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Sound event detection tackles an audio environment's complex sound analysis and 
recognition problem.  The process involves localizing and classifying sounds mainly to 
estimate the start point and end points of the separate sounds and describe each sound.  
Sound event detection capability relies on the type of sound.  Although detecting 
sequences of distinct temporal sounds is straightforward, the situation becomes 
complex when the sound is multiple overlapping of much single audio.  This situation 
usually occurs in the forest environment.  Therefore, this aim of the paper is to propose 
a Convolution Recurrent Neural Network-Long Short-Term Memory algorithm to detect 
an audio signature of intruders in the forest environment.  The audio is extracted in the 
Mel-frequency cepstrum coefficient and fed into the algorithm as an input.  Six sound 
categories are chainsaw, machete, car, hatchet, ambiance, and bike.  They were tested 
using several epochs, batch size, and filter of the layer in the model.  The proposed 
model can achieve an accuracy of 98.52 percent in detecting the audio signature with a 
suitable parameter selection.  In the future, additional types of audio signatures of 
intruders and further aspects of evaluation can be added to make the algorithm better 
at detecting intruders in the forest environment. 
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1. Introduction 

 
Sound Event Detection (SED) is a growing research area.  It tackles the complex problem of sound 

analysis and recognition within a general audio environment [1]. In recent years, there has been a 
surge of interest in developing SED systems for environmental sound analysis. SED systems aim to 
automatically identify and classify various sound events from acoustic recordings, such as bird calls, 
animal vocalizations, and human activities. Forests are especially important for sound event 
detection because they house various sound sources and provide critical habitats for many species. 
On the other hand, the noisy and complex acoustic environment of forests poses significant 
challenges for SED systems. 
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Several ideas on security surveillance [2], wildlife monitoring [3], and audio indexing and 
classification [4]. Locating and classifying sounds audio, determining distinct sound event 
occurrences, and creating a description for each circumstance are processes in SED [1]. SED can 
detect many sounds from audio samples from the general classification problems that allocate 
sounds to each class. However, the difficulty of SED changes according to the task assigned.  In a 
more complex situation, sound event detection in several overlapping sounds in single audio typically 
occurs daily.  An audio of a street could contain multiple sound sources, such as footsteps, people 
talking, and car passing. All those sounds can be identified as a mixture of events or polyphonic SED 
[5]. In a real-life situation, audios contain variety of multiple sounds. There have been many attempts 
established for SED classification in past years, including CNN [6,7], Support Vector Machine [8], 
Random Forest (RF) [9], Masked Conditional Neural Network [6], Convolution Recurrent Neural 
Network (CRNN) [1,3,10]. CRNN has garnered more attention in recent SED studies. 

Research has used real data from the forest for intruder detection, vehicle movement detection 
with MFCC and K-Nearest Neighbour to assist in reducing illegal entry in the forest, tree cutting, 
chainsaw, hatchet, ambiance, and vehicle sound [9,11]. RF and Linear Predictive Coding (LPC) work 
in the surveillance intrusion system performed up to 86 percent accuracy in detecting intrusion in 
the forest [12]. This work is based on vehicle movement detection with MFCC and K-Nearest 
Neighbour to reduce illegal entry into the forest. However, the accuracy of sound detection should 
be further improved. Existing SED systems for forest environments rely on traditional machine 
learning algorithms that require hand-crafted features and are limited in capturing the acoustic 
environment's complexity and dynamic nature. To address these limitations, we propose a novel 
approach for detecting forest sound events based on convolutional recurrent neural network-long 
short-term memory (CRNN-LSTM). The CRNN-LSTM deep learning model learns local and temporal 
features from acoustic data by combining the strengths of convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs). This study aims to improve the performance of SED systems in 
forest environments and develop a more accurate and efficient method for sound event detection. 

As a result, this paper aims to investigate CRNN-LSTM using real data from the tropical forest 
environment. SED addresses the complex problem of sound analysis and recognition in an audio 
environment. The process entails localizing and classifying sounds, primarily to estimate the start and 
end points of individual sounds and to describe each sound. SED capability is determined by the type 
of sound. Consequently, the research work makes three contributions: 

 
i. Creating a novel CRNN-LSTM model for detecting forest sound events: We present a deep 

learning model that can extract local and temporal features from acoustic data collected 
in forests. Our model can learn the intricate relationships between sound events and their 
temporal variations. 

ii. The proposed CRNN-LSTM model is evaluated on a new dataset: We collected a unique 
dataset of forest sounds and evaluated our model's performance on it to validate its 
effectiveness. On this dataset, our evaluation results show that our proposed model 
outperforms state-of-the-art SED systems. 

iii. Analysis of learned features and insights: We thoroughly examine the available features 
and insights obtained from our proposed CRNN-LSTM model. Our research sheds light on 
the distinguishing characteristics that contribute to accurately detecting various sound 
events in forest environments. 
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The remainder of this paper is structured as follows. Section 2 focuses on the research 
background information. The third section goes over the materials and methods. Sections 4 and 5 
contain the results and discussion. Section 6 contains the conclusion. 

 
2. Research Background 

 
CNN is one of the many deep-learning algorithms that can take a 2D input and learn and 

differentiate the input from others [13]. It is due to its ability to extract spatial features such as edges, 
distribution of color in the image, or data that contains spatial properties, which makes it a great 
option in data classification [14]. RNN is another variation of a neural network that is a bit different 
from others. A neural network will take a fixed input vector size that limits its use when dealing with 
an input series without a pre-determined size Convolutional recurrent neural networks for music 
classification [15]. However, RNN is designed to take a series of entries without a pre-determined 
size.  Although a neural network can be configured to call more than once, the input series means 
that one part of the input influences the other. Otherwise, it will just be many inputs, simply. RNNs 
can remember what past outputs have learned and affects current entry according to the past. 

CRNN is a combination of CNN and RNN. CRNN starts with CNN, followed by RNN. In CRNN, the 
convolution layer acts as feature extraction while the recurrent layer integrates the output from the 
convolution layer, thus providing context information [5]. The last layer of CRNN, in which all layers 
are fully connected, produces the probability for each class available.  CRNN also can eliminate the 
limitation that occurs in both CNN and RNN. For instance, CRNN tends to use less memory than CNN 
since the RNN layer in CRNN uses the global structure for summarization rather than the local 
structure in CNN [6]. CRNN algorithm can also tag multiple classes without dropping the algorithm's 
accuracy.  Therefore, CRNN can be a viable option in SED as it can utilize the advantages of both CNN 
and RNN while eliminating some of the limitations that both CNN and RNN have. CRNN uses the CNN 
local feature extraction capability, and the RNN temporal summarization would lead to an efficient 
and effective model than standard CNN or RNN on its own [16]. However, CRNN has its limitation 
and problem which these are due to its architecture; the hidden states in CRNN need to be calculated 
one by one [17]. 

CRNN model can be used as a multi-scale squeeze-excitation using a pyramid model to help 
differentiate the sound events with different durations and recalibrate the channel-wise spectrogram 
[18]. The model will be influential towards data that needs to be more labeled and labeled.  
Therefore, by allowing SED to be implemented, these kinds of data can still achieve the desired result.  
This makes CRNN a versatile model that can be used for different data types. n a conventional CRNN, 
a high echo value sound is often underestimated. Thus, this makes it hard to be detected by the 
model. Figure 1 illustrates the difference between conventional CRNN and CRNN-LSTM, where the 
first line is the conventional CRNN, and the second line is CRNN-LSTM [19]. In Figure 1, the CRNN-
LSTM model has a better high echo detection than conventional CRNN. The underestimation of the 
high echoes produces a trend that makes it disappear from the source when running the model. 
Because the gates in CRNN are created independently on input, hidden state, and sum fusion, this 
creates a situation in which the input and the hidden state do not interact to identify and preserve 
important information.  
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Fig. 1. The instance of radar echo map location 

 
In the architecture of CRNN, it has difficulty capturing long-term dependencies.  TCN can 

overcome this issue by utilizing dilated convolutional [20]. Compared to conventional CNN, TCN 
allows it to process the input in a parallel sequence rather than wait for the output from the previous 
time step in conventional CNN. This will help reduce computation time when using TCN in the 
architecture, as it can simultaneously process the input and output from the previous step. 

 
3. Material and Methods 

 
This section presents the materials and methods used in the evaluation. Figure 2 shows the three 

main phases, namely feature extraction, model construction, and evaluation settings. The former 
starts with the preparation of datasets. The dataset was based on the collection of 136 audio samples 
in tropical forests in Malaysia, as shown in Table 1. Some of the datasets were elaborated in [12]. 
This article focuses on six sound categories: chainsaw, machete, car, hatchet, ambiance, and bike.  
Next, the feature extraction phase and model construction are explained in A and B, respectively.  
Finally, evaluation settings are presented. We use the implementation of CRNN with LSTM together 
with the Tensor framework. 

 

 
Fig. 2. Sound event detection architecture for CRNN-LSTM 
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Table 1 
Real audio samples in tropical forests in 
Malaysia 
Sound class Train Test Total 
Chainsaw 35 9 44 
Machete 13 3 16 
Car 6 2 8 
Hatchet 35 9 44 
Ambiance 10 2 12 
Bike 10 2 12 

 
3.1 Features Extraction 

 
MFCC works by trying to copy the human ears in detecting sound. By making the audio sound 

more compatible with human ears' capability, we can eliminate and its variants due to the different 
hearing sensitivity between human ears and the audio recording equipment. We use MFCC as 
recommended  [11]. It is calculated by defining the Short-Time Fourier Transform from the curves of 
individuals.  A brief of the steps for MFCC is presented in the following explanations: 

 
i. A/D conversion, Audio clips will be sampled and digitized, converting from an analog signal 

into discrete space.   
ii. Pre-emphasis involves boosting the high frequency of the audio.  

iii. Windowing, the audio waveform is sliced into sliding frames.  However, the edge of the 
frames cannot simply be sliced because it will create noise in high frequency due to 
sudden-fallen amplitude.  Therefore, it is better to slice them when the amplitude 
gradually drops [15].  

iv. Discrete Fourier Transformation function could extract the frequency domain of the 
information. 

v. Mel filter bank, the audio will be scaled based on mel frequency, and bark frequency since 
the hearing perception of humans and the measuring equipment might differ.  

vi.  The log output of the mel filterbank is logged out to reduce acoustic variants that are not 
important to audio recognition.  

vii. Discrete cosine transform is used to obtain the MFCC coefficient c(n). 
viii.  Dynamic features, MFCC has an overall of 39 features.  

ix.  Cepstral mean and variance normalization, the features will be normalized by finding its 
mean and dividing it by its variance.  It will allow the values to be adjusted to 
countermeasure the variance in the data. 

 
3.2 Modeling 

 
In this phase, the model uses CRNN architecture to detect intruders' sounds in a forest 

environment. Three steps are involved as demonstrated in Figure 3. The first step involves the design 
of 1D CNN components, the second step on RNN-LSTM architecture design and the final step is the 
FC layer design and post-processing.  
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Fig. 3. Steps for 
CRNN-LSTM Model 
Construction 

 
In 1D CNN, the loss function used in this study was sparse categorical entropy and adaptive 

momentum (ADAM). The learning rate of 0.0001 was used in the architecture.  The CNN used in this 
study contains five components. They are the convolutional layer, BN, activation layer, and drop out.  
The 1D CNN used in this study had three layers. Convolutional was performed on the input signal in 
the kernels or filters layer. The number and size of kernels play a significant role in capturing relevant 
features from the signal. BN helps improve the reliability of the neural network. It works by 
normalizing the output from the previous layer by subtracting the batch mean and by dividing it by 
the batch standard deviation [18]. For the activation layer, we used Rectified Linear Unit [5]; 
meanwhile, in the pooling layer, the detected features were sampled down into the size set.  The 
max-pooling was applied at each output to extract representative values.  

For RNN-LSTM, the features collected from the Convolutional layer were fed to the RNN-LSTM 
layer. This research used two RNN layers, each containing 64 LSTM units using unidirectional 
backward RNN-LSTM. In both RNN layers, we used hyperbolic tangent (tanh) and a dropout rate equal 
to 0.3 for all layers. The features received from RNN-LSTM were added to the FC layer.  BN and ReLU 
were applied similarly in the 1D CNN layer. A sigmoid unit was receiving the forwarded updated 
features in which the output represented the possibility of existing of the chosen sound event. 
Therefore, the values of possibility for every frame in the mel-spectrogram were calculated. The 
entire probability of the audio sequence audio was obtained using the sliding assemble method [18].  

 
3.3 Evaluation 

 
The model was tested and evaluated with different parameters, such as different epochs, batch 

sizes, filter sizes, and LSTM layers, to achieve the best performance. Five experiments were 
conducted to determine the best setting for the model to obtain the best performance.  Table 2 
shows the experimental setup for five experiments.  
 

 Table 2  
 Parameter settings 
Type of experiment Number of epochs Batch sizes 1st CNN layer 2nd CNN layer LSTM layer 
Experiment 1 50, 100, 150 32 32 32 64 
Experiment 2 100 16, 32, 64 32 32 64 
Experiment 3 100 32 16, 32, 64 32 64 
Experiment 4 100 32 32 16, 32, 64 64 
Experiment 5 100 32 32 32 32, 64, 128 
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Accuracy and loss were taken into consideration as training phase performance indicators in 
order to select the best model for supervised learning. The model will perform better if its accuracy 
is raised. In order to calculate the accuracy, use Eq. (1). 

 
Accuracy =  Number of correct prediction / total number of prediction      (1) 

 
Accuracy and loss were considered as training phase performance indicators to select the best 

model for supervised learning. The model will perform better if its accuracy improves. In order to 
calculate the accuracy, use Eq.(1).  

 
Accuracy =  Number of correct predictions / total number of predictions      (1) 

 
A loss is a penalty for making an incorrect prediction. In other words, the loss is a number that 

indicates how inaccurate the model's prediction was on a single example. The loss is zero if the 
model's prediction is perfect; otherwise, the loss is more significant. Assuming a sequence prediction 
task with LSTM and a sequence of accurate labels (y_1, y_2, ..., y_T) and corresponding predicted 
probabilities (p_1, p_2, ..., p_T) from the LSTM, the cross-entropy loss can be calculated as in Eq. (2). 

 
L = -1/T * Σ(y_t * log(p_t))             (2) 
 
where: 
T is the length of the sequence 
y_t is the true label at time step t 
p_t is the predicted probability for the true label at time step t 
log represents the natural logarithm 
 
4. Results for CRNN-LSTM 

 
Results and findings obtained from the audio recognition of the audio data that represent sounds 

of intruders in the forest environment is explain.  The experiment conducted using CRNN-LSTM with 
MFCC features extraction method. Figure 4 (a)-(c) shows the feature extracted from a 5-second 
sample of a chainsaw activity.  Figure 4(a) is the MFCC extracted sample.  The first derivative of MFCC 
and the second derivative can be seen in Figure 4 (b) and (c). In both results, the MFCC result was 
further derived to get the real value coefficient which was then saved into a JSON file for storage. 

 

 
(a) The result of MFCC gain visualizes 
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(b) The first derivative of MFCC 

 
(c) The second derivative of MFCC 

Fig. 4. MFCC Extractions, first and second derivatives  

 
4.1 Results for Experiment 1 based On the Number of Epochs 

 
During training, the number of epochs determines the number of times the model will iterate 

over the entire dataset. Selecting the appropriate number of epochs to balance underfitting (the 
model hasn't learned enough) and overfitting (the model memorizes the training data) is crucial. Too 
few epochs may result in underfitting, in which the model fails to learn the underlying patterns and 
generalizes poorly to new data. An excessive number of epochs can result in overfitting, in which the 
model becomes overly specialized in the training data and performs poorly on new, unseen data. The 
optimal number of epochs depends on the task's difficulty, the training set's size, and the neural 
network's architecture. It is frequently determined through experimentation and monitoring the 
model's performance on a validation set.   

The model was trained with 50, 100, and 150 epochs. The results are depicted in Table 3. Overall, 
an optimized number of epochs could have resulted in better accuracy. The accuracy of the test 
increased when the number of epochs used for training increased.  The lowest accuracy was obtained 
for 50 epochs with 92.27 percent. Meanwhile, the highest accuracy obtained from the experiment 
was 98.16 percent when it was trained with 100 epochs.  Furthermore, an optimized number of 
epochs can result in a better loss.  The highest value for the experiment occurs for 50 epochs, which 
is 0.2446. Meanwhile, the lowest loss value for the experiment is 0.0492 for 150 epochs.  Hence, it 
can be said that the loss value has shown a decrease with an optimized number of epochs. 
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 Table 3  
 Result for Different Numbers of Epochs 

Number of epochs Accuracy (%) Loss 
50 92.27 0.2446 
100* 98.16 0.0492 
150 97.94 0.0730 

 
4.2 Results for Experiment 2 based on the number of batches 

 
Batch size is the number of training examples propagated throughout the network before 

updating the model's parameters. Choosing an appropriate batch size affects both the efficiency and 
generalization of training. The model can process multiple examples in parallel, so larger batch sizes 
can facilitate faster training. This can be advantageous when working with large datasets or 
computationally intensive models. Smaller batch sizes permit more frequent parameter updates, 
which may result in better convergence and enhanced generalization. However, due to the increased 
frequency of parameter updates, very small batch sizes may result in noisy gradients and slower 
training. The optimal batch size is determined by available computational resources, the size of the 
dataset, and the nature of the problem at hand. 

In this experiment, an optimized number of batch sizes can result in the best accuracy.  When the 
number of batch sizes used to train was reduced, the test's accuracy increased.  Table 4 shows the 
results.  In this experiment, the lowest accuracy obtained was 94.12 percent for 64 batch sizes.  
Meanwhile, when the experiment was trained with 32 batch sizes, the highest accuracy gain was 
98.16 percent.  According to the results of this experiment, the model's accuracy increased with the 
most optimized batch size; a higher or lower number of batch sizes did not simply increase the 
model's accuracy.  Furthermore, the experiment's losses reflect the same as the accuracy, with the 
optimized number of batch sizes producing the lowest loss.  The experiment's highest loss was 0.2171 
when trained with 64 batch sizes, while the experiment's lowest loss was 0.0492 when trained with 
32 batch sizes.  The finding demonstrates loss value decrease with the most optimized batch size and 
increasing or decreasing the number of batch sizes will not simply increase the model's accuracy. 

 
Table 4  
Result for different numbers of batches 
Batch size Accuracy (%) Loss 
16 96.32 0.0914 
32* 98.16 0.0492 
64 94.12 0.2171 

 

4.3 Results for Experiment 3 Based on The Filter Size at The First Convolutional Layer   
 
This section demonstrates the outcomes of experiments involving varying numbers of filters in 

the initial convolutional layer.  CNNs use kernels, or filters, to convolutionally process input data. The 
depth or dimensionality of convolutional layer output feature maps depends on the number of filters. 
More filters capture more complex data patterns and features. Too few filters may limit detail 
capture, resulting in underfitting, and too many filters can complicate and slow the model. If the 
model memorizes training data, it may overfit. The number of filters depends on the task complexity, 
input data size and type, and neural network depth. This experiment's accuracy and loss are shown 
in Table 5.  In this experiment, the first convolutional layer's 16 filters achieved the lowest accuracy 
of 94.12 percent.  The experiment yielded the highest accuracy of 98.16 percent when it was trained 
with 32 filters. Additionally, it was for the initial convolutional layer. This experiment demonstrated 
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that increasing the filters in the first convolutional layer improved accuracy. Moreover, the 
experiment's losses were reduced with an optimized number of filters. When trained with 16 filters, 
the highest loss for the experiment was 0.2054 at the first layer. While training with 0.0492 loss at 
the 32 filters in the first layer resulted in the lowest loss for the experiment, the lowest loss was 
achieved with 0.0492 loss at the 32 filters in the second layer. Based on this experiment, the loss of 
the system would decrease as the number of filters in the first layer is optimized. 

 
Table 5  
Results for Different the Number of Filters in the First 
Convolutional Layer 
Number of filters Accuracy (%) Loss 
16 94.12 0.2054 
32* 98.16 0.0492 
64 96.32 0.1169 

 
4.4 Results of Experiment 4 Based on The Number of Filters in The Second Convolutional Layer 

 
This section presents the explanation of the results from the experiment of different numbers of 

filters for the second convolutional layer. Table 6 tabulates the result of different numbers of filters 
for second convolutional layer on the testing accuracy and loss of the model.  In this experiment, the 
lowest accuracy gained was 32 filters for the second convolutional layer, with 93.01 percent. 
Meanwhile, the highest accuracy gain from the experiment was 98.16 percent when it was trained 
with 64 filters for the second convolutional layer. From this experiment, the accuracy of the model 
increased when the number of filters was in the second convolutional layer. Furthermore, the losses 
of the experiment decreased when the number of filters increased. The highest loss for the 
experiment was when trained with 32 filters r, which was 0.2429.  While the lowest loss for the 
experiment was when trained with 64 filters from the second convolutional layer at about 0.0492 
loss. Based on this experiment, the loss of the model decreased with an optimized number of filters 
at the second layer. 

 
Table 6  
Result of a different number of filters in the second 
convolutional layer 
Number of filters Accuracy (%) Loss 
32 93.01 0.2429 
64* 98.16 0.0492 
128 97.06 0.0908 

 

4.5 Results for Experiment 5 Based on The Number of Filters Used in The LSTM Layer 
 
This section reports the results from the experiment of using different numbers of filters in the 

LSTM layer. Table 7 shows the result of a different number of filters in the LSTM layer on the testing 
accuracy and loss of the model. In this experiment, the lowest accuracy gained was 32 filters in the 
LSTM layer, with 93.01 percent. Meanwhile, the highest accuracy gain from the experiment was 
98.16 percent when it was trained with 64 filters in the LSTM layer. From this experiment, the 
accuracy of the system increased with an optimized number of filters in the LSTM layer. Furthermore, 
the losses of the experiment decreased with an optimized number of filters in the LSTM layer.  The 
highest loss for the experiment was when trained with 32 filters in the LSTM layer, which was 0.2429.  
While the lowest loss for the experiment was when trained with 64 filters in the LSTM layer with 0. 
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0.0492 in a loss.  From this experiment, it could be observed that the loss of the model decreased 
with an optimized number of filters in the LSTM layer. 

 
Table 7  
Result of based on the number of filters used in the LSTM layer 
Number of filters Accuracy (%) Loss 
32 93.01 0.2429 
64* 98.16 0.0492 
128 97.06 0.0908 

 
4.6 Results for CNN, CNN-RF, and RF 

 
This section presents the experiment results for CNN, Convolution Neural-Network-Random 

Forest (CNN-RF), and RF. Table 8 displays each model's testing accuracy and loss. CNN outperforms 
CNN-RF and FR in terms of accuracy, scoring 95.52 with a loss of 0.0266. However, it performs less 
well than the proposed CRNN_LSTM. 
 

 Table 8 
 Result of CNN, CNN-RF and RF 

Number of filters Accuracy (%) Loss 
CNN 95.52 0.0266 
CNN-RF Hybrid 79.69 - 
RF 72.09 - 

 
5. Discussion 

 
From the experiments, it is interesting to note that the best number of epochs used is 100, which 

has an accuracy of 98.16 percent and a loss of 0.0492. The same result is from 32 batch sizes, 32 
numbers of filters in the first convolutional layer, 64 numbers for the second convolutional layer, and 
64 numbers of filters in the LSTM layer. Compared to the previous result with RF, CNN and CNN-RF 
using similar datasets, CRNN-LSTM has significantly improved performance.  It is interesting to note 
that all the experimental results of CRNN-LSTM outperformed RF, CNN, and CNN-RF.  We also 
compare with CNN using different convolutional and fully connected layers. The result is highlighted 
in Table 9.  From the CNN model configuration, the highest accuracy is 98.00 percent which is at par 
with CRNN-LSTM, but the loss value reported is a little bit higher. Regarding this, more evaluation 
metrics, such as false positives and sensitivity analysis, should be considered. 

 
  Table 9 
  Result of CRNN 

Convolutional Layers Accuracy (%) Loss 
1st 2nd 
32 32 95.52 0.0266 
64* 32 98.00 0.0602 
128 64 95.49 0.1463 

 
6. Conclusions 

 
This study offers a workable solution for the SED of real-world sound datasets from a tropical 

forest setting. Additionally, we discovered from the relevant literature that CNNs, RNNs, and CRNNs 
can deliver promising detection performance for reliable data. CNNs, RNNs, and CRNNs can deliver 
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encouraging detection performance for sound data. As a result, a CRNN-LSTM model was created 
and then evaluated using a variety of parameters, such as epoch, batch sizes, and the number of filter 
layer selections. The overall results are much more favorable than those obtained earlier. The lowest 
loss value for ambiance sound identification is 0.0492 percent, and the highest accuracy level is 98.16 
percent. More evaluation and testing on this algorithm are suggested, mainly on utilizing the various 
types of intruder sound events. Testing, which can be done on real-time data, and implementation 
in the real world could be part of future work. In addition, another hybrid algorithm, such as 
embedded with computational optimization methods, would enhance the model capability, and use 
another performance measure like a confusion matrix for a detailed performance check. 
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