithm itself does not depend on specific information, and it has strong versatility  
ii. it is simple and easy to implement  

iii. the ability to store and retain the best information of an individual. However, it also has 
disadvantages, such as poor local search ability and accuracy [26].  

 
2.1.3 Cuckoo Search (CS) algorithm 

 
Yang and Deb [27] introduced Cuckoo Search (CS) in 2009, an optimization algorithm based on 

the natural behaviours of the cuckoo bird, which has a host bird and a brood-parasitic nature. A 
cuckoo laid an egg in another host bird’s nest. This bird selects the nest where the host bird most 
recently laid an egg to lay her eggs. The cuckoo egg often hatches slower than the egg of the host 
bird. To raise the share of the food the host bird provides, the cuckoo chick will push the other egg 
outside the nest after hatching. Cuckoos choose a random nest to place their egg in. Future 
generations will inherit the nest with the highest-quality eggs. The host egg has a chance of 
recognizing the cuckoo eggs (Pa [0, 1]). Each egg in the nest represents a new solution, and the 
number of eggs reflects the total number of solutions. The worst of the existing solutions will be 
replaced with the new one if it produces a superior outcome. The nest may contain multiple eggs 
representing a group of solutions.  

CS offers more trustworthy and cost-effective solutions compared to other meta-heuristic 
algorithms. This algorithm provides a delicate compromise between convergence and 
unpredictability with fewer control parameters. CS algorithm uses three basic rules;  

 
i. the nest is initially chosen at random 

ii. only the nest that produces the highest caliber eggs will survive into succeeding 
generations 

iii. there is a chance that the host bird will spot the egg, leave the nest, and build a new one. 
The CS algorithm pseudocode is as shown in Figure 3. 

 
 
 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 49, Issue 1 (2025) 77-94 

82 
 

Algorithm 3 Cuckoo Search Algorithm 
1 Set value of an objective function, initial population, step size, range of 

input and maximum generation 
2 Initialize the population using the initial population 
3 Repeat step from 4 to 11 until the number of iterations exceeds the 

maximum generation or stopping criterion reached 
4 Select a cuckoo randomly and generate a new solution using Le’vy flight 
5 Calculate fitness value (Fi) of the solution using the objective function 
6  Randomly select a nest from the available nest (say j) 
7        If fitness value (Fi) is better than fitness value (Fj), then 
8 Replace j with the new solution 
9 End if  
10 Abandon a fraction (Pa) of the worst solution 
11 Keep track of the best solutios, rank them, and find the current best 
12 List out the result 

Fig. 3. CS pseudocode 
 
Wildlife such as birds and animals naturally use the foraging trail to find food. It is a random walk 

because the next step depends on the current situation and the likelihood of the transition to the 
next place. The CS algorithm’s performance has been improved by switching from ordinary random 
walk to Le’vy flight. The Le’vy Flight Eq. (4), has been used to create a mathematical model of this 
computation. Where a present the step size, and its values must always be positive. Generally, the 
value a is 1. The symbols of (denote the entry -wise multiplication. The random step of the Le’vy 
flight can be found using the Eq. (5) [28].  

 
Xi

(t+1)= xi(t)+aÅLe’vy (l)            (4) 
 

Le’vy ~ u + t-l, (1 <l£3)                           (5) 
 

2.1.4 Ant Colony Optimization algorithm 
 
Ant colony optimization is a meta-heuristic approach proposed in 1990 to address combinatorial 

optimization issues [29]. This concept is inspired by how ants move about searching for food sources. 
The ant spreads the pheromone throughout its route to find food sources. This pheromone trail 
benefits the ant in two ways: first, it indicates the path for a different ant that moves randomly, and 
second, it can serve as a map for the ant to return to the sources at any time. Other ants that can 
detect the pheromone will follow it and add pheromone to it. It increases the number of pheromones 
along the trail. Due to the ongoing pheromone evaporation, the other ant will select the path leaving 
the most extensive pheromone trail. The evaporation will make it easier for the ant to choose the 
regionally ideal solution. If the path is long, more pheromones will evaporate, causing the leftover 
pheromone to decrease. As a result, the other ants will take the shortest route based on how many 
pheromones are still there. The first ant to get back to its sources is the one that randomly moves 
and takes the quickest route. The amount of pheromone along the trail has risen due to this forward 
and backward movement, making it the best route for the ant to travel. Ant colony optimization 
refers to this action of the ants travelling backwards and forwards from the colony to the food 
sources. Figure 4 illustrates the procedure. Their study shows that ACO is more economical than GA. 
[48] 
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Algorithm 4 Ant Colony Optimization 
1 Begin 
2 Initialize 
3 While stop criteria are not satisfied 
4 Do 
5 Initialize ant population 
6 Repeat 
7 For each node 
8 Do 
9 Choose next node by applying updates on the transition 
10 Update pheromone 
11 End 
12 For every node 
13 Update best solution 

Fig. 4. ACO pseudocode 
 

2.2 Combinatorial Interaction Strength 
 
Combinatorial interaction testing (CIT), commonly referred to as t-way or t-wise testing, has been 

utilized to reduce the interaction explosion caused by feature explosion and exhaustive testing. CIT 
is introduced to detect the problem from the parameter interaction due to the most failure cause by 
the interaction of the parameters. CIT is highly suitable for managing the complexity and feature 
explosion in the SPL and optimizing the number of test cases for the testing process.  It focuses on 
creating test cases that account for every potential interaction between each system feature. CIT is 
a systematic strategy for sampling extensive test data domains. It is based on the finding that 
interactions between relatively few factors cause most problems. The definition of pairwise (or 2-
wise) testing results from this. By choosing the set of all combinations, this method ensures that the 
test data set has every pair of possible variable values. The t-wise testing, which samples the input 
domain to cover all t-wise combinations, has generalized pairwise testing. This involves choosing the 
smallest group of items for SPL testing; where each t-wise features interaction occurs at least once. 

The most optimum number for test case optimization can be achieved by combining the t-way 
testing technique with the meta-heuristic algorithm. Thus, the effectiveness of software testing can 
be increased [30]. The meta-heuristic algorithm work as a technique that will sample an optimization 
set of test cases from large combinatorial values that get from the interaction strength (t).  The meta-
heuristic algorithm starts the process by using the existing test cases and then implements the natural 
movement based on the inspired algorithm to improve the number of test cases. This movement 
process will run until the selected test cases have covered all the parameter interactions.  

 
3. Related Work 

 
In this section, related works on comparative studies on algorithms in SPL testing optimization 

are discussed. 
A study conducted by Lopez-Herrejon et al., [10] analysed and compared the Non-dominated 

Sorting Genetic Algorithm (NSGA-II), Multi-Objective Cellular Genetic Algorithm (MOCell), Strength 
Pareto Evolutionary Algorithm (SPEA2), and Pareto Achieved Evolution Strategy (PAES) algorithm to 
identify the best algorithm.  This study only concentrates on the strength of pairwise interactions. 
The interaction strength of the CIT has been compared to get the most optimum number of 
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interaction strengths that can be used for the SPL testing to optimize the testing process and avoid 
exhausting testing.  

In addition, Carvalho et al., [32] also conducted a comparative study to select hyper-heuristics for 
multi-objective optimization problems. This study compared nine meta-heuristic algorithms and 
compared the performance to determine the most suitable in the real world of the multi-objective 
optimization problem. It shows that the meta-heuristic performs better than the single hyper-
heuristic optimization algorithm. This study did not use CIT method with the meta-heuristic algorithm 
in optimizing the testing process.  

While Panteleev et al., [31] conducted a comparative study of meta-heuristic algorithms that 
focuses on the Whale Optimization Algorithm (WOA), Grey Wolf optimizer (GWO), and Perch School 
Search (PSS). It analyses the performance of the three algorithms to get the most suitable 
optimization methods for global algorithm accuracy and convergence pattern. This study differs from 
our study as it did not find the optimum number of interaction strengths that can give better 
optimization results in SPL testing.  

Up to date, it can be concluded that there is lack of comparative study on meta-heuristic 
algorithms with the combination of combinatorial interaction strength. Moreover, the comparison 
and analysis are based on the reduced number of configurations, and there is no discussion on the 
optimum number of configurations and coverage of the test suite.  

 
4. The Experiment 

 
This section discusses on the experiment that we conducted for optimizing the number of test 

configurations in SPL testing. The aim of this study is to determine the best optimization algorithm 
and the optimum number of interaction strengths for SPL testing optimization. This section describes 
the experimental materials and procedures carried out for this study. This study was driven by the 
following research questions (RQs): 

 
i. RQ1: What is the meta-heuristic algorithm that can optimize the optimal number of test 

cases? 
ii. RQ2: What is the best interaction strength for combinatorial interaction strength in 

optimizing the number of test cases? 
 

4.1 Case Study 
 
Internet of Things (IoT) product is complex, and it will take more time to perform testing using 

the usual methods. IoT is still evolving for both academia and industry [50] Thus, optimization 
techniques must be applied to minimize and optimize the number of test cases to be tested. 
Therefore, IoT of the Home system seems suitable as a case study for this experiment. The feature 
model (FM) of the Home Interactive System (HIS) was taken from [33] is used for this experiment.  
The feature model has 23 features, as shown in Figure 9. Each feature model is divided into three 
categories: mandatory, optional, and alternative. This is crucial to get a valid configuration from the 
FM. The children that inherit the mandatory features are also required in the configurations. Optional 
features operate differently from alternative features in that even when the parent feature of the 
optional feature is selected, the children can still be selected or deselected. 
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Fig. 5. Feature Model of Home Interactive System 

 
The Home Interactive System (HIS) consists of two groups of features, as shown in Table 1, divided 

by 1-valued parameter and two-valued parameters. The 1-valued parameter will hold only one value 
(i.e., True) for the configurations, which are HIS, services, devices, light control, control system, 
instruction notification, and fire notification. The 2- valued parameters (i.e., True or False) are 
appliance control, temperature control, supervision system, internet, sensor, sprinkler, transmitter, 
alarm, phone call, SMS, Email, Intrusion, Fire, TCP, UDP, and water.  

 
Table 1 
The Home Interactive System configurations 
System configuration Values 
1-valued parameter (HIS, services, devices, light control, control 
system, instruction notification, fire notifications) True 

2-valued parameter (appliance control, Temperature control, 
Supervision system, Internet, Sensor, Sprinkler, Transmitter, 
Alarm, Phone call, SMS, Email, Intrusion, Fire, TCP, UDP, water) 

True                                       False 

 
The possible number of the configurations for Home Interactive System can be generated for the 

testing is 17 x 216 = 65536 configurations. Besides, the number of configurations grows with the 
increase of features in the FM. Looking at this number of configurations, it seems impossible to test 
every configuration without increasing the time to deliver the system to market and the development 
cost. Commonly, the cost of testing takes 50% to 60% of the overall development cost. Thus, test 
case optimization is needed to reduce the time and cost of the testing process.  

Covering array (CA) is the mathematical calculation used for t-way strategies. CA consists of four 
parameters: N, t, p and v. This parameter represents the CA’s parameters, values, and interaction 
strength [14]. For example, CA (2, 1, 216) represents the test suite containing 2 x 16 arrays. For this 
experiment, the binomial coefficient formula been used to calculate the new number of 
configurations based on the CA listed from the FM. Eq. (6) shows the equation of the binomial 
coefficient, where n represents the population, and k is the subset of n. This formula shows number 
of samples of k elements gained from a larger set of n. Table 2 shows the list of CA used for the FM 
and the number of configurations.  
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C(n,k) = !!"" = !!
("!(!%")!)

                                              (6) 

 
Table 2 
New number of configurations after 
implementing the t-way strategy 
Covering Array (CA) No. of configurations 
CA (2, 17 x 216) 136 
CA (3, 17 x 216) 680 
CA (4, 17 x 216) 2380 
CA (5, 17 x 216) 6188 
CA (6, 17 x 216) 12376 

 
4.2 Experimental Setup 

 
The four optimization algorithms were executed for optimizing the number of configurations 

generated earlier by using the new number of configurations using t-way approaches. The set of 
attributes and parameters listed in Tables 3, 4, 5, and 6 were used for the experiment. For reliable 
results, each algorithm has been calibrated to be standardized. All algorithms in this study have 
proven statistically significant after 20 iterations. Besides, all the experimental parameters used are 
based on the previous studies, in which parameter value for the GA from [8,34], PSO from [8], Cuckoo 
search from [8,35], and ACO parameter values from [8,36]. 

 
Table 3 
Parameter of GA optimization algorithm 

Parameter  Value  
Size of chromosome 10 
Number of populations 136, 680, 2380, 6188, 12376 
Selection 0.8 
Crossover 0.75 
Mutation 0.03 
Number of generations 1000 

 
Table 4 
Parameter of the CUCKOO optimization algorithm 
Parameter  Values 
Number of populations 136, 680, 2380, 6188, 12376 
Maximum number of iterations 1000 
Probability of alien egg 0.25 
Beta 1.5 
Alpha 1 

 
Table 5 
Parameter of PSO optimization algorithm 
Parameter Data size 
No of population 136, 680, 2380, 6188, 12376 
Inertia weight 0.9 
Minimum inertia weight 0.9 
Minimum inertia weight 0.4 
Lower bound 1 
Upper bound 20 
Number of iterations 1000 
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Table 6 
Parameter of ACO optimization algorithm 

Parameter  Values 
Number of populations 136, 680, 2380, 6188, 12376 
Number of generations 1000 
Initialization of pheromone 1.6 
Pheromone persistence 0.5 
Pheromone amount 0.01 
Initial pheromone 0.4 

 
Pareto optimal set has been used to find the optimum number of configurations that need to be 

tested in recent studies [37-39]. There are two objectives for this experiment; coverage, and test 
suite size and both are equally important. The set of solutions is considered non-dominated if it non-
dominates another. The Pareto optimal set is a non-dominated solution that non-dominates each 
other in the search space. The Pareto optimal set will find the optimal solution for both objectives 
and give the best optimization results.  

Table 7 demonstrates how each method maximized the number of configurations from the case 
study, with interaction strength ranging from two to six. The quantity of configurations that must be 
tested during the testing process is decreased. As this experiment uses the Pareto optimum set to 
obtain the best solutions, this number has achieved the optimum number to be tested. The ACO 
algorithm has the most significant number of optimum configurations for interaction strength, t=2. 
In contrast, the CS algorithm has the fewest configurations for an interaction strength t=3, and the 
same is true for an interaction strength t=6. Out of the five interaction strengths, PSO is the most 
optimal.  

 
Table 7 
Number of configurations after implementing optimization algorithm 
Interaction strength No. of configurations GA PSO ACO Cuckoo 
2 136 80 94 77 91 
3 680 480 484 465 430 
4 2380 1750 1622 1090 1198 
5 6188 4298 3908 4138 5099 
6 12376 8516 8207 8864 8154 

 
Table 8 compares the optimization for each algorithm and level of interaction by listing the 

number of reductions. Another eight feature models were added which are, WS, EC, James [40], 
Smart Mobile [41], Car audio system [42], Vendor Machine [43], Gold Kid Bus [44], and Snake FOP 
Games [45]. Since the experiment used a large FM, it is essential to remember that a smaller FM can 
achieve 90–100% coverage because the number of reductions is also minimal. In this experiment we 
did not compare the performance in terms of time as the evaluation can be unfair due to the various 
fitness evaluations for each strategy.  

 
 
 
 
 
 
 
 

 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 49, Issue 1 (2025) 77-94 

88 
 

Table 8 
Number of configurations for all FM  

FM t-wise Algorithm 
GA PSO ACO CUCKOO 

HIS 2 80 94 77 91 
3 480 484 465 430 
4 1750 1622 1090 1198 
5 4298 3908 4138 5099 
6 8516 8207 8864 8154 

WS 2 219 171 198 201 
3 1258 1329 1321 1493 
4 7093 6985 6319 6715 
5 25131 23413 20397 24993 
6 41736 33976 30512 40179 

EC 2 165 107 139 171 
3 813 532 798 625 
4 4129 3725 4469 3975 
5 12461 10710 11371 8293 
6 19532 21743 35915 20431 

James 2 65 52 41 57 
3 262 205 195 239 
4 631 429 315 503 
5 1091 615 964 1153 
6 942 815 1173 713 

Smart Mobile 2 43 39 37 51 
3 139 113 127 141 
4 299 235 319 326 
5 405 392 384 422 
6 260 239 241 219 

Car Audio system 2 99 79 82 75 
3 433 385 379 321 
4 1217 1041 997 1184 
5 2842 2099 1817 2537 
6 2519 3078 2456 4193 

Vendor Machine 2 139 141 129 97 
3 784 761 607 523 
4 2719 2583 2713 2663 
5 8348 8098 7593 7919 
6 9077 9765 15342 13219 

Gold Kid Bus 2 36 32 41 37 
3 98 87 113 95 
4 174 199 197 180 
5 213 226 239 237 
6 143 159 268 170 

Snake FOP Game 2 105 93 82 95 
3 530 421 524 495 
4 1721 1683 1592 1565 
5 4017 3918 3652 3773 
6 4103 3915 3817 3972 

 
The information in Table 9 shows the coverage matric to compare the coverage of the 

configuration for the interaction strength and the algorithms. The necessary test suite metrics are 
the high number of coverage as well as the lower number of configurations. It is crucial to achieving 
a higher value for this metric because it is expected to cover all expected configurations. 
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Table 9 
Number of coverages for the optimization  
FM t-wise Algorithm 

GA PSO ACO CUCKOO 
HIS 2 0.59 0.69 0.57 0.67 

3 0.71 0.71 0.68 0.63 
4 0.74 0.68 0.46 0.50 
5 0.69 0.63 0.67 0.82 
6 0.69 0.66 0.71 0.66 

WS 2 0.94 0.74 0.85 0.87 
3 0.81 0.86 0.85 0.96 
4 0.96 0.95 0.86 0.91 
5 0.95 0.88 0.77 0.94 
6 0.55 0.45 0.40 0.53 

EC 2 0.86 0.56 0.73 0.90 
3 0.71 0.46 0.70 0.54 
4 0.85 0.76 0.92 0.82 
5 0.80 0.69 0.73 0.53 
6 0.50 0.56 0.92 0.52 

James 2 0.83 0.65 0.52 0.73 
3 0.92 0.72 0.68 0.84 
4 0.88 0.60 0.44 0.70 
5 0.85 0.48 0.75 0.89 
6 0.55 0.47 0.68 0.41 

Smart Mobile 2 0.78 0.71 0.67 0.92 
3 0.84 0.68 0.77 0.85 
4 0.91 0.71 0.97 0.98 
5 0.88 0.85 0.83 0.91 
6 0.56 0.52 0.52 0.47 

Car Audio system 2 0.94 0.75 0.78 0.71 
3 0.95 0.85 0.83 0.71 
4 0.89 0.76 0.73 0.87 
5 0.94 0.69 0.60 0.84 
6 0.50 0.61 0.49 0.84 

Vendor Machine 2 0.91 0.92 0.84 0.63 
3 0.96 0.93 0.74 0.64 
4 0.89 0.84 0.88 0.92 
5 0.97 0.94 0.88 0.92 
6 0.49 0.53 0.83 0.71 

Gold Kid Bus 2 0.80 0.71 0.91 0.82 
3 0.81 0.73 0.94 0.80 
4 0.83 0.95 0.94 0.86 
5 0.85 0.90 0.95 0.67 
6 0.51 0.57 0.96 0.61 

Snake FOP Game 2 0.59 0.69 0.57 0.67 
3 0.71 0.70 0.68 0.63 
4 0.74 0.68 0.46 0.50 
5 0.69 0.63 0.67 0.82 
6 0.69 0.66 0.71 0.66 

 
In this experiment, we used the total coverage of the configuration as if the main goal for the 

study was only in the testing, with the focus being the subset of all possible configurations as the 
main target. This metric was calculated by using Eq. (7) as below: 
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𝑐𝑐/𝑐               (7) 
cc: No. of configuration covered by t 
  c: No. of configuration 

 
4.3 Threats to Validity 

 
There are some efforts taken to reduce such threats. Firstly, the meta-heuristic algorithms 

involved in this study are based on the analysis of research publications gathered from the preceding 
five years. This portion of the primarily employed algorithm comes from our findings, which may not 
agree with those of other researchers. 

Secondly, the parameters used in this study are referring to earlier research work by different 
researchers. We relied on the parameter values employed in most prior studies that addressed issues 
from related scientific literature. However, changes in the values might affect the experiment's 
outcome, which does not apply to this study. Retuning the parameters may therefore be helpful to 
get the best results. 

Thirdly, is about the choice of the case study for the feature model. The outcomes of various case 
studies may vary. Since IoT is a practical topic, we chose a case study with actual industry problems 
for this study. It is one of the SPL products with various properties that interact with one another and 
is appropriate for this experiment. We could not achieve the high number of characteristics included 
in this study due to the combination of significant aspects in this case study.  A smaller case study will 
be used for the experiment to compare the results for future work. 

The final threat to validity comes from the study's statistical analysis. The best values from the 
experiment were used in the study's statistical analysis, not the mean values. As a result, it is possible 
that the meta-heuristic algorithm's random generation led to the best result by accident, which could 
affect the conclusion of this study. 

 
5.  Discussion 

 
The Friedman Test [8] has been applied in this study to check whether the differences between 

all these four algorithms are statistically significant or just a matter of chance. By using a confidence 
level of 95% (p-value under 0.05) as shown in Table 10.  According to Friedman’s null hypothesis, all 
the strategies are equivalent, so a rejection of these strategies shows differences in the performance 
of all the strategies. The null hypothesis is rejected if the Friedman statistic exceeds the critical value. 
It can be concluded that the results obtained are significant, and there are differences between each 
of the algorithms and CIT.  It is statistically proven that these experimental results are valid.  

 
Table 10 
Friedman test for Table 8 
Friedman Test Conclusion 
Degree of freedom = 3, 
a = 0.05 
Critical value = 0.56415 
Friedman statistic (c2) = 2.04 

2.04 > critical value, reject Ho 

 
Based on the findings, it helps to answer RQ1. It can be concluded that the best meta-heuristic 

algorithm is the GA as from the nine FMs; seven of them show the best optimization results by using 
the GA. Another two FMs show best results for Ant Colony Optimization and Cuckoo Search. The two 
FMs have number of features 11 and 10 compared to the other seven, which are 23, 24, 22, 14, 21, 
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18 and 21. Thus, we can conclude that GA has better performance in handling the bigger FM 
compared to other algorithms. The average of the performance for each interaction strength also 
showed that GA has better performance with interaction strength of 2 to 6.  

In term of coverage, GA shows the higher coverage in most of the interaction strength for every 
single FM. This coverage has reached the ideal number, by adding the configuration in the test suite; 
it would not increase the coverage.  It shows that the coverage of the configuration for the case study 
will be lower when the reduction is bigger because the number of reductions affected the coverage.  
As mentioned earlier, the metric should be higher coverage with low number of configurations. It is 
not appropriate to evaluate based on the total reduction only as the coverage play an important role 
to ensure the quality of the system that we test.  For instance, if the reduction rate is high but the 
coverage is low, it may leave out critical configurations that need to be evaluated, in which could 
affect the product's quality. 

Concerning RQ2, the combinatorial interaction strength t = 5 results in higher coverage rates than 
other strengths. It has been established that stronger interactions lead to better optimization 
outcomes [46]. Based on the experiment results, six of the FM show high coverage in the interaction 
strength t = 5, while one for interaction strength t = 4, and another two for interaction strength t = 3. 
For the interaction strength t = 6, the coverage is the lowest among all interaction strengths as the 
reduction of configuration is quite a big number of it. Most of the results show that the coverage is 
only at 0.5, which means half of the configurations. This is because of the explosion of the 
configuration number in the interaction strength t = 6, the optimization reduces almost half of the 
configuration. The average coverages between 5 and 6 interaction strengths reveal huge variations. 
Even though the number of configurations in the interaction strength t= 6 is higher than the 
interaction strength t= 5, it is crucial to focus on the coverage as insufficient test coverage will result 
in poor of system performance when delivered to the market. The higher the number of interaction 
strengths will give the better performance, but it is enough to do testing in the optimal strength to 
reduce the number of the test suite and the time to deliver the product to market as we have 
achieved the higher optimization coverage. Thus, the t-way = 5 gives an optimal number of the test 
suite and sufficient coverage for the configuration that needs to be tested.  

 
6. Conclusion and Future Work 

 
One of the main problems of SPL testing is the explosion combination of features number to be 

tested. This paper has identified four optimization algorithms that have mostly been used for 
optimizing the number of test suites for SPL testing.  An experiment has been conducted to compare 
the performance of the four algorithms with different interaction strengths, t. The result has been 
evaluated based on the number of test case reductions and coverage. Based on the findings, it can 
be concluded that we cannot only consider the reduction rate; as the higher the reduction, the lower 
the test case coverage. The coverage should also be in consideration to get the best number of test 
cases for the testing process. By using the optimal Pareto set to get the optimum number of coverage 
and from the results it can be concluded that the Genetic Algorithm has the best performance 
compared to the other three algorithms, with interaction strength t = 5 for the optimum coverage.  

This study suggests the best meta-heuristic algorithm that can be used in SPL testing optimization 
and the best interaction strength that satisfies the reduction number of the configuration and 
maintains high coverage for the configuration. By applying the interaction strength, t = 5, the 
optimum number of configurations with high coverage can be achieved. Therefore, it can help 
software testers use the most appropriate algorithm and combinatorial interaction strength based 
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on the optimum feature coverage for the SPL testing process. Besides, it reduces the time and cost 
of testing.  

For future work, this study will be taking data redundancy into consideration. Reducing test 
redundancy also can significantly reduce the time and cost of testing while still ensuring software 
quality and reliability [51]. This redundancy reduction can optimize the test configuration more as it 
will ensure test configuration meet with the requirement without having unnecessary repetition.  
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