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Halide perovskites have shown great potential for high efficiency solar cells, owing to 
their excellent optical and electrical properties. In this work, the preliminary 
development of methylammonium lead iodide (MAPbI3) perovskite thin film and planar 
negative-intrinsic-positive (n-i-p) thin film-based perovskite solar cell were 
demonstrated. The MAPbI3 thin film was successfully prepared using the anti-solvent 
assisted “one-step” solution deposition method. Ultraviolet-Visible (UV-Vis) absorbance 
analysis on the MAPbI3 thin film indicated the presence of broad absorption over the 
visible region from 450 to 800 nm. The Tauc plot bandgap energy was determined to be 
1.535 eV. Atomic force microscope (AFM) imaging evidenced a uniform and smooth 
perovskite film with an average grain size of 90 nm and a root-mean-square roughness 
of 3.3746 nm. The current-voltage (I-V) curve of the perovskite solar cell demonstrated 
a linear relationship and subpar photovoltaic performance, revealing the need for 
further investigations and improvements in the design and fabrication process of the 
solar cell. 
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1. Introduction 
 

Perovskite solar cells (PSCs) are widely utilised and known as the emerging class of 3rd generation 
solar cell technology [1]. In recent years, researchers have gained tremendous interest in PSCs due 
to their high-power conversion efficiency (PCE), reaching as high as 25.7% [2,3] comparable to 
commercialised crystalline silicon-based solar cells. The PSC device structures are mainly classified 
into two major categories, which are planar and mesoporous structures that correspond to the 
structures without and with mesoscopic metal oxide scaffolds, respectively. Furthermore, these two 
structures are further divided into negative-intrinsic-positive (n-i-p) “regular” and positive-intrinsic-
negative (p-i-n) “inverted” types, depending on which direction the light radiates on the solar cell. 
Thus, in the n-i-p structure, the light is incident through the electron transport layer (ETL) side. In 
contrast, in the p-i-n structure, the light is incident through the hole transport layer (HTL) side. 

 
* Corresponding author. 
E-mail address: pllow@mmu.edu.my 
 
https://doi.org/10.37934/araset.36.1.7482 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 36, Issue 1 (2024) 74-82 

75 
 

In PSCs, they typically utilise perovskite material, which is an organic-inorganic metal halide 
compound, while acting as the active layer of the device to absorb solar radiation. Subsequently, 
electron-hole pairs are generated following photoexcitation of the perovskite layer. The created free 
charge carriers, electrons, and holes will then be transported to the respective electrodes via ETL and 
HTL, respectively. Hence, a photocurrent in the outer circuit of the device is produced when the two 
electrodes are connected. 

The perovskite materials can be represented in a general formula of ABX3, where A is an organic 
cation (methylammonium, MA (CH3NH3

+) or formamidinium, FA (HC(NH2)2
+)), B is a metal cation 

(Pb2+, Sn2+, Cs2+, Cd2+ or Bi3+), and X is a halide anion (I-, Br- or Cl-), yielding various types of perovskite 
materials, such as MAPbI3, FASnI3, MASnBr3, and FA3Bi2I9. The lead (Pb) -free perovskite materials (Sn 
and Bi -based halide perovskite) and antimony-based perovskite-like materials (MASb2I9 and 
Cs3Sb2I9) are potential candidates for low-toxicity PSC applications [4-7]. The perovskite material has 
a characteristic cubic lattice-nested octahedral layered crystal structure, which results in remarkable 
impressive optical, thermal, and electromagnetic properties [8-10].  

The perovskite absorber layer can be fabricated via several different approaches. Typically, the 
“one-step” solution deposition technique [11,12] consists of a mixture of BX2 and AX from common 
organic solvents (GBL, DMF, DMSO) and spin-coating the precursor over the ETL-coated transparent 
conductive oxide (TCO) glass substrate. Alternatively, in the “two-step (sequential)” solution 
deposition technique [13,14], the BX2 precursor is initially spin-coated. Then, the substrate was 
sequentially exposed to a solution of AX either by dip-coating or spin-coating to induce the solid-
liquid reactions. Aside from the solution synthesis methods, the one-step and two-step deposition 
routes can also be produced using vapour deposition techniques (thermal evaporation, pulse laser 
deposition, vapour-assisted solution process) [15-18]. 

In addition to the variousness of the perovskite materials, numerous materials have been utilised 
for the other constituent layers of the PSC, such as TiO2, ZnO, and Al2O3 for ETL [19], and both organic 
materials (spiro-OMeTAD, PEDOT: PSS, PTAA) and inorganic materials (CuO, CuSCN, CuI, NiO) for HTL 
[20-23]. For back electrode, metals (Au, Ag, Al) or carbon [24] were commonly utilised. Noticeably, a 
wide variety of PSC architectures, material sets, and fabrication techniques could be employed in 
conjunction with perovskite. Nevertheless, to enable the commercial production of the most cost-
effective PSC devices, a simple device architecture and easy fabrication procedures are required. In 
this work, the preliminary development of methylammonium lead iodide (MAPbI3) perovskite thin 
film and planar n-i-p thin film-based PSC with the device structure composed of FTO/TiO2/MAPbI3 
perovskite/CuI/C (as illustrated in Figure 1) are demonstrated.  

 

 
Fig. 1. Device structure of perovskite 
solar cell in this work 
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The remainder of this paper is structured as follows: Section 2.1 details the methodology 
employed to synthesise the MAPBI3 perovskite thin film. Section 2.2 describes the fabrication 
procedures used to develop the PSC device, and Section 2.3 shows the types of sample 
characterisations that were conducted. Section 3 presents the experimental results and discussions, 
specifically analysing the optical absorption and bandgap of the film in Section 3.1, the surface 
morphology and average roughness of the film in Section 3.2, and the current-voltage (I-V) 
characteristics and photovoltaic (PV) performance of the device in Section 3.3. Section 4 closes with 
a conclusion.  

 
2. Methodology  
2.1 Synthesis of Perovskite Thin Film 

 
The MAPbI3 perovskite thin film was synthesised on top of a pre-cleaned FTO glass substrate via 

the anti-solvent assisted “one-step” solution deposition technique. The MAPbI3 precursor solution 
was prepared by mixing an equimolar ratio of methylammonium iodide (MAI) and lead iodide (PbI2) 
in dimethylformamide (DMF) solvent. The mixture was heated at 70°C until the materials were fully 
dissolved. Subsequently, the solution was filtered using a 0.45 µm PTFE filter. Then, the filtered 
precursor solution was spin-coated onto the FTO substrate. The chlorobenzene (CB) anti-solvent 
treatment was performed by drenching the CB onto the perovskite film and spinning the film. Finally, 
the perovskite film was annealed at 100°C for 20 mins. 

 
2.2 Fabrication of Perovskite Solar Cell 

 
The complete procedures to fabricate the FTO/TiO2/MAPbI3/CuI/C perovskite solar cell are 

illustrated in Figure 2.  
 

 
Fig. 2. Fabrication procedures of perovskite solar cell 
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Firstly, the ETL titanium dioxide (TiO2) precursor solution prepared via the sol-gel method was 
spin-coated onto a pre-cleaned FTO substrate, then the TiO2 film was sintered at 450°C for 30 mins. 
Subsequently, perovskite deposition and CB treatment were carried out onto the TiO2-coated FTO, 
following similar processes described in Section 2.1. Afterwards, the HTL copper iodide (CuI) solution, 
prepared by dissolving the CuI powder in a mixture consisting of CB, acetonitrile, and 4-tert-
butylpyridine (tBP), was spin-coated onto the CB-treated perovskite film. Finally, the carbon back 
electrode layer was deposited on top of the CuI film via doctor blade by supplying the carbon paste 
that contained a mixture of graphite, carbon black, ethyl cellulose, and terpineol. The final device 
was obtained upon annealing the carbon layer at 90°C for 30 mins. Note that the whole fabrication 
process was conducted under ambient conditions, and all spin-coating processes were operated at 
3000 rpm for 30 secs. 

 
2.3 Sample Characterisations 

 
The deposited perovskite thin film was characterised in thickness, optical absorbance, and surface 

morphology using a surface profilometer, ultraviolet-visible (UV-Vis) spectroscope, and atomic force 
microscope (AFM), respectively. The photovoltaic (PV) performance of the perovskite solar cell was 
measured using the solar simulator to obtain both the current-voltage (I-V) characteristics and the 
PV parameters of the device, which include the open-circuit voltage (Voc), short-circuit current (Isc), 
fill factor (FF), and efficiency (h).  

 
3. Results and Discussions 
3.1 Optical Properties of the Perovskite Thin Film 

 
The MAPbI3 perovskite thin film that has been synthesised was 100 nm in thickness, measured by 

a profilometer. Figure 3 reveals the optical absorption spectrum of the MAPbI3 film and the 
corresponding Tauc plot, (αhn)1/n as a function of the photon energy, where α is the absorption 
coefficient in cm-1 (2.303*Absorbance/Film thickness), hn is the photon energy in eV, and n is ½ as 
for a direct bandgap semiconductor. It can be observed from the absorbance spectrum that the film 
has a broad absorption over the visible range from 450 to 800 nm (the absorption edge), which 
indicates the typical characteristics of the MAPbI3 perovskite film [25-27]. Based on the point where 
the linear extrapolation of the Tauc plot intercepts the x-axis, the optical bandgap, Eg, of the film was 
calculated to be 1.535 eV. Therefore, the bandgap measured was comparable to the reported 
literature values, ranging between 1.5 to 1.6 eV [26,28,29].   
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Fig. 3. Absorption spectrum and Tauc plot of MAPbI3 perovskite film 

 
3.2 Surface Morphology of Perovskite Film 

 
Figure 4 displays the 2D and 3D topographical images of the MAPbI3 perovskite film. It can be 

observed that the film surface exhibits the common MAPbI3 morphology [26,30]. The film is well 
covered with considerably uniform spherical MAPbI3 grains with an average grain size of 90 nm, and 
the root-mean-square (RMS) roughness of the film was determined to be 3.3746 nm. The results 
indicated that the chlorobenzene anti-solvent effect could have taken place during the synthesis 
process to induce a rapid crystallisation of the perovskite, producing a smooth and homogeneous 
film [31,32].  
 

 

 

 
Fig. 4. 2D and 3D 1.5µm×1.5µm AFM images of MAPbI3 perovskite film 

 
3.3 Photovoltaic Performance of Perovskite Solar Cell 

 
The I-V characteristic curve of the fabricated perovskite solar cell (FTO/TiO2/MAPbI3/CuI/C) is 

demonstrated in Figure 5. Meanwhile, the photovoltaic (PV) parameters are listed in Table 1. Instead 
of getting a standard concave solar cell I-V curve (nearly no change of current at a small voltage and 
a sharp decrease in current at a certain point of voltage) [33], the curve obtained indicated a straight-
line (linear) I-V characteristic with exceptionally low PV performance of Voc = 0.27 V, Isc = 1.82 mA, FF 
= 0.25, and h = 0.12%. The results implied that the device has very high series resistance (Rs) due to 
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inferior charge transport behaviours in the absorber, charge-collecting layers and/or contact 
electrodes, and very low shunt resistance (Rsh) due to the presence of leakage paths (pinholes) in the 
device [34, 35]. The high Rs reduced both the Isc and FF; on the other hand, the low Rsh reduced the 
Voc and FF [36]. Consequently, low efficiency was obtained. 
 

 
Fig. 5. I-V characteristic curve of perovskite solar 
cell 

 
Table 1 
The photovoltaic performance of perovskite solar cell  

Device structure Open-circuit voltage, Voc 
(V) 

Short-circuit current, Isc 
(mA) 

Fill factor, 
FF 

Efficiency, h 
(%) 

FTO/TiO2/MAPbI3/CuI/C 0.27 1.82 0.25 0.12 
 
The results clearly showed the necessity to re-examine the existing design and the fabrication 

processes of the perovskite solar cells. More importantly, each layer prior to fabricating the stack 
layers of the device would need to be optimised to achieve improved PV performance. Besides, it 
would be better to conduct the fabrication process in a controlled environment, such as an inert gas-
filled glove box, since the perovskite materials are extremely sensitive to moisture and oxygen 
[37,38]. Furthermore, the final device should be encapsulated to protect it against the intrusion of 
external agents for longer operational stability [39]. 

 
4. Conclusion 

 
In conclusion, the preliminary development of the MAPbI3 perovskite thin film and the planar n-

i-p FTO/TiO2/MAPbI3 perovskite/CuI/C perovskite solar cell was successfully demonstrated. The as-
deposited MAPbI3 perovskite film exhibited optical properties and surface morphology that are 
comparable to those reported in the literature. On the contrary, the photovoltaic performance of the 
fabricated perovskite solar cell was inferior. It also demonstrated the characteristics of a shunted 
solar cell device. The results obtained reveal the need for many further investigations and 
improvements in the design and the fabrication processes for realizing the planar n-i-p thin film-
based perovskite solar cell. 
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