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Convolutional Neural Network (CNN) is a Deep Learning algorithm that can take in an 
input signal, assign importance (learnable weights and biases) to various aspects of the 
signals and distinguish between them. The CNN algorithm trains a sample and obtains 
a CNN model capable of identifying different fault types to analyse transmission line 
faults. Fault analysis methods typically require feature extraction to synthesise the 
relevant and non-redundant information from the raw signals. However, these 
traditional methods are time-consuming and inconsistent, and they can produce biased 
results due to the reliance on human expertise and experience. Hence, this research 
focused on developing an intelligent system for fault detection in a three-phase 
transmission line using CNN. This research aims to develop a CNN model for automatic 
fault detection in a three-phase transmission line and evaluate the performance of the 
CNN model for analysing transmission line faults. The three-phase transmission line 
model was developed using MATLAB-Simulink. CNN was implemented to detect 
transmission line faults. The performance of CNN based on the signal segmentation 
approach was evaluated through three different types of data: ideal and noise-added 
signal data. The simulation result shows good performance accuracy of 99.11% for the 
ideal case, 99.36%, and 99.39% for 20 dB and 30 dB noise-added cases, respectively. 
The result shows that a higher noise value in transmission line fault current could 
increase the performance of CNN. In conclusion, the utilisation of CNN based on a signal 
segmentation approach for transmission line fault analysis has showed promising 
performance. 
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1. Introduction 
 

Deep learning and artificial intelligence techniques have recently received much attention in 
numerous sectors, and their applications in machine fault diagnostics are rapidly expanding [1]. In 
line with that, the Convolutional Neural Network (CNN) is emerging as a dominant method within 
artificial neural networks, especially in pattern recognition [2-4]. A CNN (ConvNet/CNN) is a Deep 
Learning algorithm that can take in an input image, assign importance (learnable weights and biases) 
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to various aspects or objects in the image and differentiate one from the other. The pre-processing 
required in a ConvNet is much lower than in other classification algorithms. CNNs have witnessed 
greater success by employing automated feature extraction and minimum signal-processing for fault 
diagnosis [2]. The transmission line is a long conductor with a special design (bundled) to carry a bulk 
amount of generated power at very high voltage from one station to another as per variation of the 
voltage level. Fault can be defined as the abnormal condition of the electrical system, which damages 
the electrical equipment and disturbs the normal flow of the electric current. 

Feature extraction is commonly used in fault detection and diagnostic approaches to generate 
useful and non-redundant information from raw signals. Transmission line problems often contain 
important fault information within their current waveforms. Consequently, various techniques have 
been introduced to analyse these specific waveforms. However, picking out the finest attributes 
demands expert proficiency and could be extremely particular. Feature selection algorithms can be 
used to extract useful sets of features. Feature extraction increases the computational load of the 
diagnosis process and necessitates the availability of existing information before it can be applied to 
new systems. The transmission line fault-diagnosis algorithms in three-phase transmission lines have 
evolved similarly [5]. As discovered in many previous studies, traditional diagnostics consist of three 
stages: hand-crafted feature design, feature extraction and model training [3,6]. The transmission 
line fault diagnosis using classical methods involves additional processes. It requires complex signal-
processing and feature extraction abilities. However, only professional and experienced persons are 
able to extract the feature [1]. There is no established theory to guide humans in selecting the right 
deep learning tools as it requires knowledge of topology, training method and other parameters. As 
a result, it is challenging for inexperienced individuals to adopt feature extraction. It requires a large 
amount of data to perform better than other techniques. Traditional fault diagnostic approaches rely 
heavily on traditional signal characteristics such as mean value, standard deviation, and kurtosis. 
Notwithstanding, some features may not be helpful in the detection process of faults in transmission 
lines. Signals still carry much information humans do not fully use [7]. Conventional fault detection 
requires much larger datasets with many more features. Thus, it takes a longer time to train the 
algorithm and more memory to work with data structures, leading to low fault detection accuracy 
[1]. 

To overcome this, several efforts have been made to create advanced approaches for extracting 
features indicative of fault progression and the corresponding machine-learning algorithms. The task 
of fault detection is completed prior to the fault location. With fault detection, the variations of 
electrical signals are commonly used as the startup criteria, and the if-then conditions can achieve 
the fault detection task. For the fault-location methods, Bayesian networks [8], expert systems [9], 
Petri Nets [10], fuzzy logic [11], and analytical models [12] are commonly cited in recent decades. 
However, these techniques still have certain drawbacks [13]. Out of these options, CNN has attracted 
more interest because of its specific local shared weights arrangement, which offers a considerable 
computational benefit. Chen et al., [5] proposed combined fault location and classification to 
diagnose power transmission line faults with integrated feature extraction. Han et al., [13] presented 
fault diagnosis of power systems using visualised similarity images (VSI) and improved convolution 
neural networks (ICNN). Paul et al., [14] developed fault classification in transmission lines using 
wavelet and CNN. Jamil et al., [15] also suggested fault detection and classification in electrical power 
transmission systems using artificial neural networks. Benson et al., [16] presented a modified CNN 
for detecting faults during power swings in transmission lines. Kim et al., [17] implemented CNN for 
gear fault diagnosis based on a signal segmentation approach. CNNs overcome the shortcomings of 
conventional expert systems and reduce reliance on prior expert knowledge [13]. The main 
advantage is that it allows minimal engagement of signal-processing and enables automated 
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extraction of optimal features that directly represent the fault type of a three-phase transmission 
line system [18]. Compared with the traditional methods, the proposed CNN-1D exhibits quick and 
accurate fault detection with better performance [19]. 

Previously, the accuracy of the CNN model was most commonly checked via cross-validation using 
data for normal and faulty conditions, in which a portion of the data is arbitrarily chosen for training 
and the remaining for testing. Most of the reported data had outstanding accuracies, suggesting its 
potential for fault diagnosis. However, the performance may not be the same in practice for the 
transmission line fault since there might be noise in the three-phase transmission line fault. 
Furthermore, the fault for the test may appear at different locations with different fault types from 
those of the training. To date, CNN studies in transmission line fault diagnostics have never taken this 
into account, which is a significant concern in terms of practical application. To solve this issue, this 
paper offers a novel technique that involves segmenting the original signal into those at each fault 
and unfaulted transmission line segment. Subsequently, the CNN is implemented for fault detection. 
This research aims to develop an intelligent system for fault detection in three-phase transmission 
lines using CNN. The objectives are to model a three-phase transmission line for fault signal 
generation using MATLAB-Simulink, to develop a CNN for automatic fault detection in three-phase 
transmission lines and to evaluate the performance of the proposed method using accuracy and FI-
score. The motivation here is to ensure that the input data is provided appropriately so that the type 
of transmission line does not influence the fault information. 

This paper proposes a CNN model for diagnosing three-phase transmission lines based on signal 
segmentation. This research includes 1D-CNN, a three-phase transmission line fault model, fault 
analysis, intelligent system development and fault types. This study focuses on the application of 1D-
CNN (1D-CNN) in three-phase transmission line fault detection. The 1D-CNN is proposed as this 
architecture has successfully processed the transmission line signal and achieved better accuracy 
than other methods. Moreover, fault detection is the first and the most important part of all three 
parts of fault analysis. The fault detection analysis will influence the outcome of fault location and 
fault classification in transmission lines. Therefore, this research emphasises the dominant part of 
fault analysis: fault detection. The detected faults were classified into faulted and unfaulted 
transmission lines. There are two main types of faults: series (open conductor faults) and shunts 
(short circuit faults). For the system development, a Simulink Model for three-phase transmission 
line and 1D-CNN(1D-CNN) architecture was developed for medium distance transmission line system. 
The simulations were performed using MATLAB and Simulink to obtain all the results related to fault 
detection.  

CNN, which was the dominating technique in the field of image and voice recognition, has proven 
enormously effective in a variety of practical applications. Convolutional networks are neural 
networks that utilise convolution, a linear operation, instead of ordinary matrix multiplication in at 
least one of its layers. The intention behind CNN's design is to leverage two major advantages. First, 
CNN is relatively easier to train and has fewer parameters to learn than the traditional fully connected 
neural networks, which have more hidden layers. Second, because of the unique benefit of 
convolution operation over 2D space, CNN is ideal for two-dimensional (2D) picture inputs. CNN 
usually consists of two parts. One is the feature extractor, which learns features from raw data 
automatically. The other is a trainable, fully connected multi-layer perceptron (MLP), which performs 
classification based on the learned features from the previous part. Feature extractor consists of two 
layers: convolutional and subsampling. The former convolutional layer has a number of filters called 
learnable kernels, which involve the previous layer's feature maps with filters and are activated by 
the activation function to form the output feature map. The process of convolutional layers can be 
expressed as follows 
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𝑥𝑗
𝑙 = 𝑓 (∑ 𝑥𝑗

𝑙−1 ∗ 𝑘𝑖𝑗
𝑙 + 𝑏𝑗

𝑙
𝑖∈𝑀𝑗

)            (1) 

 
where 𝑀𝑗 represents a selection of input maps; 𝑙 is the 𝑙𝑡ℎ layer in a network; 𝑘 is a 𝑆 × 𝑆 matrix, 

where 𝑆 is the size of convolutional kernels; 𝑓 is an activation function such as the hyperbolic tangent, 
sigmoid, or rectified linear unit (ReLu) function. The latter subsampling layer, also known as the 
pooling layer, replaces the output of the filter with a summary statistic of the nearby outputs. It 
makes the output less sensitive to the small translation of input data and helps to reduce the 
resolution of output from the convolutional layers. The pooling function can be max, average, 𝐿2 

norm, or the weighted average pooling within the rectangular pooling block. The most commonly 
used function is the max pooling, which can be computed as follows 
 

𝑃𝑗
𝑙 =

𝑥𝑗
𝑙∈ 𝑆

𝑚𝑎𝑥  𝑥𝑗
𝑙               (2) 

 
where 𝑃𝑗

𝑙  is the output of max pooling layer 𝑙, 𝑆 is the pooling block size, and 𝑥𝑗
𝑙 is the output from 

the convolutional layer. Once the feature extractor is established, fully connected Multi-layer 
Perceptron (MLP) and SoftMax layers are added for classification [17]. 

The rest of this paper is organised as follows: Section I explains the overview of CNN; Section II 
depicts the three-phase transmission line parameters value; Section III describes the signal 
segmentation approach based on CNN and discusses the results for ideal case and noise-added cases; 
and finally, Section IV presents the conclusion of this paper. 
 
2. Methodology  
2.1 Three-Phase Transmission Line Fault 

 
A three-phase transmission line model was developed using MATLAB-Simulink. MATLAB-Simulink 

was utilised to simulate the three-phase transmission line model, serving as the benchmark for fault 
detection topology. It encompasses relevant components of electric power systems such as 
PowerGUI, Three-Phase Source, Three-Phase PI Section Line, Three-Phase V-I Measurement, Three-
Phase Fault, Scope Voltage and Scope Current. The parameters and values used in the three-phase 
transmission line model are displayed in Table 1. 

 
  Table 1 
  Three-phase transmission line parameters value 

Parameters Value 

Length (L) 100 km 
Frequency (F) 50Hz 
Voltage rating (S1 and S2) 400kV 
Zero sequence impedance (Z0) 0.0461 + j0.8340 Ω/km 
Positive sequence impedance (Z1) 0.0154 + j0.2783 Ω/km, [0.01273 0.3864] 
Zero sequence capacitance (C0) 4.355 nF/km 
Positive sequence capacitance (C1) 13.065 nF/km, [12.74e-9 7.751e-9] 

 
In this research, the voltage rating used was 400kV phase voltage. The phase voltage should be 

multiplied to the square root of 3 to get the line voltage. Hence, a 400 kV three-phase circuit means 
that each of the 3 lines carries 230 kV. The frequency used was 50 Hz. The medium-distance three-
phase transmission line ranges from 80 km to 100 km. In this model, two values of sequence 
impedance and capacitance are used. The zero and positive sequence impedance are 0.0461 + 
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j0.8340 Ω/km and 0.0154 + j0.2783 Ω/km, [0.01273 0.3864] respectively. On the other hand, the zero 
and positive sequence capacitance are 4.355 nF/km and 13.065 nF/km, [12.74e-9 7.751e-9] 
respectively. 
 
2.2 Signal Segmentation Approach Based on CNN for Transmission Line Fault Diagnosis 
 

A signal segmentation–based approach is proposed to diagnose the transmission line condition 
independent of fault type and presence of noise. This approach is required because it is essential to 
ascertain the fault type, especially considering the vulnerability of transmission line faults to high-
noise conditions. The idea is to divide the original raw signal over a single rotation into the segments 
at each fault type. Figure 1-3 shows the flowchart of the method, which is composed of three steps: 
Figure 1(a) and 1(b) for signal processing, Figure 2 for signal segmentation, and Figure 3 for 1D-CNN 
implementation. In the first step, the signal is pre-processed by angular resampling, followed by time 
synchronous averaging (TSA) to remove the inherent random noise and average the data segments 
of successive 4 cycles over a single cycle. In the second step, which is the signal segmentation, the 
signal is further divided into segments corresponding to the interval of transmission line fault current 
using the autocorrelation function, as presented in the next section. In the third step, the 1D CNN is 
implemented to classify the fault, which is comprised of three sub-steps: 

 
i. Convolutional + pooling operations over the corresponding layers are performed to 

extract features automatically.  
ii. Fully connected layers are used for classification, and  

iii. The softmax layer is finally added to convert the result of CNN classification into 
probability. 

 
3. Results and Discussion 
3.1 Signal Resampling 
 

Resampling is the process of changing the sampling rate of an existing signal. The resample 
function is designed to convert sample rates to higher or lower. A new signal should keep all 
information contained in the original signal. It is the method of removing noise and unwanted data 
or eliminating variations that arise while acquiring a signal without evading essential information. It 
also aids in eliminating unwanted artefacts from the transmission line signal and makes it suitable for 
further processing. The signal-processing by angular resampling is implemented to pre-process the 
transmission line signal.  
 
3.2 Time Synchronous Averaging 
 

Time-synchronous averaging (TSA) is a signal-processing technique that extracts periodic 
waveforms from noisy data. It is an essential algorithmic tool for determining the condition of 
transmission line signals. Time synchronous average resamples the vibration data synchronously with 
a fault. The TSA is well suited for transmission line fault analysis, where it allows the vibration signal 
of the fault current under analysis to be separated from other signals and noise sources in the 
transmission line that are not synchronous with that signal. Once all the time averaging is completed, 
the transmission line signal correlated to the pulse signal should remain, and any uncorrelated signals 
should average towards zero. Hence, the implementation of signal-processing via time synchronous 
averaging aims to average the segment's transmission line fault into successive 4 cycles. 
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(a) 

 
(b) 

Fig. 1. (a) Signal resampling, (b) time synchronous averaging 

 
3.3 Signal Segmentation Through Autocorrelation Function 
 

The autocorrelation function (ACF) defines how data points in a time series are related, on 
average, to the preceding data points. In other words, it measures the self-similarity of the signal 
over different delay times. The signals are processed to achieve segmentation for each unfaulted and 
faulted transmission line current. To this end, the autocorrelation function is introduced, which is the 
correlation between original nth signal X(n) and its delayed signal with lag t, and is given by 
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𝑅𝑥𝑥(𝜏) = 𝐸[𝑋(𝑛)𝑋(𝑛 + 𝜏)]            (3) 
 

 
Fig. 2. Signal segmentation using autocorrelation to divide into the fault segments 

 
The interval between adjacent maxima of the autocorrelation function defines a signal segment 

over a fault. As a result, 20 segments for the output transmission line are obtained in which the 
number represents the current in the input and output transmission lines, both in faulted and 
unfaulted states. 

 

 
Fig. 3. 1D-CNN to detect the faults using the segmented data sets 

 
Figure 4-6 show the snapshots of the segmented ideal, with 20 dB noise and 30 dB noise signals 

obtained by this process, which are unfaulted and faulted, respectively. Note that the signal is 
normalised with zero mean and unit variance for standardisation. As in the ideal case signal, the signal 
in Figure 4 shows a smoother waveform compared to Figure 5 and 6, showing the distortion in the 
segmented signal. For the distortion in Figure 5 and 6, however, the difference is less noticeable, 
exhibiting a monotonic sine wave, which makes it hard to distinguish. As for the case of the 20 dB 
noise signals, as shown in Figure 5, disturbance characteristics are also visible to some degree with 
the transmission line fault current signal due to a large amount of high-frequency noise. Hence, the 
segmented data sets are applied to the CNN model to capture this difference automatically. 
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Fig. 4. Segmented ideal signal 

 

 
Fig. 5. Segmented 20 dB noise 
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Fig. 6. Segmented 30 dB noise 

 
3.4 Data Preparation 
 

Ideally, 20 dB noise and 30 dB fault current of the noise transmission line is measured during 8 
cycles of 4 different fault types with the sampling rate of 50 Hz. Multiple data sets are generated by 
different simulation times and fault locations for each 10 km, up to 100 km. Thus, 12 data sets are 
obtained for the transmission line fault current, with 4 different fault types from each parameter. 
Each of the data sets contains another 10 data with different fault locations. The different fault 
location data was then divided into training and testing data. As mentioned, the whole number of 
data sets is 10 before segmentation, divided by 8 and 2 for training and testing purposes, respectively. 
The data sets are labelled as 1, 2, and 3, representing faulted, 20 dB, and 30 dB noise, respectively. 
 
3.5 Performance of Convolutional Neural Network 
 

Once the data sets become available, the sets are usually divided into training and testing data 
sets. During the training, the optimum CNN design is sought by employing cross-validation to identify 
the best parameters of the model. For this purpose, the training sets are further divided into the 
training and validation sets. In the validation, the average performance is evaluated using the trained 
model by choosing the validation sets several times at random. The experiments are conducted for 
several candidate parameters to ascertain the model with the best performance. The trained CNN 
model is then applied to the testing data sets to evaluate the classification's performance. 

As shown in Table 2(a), the confusion matrix is usually employed for this, where the row and 
column represent the predicted class from the model and its true class, respectively. The diagonal 
components signify data that are classified correctly, whereas the off-diagonal components describe 
misclassified data. TP and FP are the numbers of true-positive and false-positive predictions, and FN 
and TN are the numbers of false-negative and true-negative predictions, respectively. In order to 
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assess the performance via this, several standard terms can be defined, such as accuracy, precision, 
recall, and F1-score, as explained in the following equations 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
            (4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (5) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                    (6) 

 

𝐹𝐼 − 𝑠𝑐𝑜𝑟𝑒 =
2(𝑅𝑒𝑐𝑎𝑙𝑙)(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
          (7) 

 
The accuracy, recall, and precision are presented in Table 2 at each location of the matrix. While 

accuracy is usually adopted in most diagnostic studies, it is not useful when there is a large class 
imbalance between the normal and faulty data sets, as seen in our study. The reason is that accuracy 
tends to predict the value of the majority class for all predictions, resulting in high classification 
accuracy, which is called the "Accuracy Paradox." The paradox can be demonstrated via two cases, 
as presented in Table 2(b), where the accuracies of cases A and B are the same at 95%. However, the 
first has missed most of the positive (fault) classes (45 of 50) as opposed to the second (5 of 50), 
which is obviously unacceptable for fault detection. To overcome this, the F1-score, the harmonic 
average of the recall and precision as defined in equations (4) and (5), is employed as a supplement. 
The closer the F1-score is to 1, the more effective it is in reducing false predictions. The values are 
0.167 and 0.643, which show that the second is much better. 
 

Table 2 
Confusion matrix and the illustrative examples: (a) elements of the 
confusion matrix and (b) two cases of confusion matrix 

 Predicted class  

Model - +  
True 
class 

- TN FP  
+ FN TP Recall 

 - Precision Accuracy 
(a) 

 
 Predicted class    Predicted class  

Case A - +  Case B  - +  
True 
class 

- 945 5  True 
class 

- 905 45  
+ 45 5 0.1 + 5 45 0.9 

 - 0.5 0.95  - 0.5 0.95 
 (b)  

 
The confusion matrix is applied to this study's two-class (non-fault and fault) problems. The matrix 

is modified to include the two classes in the row and column. The recall and precision are then 
calculated by considering the data as the two classes, where the positive class represents the non-
fault category and the negative class represents the faulted transmission line based on its type of 
fault. As a result, four confusion matrices were obtained, representing the single line-to-ground fault, 
double line fault, double line-to-ground fault and triple line fault. The accuracy rate and F1-scores are 
then obtained for each type of transmission line fault. 
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3.5.1 Performance of CNN for ideal case 
 

Table 3 shows 4 confusion matrices of ideal transmission line fault current. The recall, precision, 
accuracy and FI-score of the ideal transmission line fault are shown in Table 4. In this case, the highest 
and the lowest recall are computed by ABC and AB faults which are 0.9995 and 0.9974, respectively. 
Furthermore, AG and ABG faults share the same total number of fault recall at 0.9988. These findings 
can be associated with selecting false-negative predictions as one of the necessary parameters to 
calculate the recall. As shown in Table 3 and Table 4, it can be seen that the recall will increase as the 
false-negative predictions decrease. On the other hand, AB and ABC faults have the lowest and the 
highest precision at 0.9810 and 0.9955 each. Moreover, the ABG fault has a marginally lower 
precision of 0.9884 compared to 0.9919 of the AG fault. It is noted that the false-positive predictions 
correlated highly to the fault precision. These results clearly indicate that the higher the false-positive 
predictions, the lower the fault precision. 

In this study, the highest and the lowest accuracy were given by ABC and AB faults, respectively. 
In addition, AG fault has slightly higher accuracy at 0.9933 than 0.9906 in ABG fault. As equation (6) 
mentioned, the fault accuracy is strongly related to the true-positive and true-negative predictions. 
The FI-score depends on the calculated recall and precision of each fault. As such, it can be observed 
that the highest FI-score is incurred by ABC fault, followed by AG, ABG and AB fault. In a nutshell, the 
average accuracy and FI-score of the ideal transmission line fault are 0.9911 and 0.9939 each. Hence, 
it is worth mentioning that the average fault accuracy and FI-score for the ideal transmission line 
fault current reached levels that were deemed satisfactory, surpassing 99%. 
 

Table 3 
Confusion matrix of Ideal Case: a) single line-to-ground fault, b) double 
line fault, c) double line-to-ground fault and d) triple line fault 
 Predicted class   Predicted class 

Without noise AG NF Without noise  AB NF 
True 
class 

AG 8620 188 True 
class 

AB 8359 449 
NF 28 23165 NF 60 23133 

(a)  (b) 
   
 Predicted class   Predicted class 
Without noise ABG NF Without Noise  ABC NF 
True 
class 

ABG 8536 272 True 
class 

ABC 8704 104 
NF 28 23165 NF 11 23182 

(c)  (d) 

 
   Table 4 
   Recall, precision, accuracy, and fi-score of the ideal case 

Fault type Recall Precision Accuracy FI-score 

SLG (AG) 0.9988 0.9919 0.9933 0.9953 

DL (AB) 0.9974 0.9810 0.9841 0.9891 

DLG (ABG) 0.9988 0.9884 0.9906 0.9936 

TL (ABC) 0.9995 0.9955 0.9964 0.9975 

  Average 0.9911 0.9939 

 
 
 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 32, Issue 3 (2023) 199-216 

210 
 

3.5.2 Performance of CNN for 20 dB noise 
 
Table 5 exhibits 4 confusion matrices of the 20 dB fault current of the noise transmission line. 

Table 6 depicts the recall, precision, accuracy and FI-score of the 20 dB noise transmission line fault. 
In this study, ABC and AG faults recorded the lowest and the highest recall at 0.9989 and 0.9994, 
respectively. In addition, the ABG fault has a slightly lower recall of 0.9990 compared to 0.9992 for 
the AB fault. This situation is due to the fact that the recall decreases with the increase of false-
negative predictions, as presented in Table 5. Besides, the highest and the lowest precisions were 
given by ABG and ABC faults which are 0.9965 and 0.9851, respectively. Meanwhile, the AB fault has 
a fractionally higher precision at 0.9936 than 0.9934 in the AG fault. As presented in Table 3 and Table 
6, it can be seen that precision generally improves as the number of false-positive predictions 
decreases. 

In this case, ABC and ABG faults computed the lowest and the highest accuracy at 0.9882 and 
0.9967, respectively. Moreover, AB fault has marginally lower accuracy at 0.9947 compared to 0.9948 
of AG fault. Notably, the values of true-negative and true-positive predictions of each fault type 
strongly influence fault accuracy. This statement is reflected in the theoretical calculations of 
accuracy in equation (6). Additionally, the FI-score value of each fault type was generated by both 
recall and precision, as shown in equation (7). That is why the ABG fault exhibits the highest FI-score 
among other faults. Due to the balance value difference between recall and precision in AG and AB 
faults, respectively, these faults produce the same FI-score at 0.9964. In short, the average accuracy 
and FI-score of 20 dB noise transmission line fault are 0.9936 and 0.9956, respectively. Therefore, it 
is worth mentioning that the average fault accuracy and FI-score of 20 dB fault current of the noise 
transmission line achieved satisfied values above 99%. 

 
Table 5 
Confusion matrix of 20 dB noise: a) single line-to-ground fault, b) double 
line fault, c) double line-to-ground fault and d) triple line fault 
 Predicted class   Predicted class 

20-dB noise AG NF 20-dB noise  AB NF 
True 
class 

AG 8655 153 True 
class 

AB 8658 150 
NF 13 23180 NF 19 23174 

(a)  (b) 
   
 Predicted class   Predicted class 
20-dB noise ABG NF 20-dB noise  ABC NF 
True 
class 

ABG 8726 82 True 
class 

ABC 8457 351 
NF 24 23169 NF 26 23167 

(c)  (d) 

 
  Table 6 
  Recall, precision, accuracy, and fi-score of 20 dB noise 

Fault type Recall Precision Accuracy FI-score 

SLG (AG) 0.9994 0.9934 0.9948 0.9964 
DL (AB) 0.9992 0.9936 0.9947 0.9964 
DLG (ABG) 0.9990 0.9965 0.9967 0.9977 
TL (ABC) 0.9989 0.9851 0.9882 0.9920 
  Average 0.9936 0.9956 
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3.5.3 Performance of CNN for 30 dB noise 
 

Table 7 exhibits 4 confusion matrices of 30 dB fault current of the noise transmission line. The 
recall, precision, accuracy and FI-score of the 30 dB noise transmission line fault are shown in Table 
8. In this case, the highest and the lowest recalls were computed by ABC and AG faults which are 
0.9998 and 0.9982, respectively. Furthermore, the ABG fault has a marginally higher recall of 0.9991 
compared to 0.9989 for the AB fault. It can be observed that the false-negative predictions are highly 
correlated to fault recall. These results indicate that the lower the false-negative predictions, the 
higher the fault recall will be. Apart from that, AG and AB faults recorded the lowest and the highest 
precisions at 0.9914 and 0.9941, respectively. Moreover, the ABG fault has a slightly lower precision 
at 0.9915 than 0.9934 in the ABC fault. It was due to false-positive prediction being one of the vital 
parameters to calculate the precision. It can be seen that as the false-positive predictions increase, 
the precision will decrease. 

In this study, the highest and the lowest accuracy was given by ABC and AG faults at 0.9950 and 
0.9924, respectively. In addition, the AB fault has a slightly higher accuracy at 0.9949 compared to 
0.9931 of the ABG fault. As stated in equation (6), the fault accuracy is strongly influenced by the 
values of true-negative and true-positive predictions of each fault type. The FI-score depends on the 
calculated recall and precision of each fault. This situation is reflected in the theoretical calculations 
as shown in equations (7), whereas the value of recall and precision plays an important role in FI-
score. That is why the ABC fault was attributed to the highest FI-score, followed by AB, ABG and AG 
faults. In brief, the average accuracy and FI-score of the 30 dB noise transmission line fault are 0.9936 
and 0.9956, respectively. Thus, it is worth stating that the average fault accuracy and FI-score of 30 
dB fault current of the noise transmission line achieved satisfied values above 99%. 

 
Table 7 
Confusion matrix of 30 dB noise: (a) single line-to-ground fault, (b) 
double line fault, (c) double line-to-ground fault and (d) triple line 
fault 

 Predicted class   Predicted class 

30-dB noise AG NF 30-dB noise  AB NF 
True 
class 

AG 8606 202 True 
class 

AB 8670 138 
NF 41 23152 NF 26 23167 

(a)  (b) 
   
 Predicted class   Predicted class 
30-dB noise ABG NF 30-dB noise  ABC NF 
True 
class 

ABG 8610 198 True 
class 

ABC 8654 154 
NF 22 23171 NF 5 23188 

(c)  (d) 

 
 Table 8 
 Recall, precision, accuracy, and fi-score of 30 dB noise 
Fault type Recall Precision Accuracy FI-score 

SLG (AG) 0.9982 0.9914 0.9924 0.9948 

DL (AB) 0.9989 0.9941 0.9949 0.9965 

DLG (ABG) 0.9991 0.9915 0.9931 0.9953 

TL (ABC) 0.9998 0.9934 0.9950 0.9966 

  Average 0.9939 0.9958 
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3.5.4 Comparison of CNN fault detection performance between different parameters 
 

In this study, three different parameters of transmission line fault were introduced to investigate 
the performance of CNN. A deep neural network often indicates reduced accuracy in a real-world 
detection task. The problem is that real-world transmission lines often include noise or quality loss. 
The transmission line fault diagnosis based on the signal segmentation approach was proposed to 
achieve a stable fault detection performance in a real-world task. Figure 7 compares CNN 
performance for ideal, 20 dB, and 30 dB noise. In this case, the average accuracy of ideal, 20 dB noise 
and 30 dB noise were computed to be 99.11%, 99.36% and 99.39%, respectively. Meanwhile, the 
values of 99.39%, 99.56% and 99.58% represent the average FI-score of ideal, 20dB noise and 30dB 
noise, respectively. 

The most common transmission line pre-processing methods were chosen to investigate the 
integrity of the input signal pre-processing. The pre-processing method produced significant 
improvement and proved successful in the fault diagnosis. As mentioned in Section III, signal 
resampling removes the noise, unwanted data and eliminates variations that arise during the 
acquisition of a signal without evading essential information. Time synchronous averaging is well 
suited for transmission line fault analysis, where it allows the vibration signal of the fault current 
under analysis to be separated from other signals and noise sources in the transmission line that are 
not synchronous with that signal. 

The 20 dB and 30 dB noises contain fewer noise signals after the pre-processing process, which 
are expected to be robust to quality distortion. This hypothesis was based on the idea that the recall 
value, precision, average accuracy and average FI-score of the transmission line fault increase even 
after a quality loss. Moreover, because this approach utilised the signal segmentation using the 
autocorrelation function as an augmented feature of the original signal, the noise did not reduce the 
accuracy of the original transmission line fault signal while achieving better records of all types of 
quality distortion. The discovery is meaningful since the model did not depend on the type of noise 
used in the training phase. Therefore, this architecture could be interpreted as a generalised model 
for quality loss. 
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Fig. 7. Performance of CNN Based on signal segmentation approach 

 
3.5.5 Comparison of CNN fault detection performance with alternative existing methods 
 

Besides comparing the performance of CNN among different parameters, the fault diagnosis 
results are compared to alternative approaches [20,21]. In Ref. [20], S-transform was used as the pre-
processor for feature extraction and deterministic rules were derived to perform the detection. In 
Ref. [21], wavelet transform for feature extraction is combined with a neural network for detection. 
The comparison with the present technique is not entirely consistent due to the following factors. 
The proposed methodologies were tested on three-phase transmission line models, and the average 
performance is shown in Table 5. In the case studies from the literature, only one model is utilised to 
benchmark the proposed methodologies. The testing technique utilised in this study is notably more 
complex due to the different system topologies and situations encountered by the fault diagnosis 
method. Furthermore, the proposed technique is limited to detecting transmission line fault current 
faults. Consequently, developing a single transmission line fault current detection model improves 
accuracy but with the cost of universal applicability. Finally, previous case studies isolate the feature 
extraction process and employ substantial expert knowledge to specify the appropriate features for 
fault diagnosis, whereas this research illustrates the CNN based on signal segmentation. 

Although the results presented in the literature are not directly comparable to the tests 
performed in this research, they are put into context, and their fault detection accuracy is compared 
with other case studies. To address the first discrepancy in the comparison, the average detection 
accuracy is evaluated across all three parameters of three transmission line fault currents. Regarding 
fault detection, a CNN-based signal segmentation is recommended because it still performs 
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reasonably well despite the lack of specific feature extraction and the use of an integrated single 
network for fault identification. In Table 9, the reported detection rates (averaged across a large 
testing set) in Ref. [20] and Ref. [21] are utilised and compared to ideal, 20 dB, and 30 dB noise using 
CNN. 

 
 Table 9 
 Comparison of fault detection performance with alternative existing methods 
Method CNN (Ideal) CNN (20dB noise) CNN (30dB noise) [20] [21] 

Detection accuracy (%) 99.11 99.36 99.39 97.89 98.67 

 
The average performance of the developed technique over the three transmission line models is 

equivalent to that of the approaches provided in Ref. [20] and Ref. [21]. This comparison 
demonstrates that the overall performance is still comparable to strategies dedicated to specific 
network topologies while being evaluated over several network topologies without any unique 
tuning. 

 
4. Conclusions 
 

Even if the classic feature–based diagnostics continue to operate well and are more effective in 
many cases, finding optimal features in common practice is not easy. As an alternative to this 
traditional strategy, CNN for transmission line fault diagnosis appears feasible by avoiding some 
signal-processing steps. Such approaches decrease the time and effort required to develop effective 
signal-processing methods and feature extraction/selection procedures. Most deep learning 
research in transmission line fault detection has demonstrated remarkable viability by displaying 
excellent accuracy in model learning. However, the approaches have shown critical limitations in that 
the algorithms have been applied to the same data sets used to train their model. In practice, the 
fault can occur at any of its transmission lines, which may result in poor performance even with 
sophisticated algorithms. This study has focused on addressing this issue and demonstrated the 
importance of such effort for properly preparing input data.  

A CNN for transmission line fault diagnosis based on a signal segmentation approach was 
presented in this paper. To accomplish this goal, signal segmentation was performed on a 
transmission signal by separating it into segments across each fault. The performance of the 
proposed method was evaluated by simulating various types of faults with different parameters, and 
the results obtained were encouraging. Compared with past research, the contributions of this paper 
can be summarised as follows. 

 
i. A new 1D-CNN architecture for transmission line fault classification is proposed. Without 

manually designed signal transformation or calculation as feature engineering, feature 
extraction and fault detection are achieved in a single model. By applying CNN-1D instead of 
CNN-2D as the classifier, the proposed architecture can avoid unnecessary and cumbersome 
structure changes of input data.  

ii. The 1D-CNN reduces the computation time, improves the speed of fault detection, reduces 
the influence of distribution network structure on the algorithm and realises the fault of the 
whole line without blind area. 

iii. The transmission line fault diagnosis based on the signal segmentation approach of CNN 
mainly benefits from the 1D-CNN of pooling and classifier layers by introducing the pooling 
layer, fully connected layer and SoftMax layer in the CNN construction process. 
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