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This study proposed a new version of Multistep Modified Reduced Differential 
Transform Method (MMRDTM) which is applicable for obtaining semi-analytical 
approximation on Non-linear Telegraph Equations (NLTEs) with source term. Through 
the experimental approach, we unveiled various advantages of the proposed method, 
especially its ability to analytically approximate high-speed converging series. 
Moreover, a significant reduction in the number of calculated terms can also be 
observed. Before deploying the multistep technique, the substitution of non-linear term 
in NLTEs with the corresponding Adomian polynomial takes place. Consequently, a 
simpler technique for approximating NLTEs with source term was discovered. Besides 
that, the solutions can be estimated more precisely over a longer time. To justify our 
findings, solutions of NLTEs with source term are obtained using the MMRDTM. The 
accuracy of the proposed method for solving these equations was tested by comparing 
the absolute errors between the solutions obtained by the proposed method and the 
Modified Reduced Differential Transform Method (MRDTM) with the exact solution. 
The obtained solutions evidenced that the proposed MMRDTM can deliver highly 
precise approximations for the NLTEs with source term. 
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1. Introduction 
 

The following form of one-dimensional Non-linear Telegraph Equation (NLTE) has been taken into 
consideration [1], 
 
𝜈𝑡𝑡 − 𝛾𝜈𝑥𝑥 + 𝛼𝜈𝑡 + 𝛿(𝜈) = ℎ(𝑥, 𝑡),           (1) 
 
where 
 
𝜈(𝑥, 0) = 𝑔1(𝑥)  
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𝜈𝑡(𝑥, 0) = 𝑔2(𝑥)  
 
are the initial conditions while 𝛼 > 0. 𝛾 are constants, ℎ, 𝑔1, 𝑔2 are known functions, and 𝛿 is a 
function of 𝜈. This form of NLTE is extensively applied in the studies of electric signal propagation in 
communication cables and the phenomenon of waves. The interaction of convection and diffusion is 
the underlying reason for several non-linear phenomena in physical and biological processes [2-4]. 
This equation is mainly applied in modelling radio frequencies, electromagnetic waves, voltage and 
current on transmission lines, random walk theory, and oceanic diffusion [5]. Adding a factor to the 
normal heat or mass transport equation that compensates for the impact of finite velocity can also 
be used to depict a combination of diffusion and wave propagation [6].  

A two-dimensional second-order hyperbolic telegraph equation may be applied to model a 
number of real-world events in science, engineering, and other domains [7]. In fact, the telegraph 
equation outperforms the heat equation in portraying certain fluid flow issues involving suspensions 
[8]. It is also more appropriate than the ordinary diffusion equation to model the reaction-diffusion 
phenomena involving such suspensions [9]. In order to transmit charged particles in chaotic magnetic 
fields, such as low-energy cosmic rays in the solar wind, the telegraph equation is considered a better 
option than the diffusion equation [10]. For instance, biologists employ these equations to 
investigate pulsing blood flow in arteries and random bug migration along a hedge [11]. Eq. (1) can 
be used to mathematical explain some of the phenomena, such as acoustic wave propagation in 
Darcy-type porous media and viscous Maxwell fluids parallel flows [12-14]. The works of Dehghan 
and Ghesmati [2], Mohebbi and Dehghan [3], and Böhme [15] outlined several discussions about the 
telegraph equation's derivation. 

Researchers used various approaches, whether numerically, analytically, or both, in solving 
telegraph equations. In order to solve the telegraph equation, Mohebbi and Dehghan [3] examined 
high-order compact solutions. Gao and Chi [16] presented an unconditionally stable difference 
technique for a one-space dimensional linear hyperbolic equation. The numerical solution developed 
by Saadatmandi and Dehghan [17] is based on the Chebyshev Tau method. Furthermore, Yousefi [18] 
presented the Legendre multi-wavelet Galerkin technique to solve the hyperbolic telegraph 
equation. Dehghan and Ghesmati [2] established a numerical method according to truly meshless 
local weak-strong (MLWS) methods for dealing with the second-order two-space dimensional 
telegraph equation. To obtain the solution of the telegraph equation in researches by Atangana [19] 
and Biazar and Ebrahimi [20], the researchers used the Adomian decomposition approach. Adomian 
Decomposition Method with Accelerated Formula of Adomian Polynomial solved non-linear 
telegraph equations in the study by Sayed et al., [21]. In 2021, a New Homotopy Perturbation Method 
(NHPM) was proposed to determine the logical methods of linear and non-linear second-order 
telegraph equation [22]. In addition. Modanli et al., [23] proposed residual power series method 
(RPSM) for solving pseudo hyperbolic partial differential equations with nonlocal conditions. 

Furthermore, several powerful and successful approaches for approximating analytical solutions 
have been proposed and improved. Examples of these solutions are the Adomian Decomposition 
Method (ADM), Variation Iteration Method (VIM), Homotopy Analysis Method (HAM), Homotopy 
Perturbation Method (HPM), Inverse Scattering Method, Balance Method, Hirota's Bilinear Method, 
and Differential Transform Method (DTM). However, a modification to the fractional Reduced 
Differential Transform Method (RDTM) was designed and applied to solve the fractional Korteweg 
de-Vries (KdV) equation [24]. The non-linear term has been replaced by corresponding Adomian 
polynomials in this technique. Consequently, it can be solved and achieved more quickly and with 
fewer computed terms. Later, an adaptive multistep DTM was created for handling solitary 
perturbation initial-value problems [25]. It proposed a rapid-converging sequence with a longer time-
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period solution. This study adopted these two approaches for solving second-order non-linear 
Telegraph equations with source term. 

Besides the normal telegraph equations, many numerical and analytical methods have been 
constructed to obtain solutions of telegraph equations with non-linear source term. A flow (fluid 
flow, velocity, current, or thermal flow) is created when forcing functions or source terms (pressure, 
torque, force, voltage, or temperature difference) are applied to an impedance [26]. Cao et al., [27] 
presented a solution using the generalised trapezoidal formula to solve telegraphic equations with 
source term numerically. Two-level and three-level compact difference and alternating direction 
implicit compact difference schemes were proposed to solve one and two-dimensional telegraph 
equations with non-linear forcing term [28]. Furthermore, the solution for a non-linear telegraph 
equation was constructed by employing a hyperbolic linear solution of the Klein-Gordon equation 
[29]. For one and two-dimensional linear telegraph equations and telegraph equations with non-
linear forcing term, a numerical solution based on shifted Jacobi–Gauss collocation approach was 
developed [30]. Then, a novel strategy built on the Haar wavelet collocation technique was 
developed to solve one and two-dimensional second-order linear and non-linear hyperbolic 
telegraph equations [31]. A hybrid method was introduced by Arslan [32] to approximate the 
telegraph equation, incorporating the finite difference and differential transform method. Recently, 
Partohaghighi et al., [33] presented a method to solve hyperbolic telegraph equations according to 
the fictitious time integration (FTI) and group preserving (GP) methods. In addition, Kanna et al., [34] 
proposed the Crank-Nicholson Finite Difference Method to obtain solutions of fractional order 
telegraph equations. 

Apart from that, the proposed Multistep Modified Reduced Differential Transform Method 
(MMRDTM) has been deployed for approximating various types of well-established equations such 
as Non-linear Schrodinger Equations (NLSEs), Klein-Gordon equations as well as fractional NLSE [35-
37]. Moreover, the proposed MMRDTM was also utilised for approximating the non-linear KdV 
equation and NLSE with power law non-linearity [38,39]. The MMRDTM has been deployed by Hussin 
et al., [40] for approximating NKdVEs with compactons. From all these occurrences, the obtained 
results are not only produced with a minimal number of calculated terms and exceptional precision 
but the solutions are also obtained with high-speed convergent sequence over a broad time span. 
Besides that, Hussin et al., [41] also used the method to obtain solitary wave solutions. 

In this paper, we introduced a multistep technique and a modification by using Adomian 
polynomials to approximate NLTEs with source term using the MMRDTM. For that purpose, 
parametrisation methods were used to produce Adomian polynomials without carrying out time-
consuming high-derivative computations [42]. The introduced approach yields a convergence 
sequence of analytical approximations over a long period. At the same time, the quantity of 
calculated terms is reduced consequentially. 
 
2. Development of Multistep Modified Reduced Differential Transform Method 
 

Generally, lowercase letters represent the original function. For instance, for the function 𝜈(𝑥, 𝑡), 
the letter 𝜈 is the original function. Conversely, the capital letter 𝑉 in the function 𝑉𝜌(𝑥) denotes the 

transformed functions. The obtained differential transformation of the function 𝜈(𝑥, 𝑡)  =  𝑓(𝑥)𝑔(𝑡) 
can be expanded to form [16] 
 

𝜈(𝑥, 𝑡) = ∑ Ϝ(𝛼)𝑥𝛼∞
𝛼=0 ∑ 𝐺(𝛽)𝑡𝛽∞

𝛽=0 = ∑ 𝑉𝜌(𝑥)𝑡𝜌∞
𝜌=0   
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where 𝑉𝜌(𝑥) is known as the function of 𝜈(𝑥, 𝑡). These are some definitions that describe RDTM’s 

fundamental properties. 
 
Definition 1: Consider an analytical and continuous differential function 𝜈(𝑥, 𝑡). With respect to time 
𝑡 and space variable 𝑥, the differential transformation of 𝜈(𝑥, 𝑡) is defined by 
 

𝑉𝜌(𝑥) = [
𝜕𝜌

𝜕𝑡𝜌 𝜈(𝑥, 𝑡)]
𝑡=0

            (2) 

 
where the transformed function is 𝑉𝜌(𝑥). 

 
Definition 2: The 𝑉𝜌(𝑥)’s inverse transform is presented as 

 
𝜈(𝑥, 𝑡) = ∑ 𝑉𝜌(𝑥)𝑡𝜌∞

𝜌=0 .            (3) 

 
Combining Eq. (2) and Eq. (3) yields 
 

𝜈(𝑥, 𝑡) = ∑
1

𝜌!
[

𝜕𝜌

𝜕𝑡𝜌 𝜈(𝑥, 𝑡)]
𝑡=0

𝑡𝜌∞
𝜌=0 .           (4) 

 
By applying MMRDTM basic properties to Eq. (1), we obtain 
 

𝑉𝜌+2,𝛼(𝑥) = (
1

(𝜌+2)(𝜌+1)
) (

𝜕2

𝜕𝑥2 (𝑉𝜌,𝛼(𝑥)) − ∑ 𝐴𝜌,𝛼
∞
𝜌=0 − 𝜎(𝜌 + 1)𝑉𝜌+1,𝛼 + ℎ(𝑥, 𝑡)).    (5) 

 
The initial condition should be written as follows 
 
𝑉0(𝑥) = 𝑓(𝑥).              (6) 
 
The following denotes the non-linear term [23] 
 

𝑁𝜈(𝑥, 𝑡) = ∑ 𝐴𝑛(𝑉0(𝑥), 𝑉1(𝑥), … , 𝑉𝑛(𝑥))∞
𝑛=0 .  

 
A method proposed for computing the Adomian polynomials is shown below [42]. 
 

𝐴0 = 𝑁(𝑉0(𝑥)),  

 

𝐴𝑛(𝑉0(𝑥), 𝑉1(𝑥), … , 𝑉𝑛(𝑥)) =
1

2𝜋
∫ 𝑁(∑ 𝑉𝜌(𝑥)𝑒𝛼𝜌𝑥𝑛

𝜌=0 )𝑒−𝛼𝑛𝜆𝑑𝜆 
𝜋

−𝜋
, 𝑛 ≥ 1.  

 
The approach does not require time-consuming computations with high derivatives. Via iterative 

calculation, Eq. (6) and Eq. (5) are combined, allowing us to obtain the values of 𝑉𝜌(𝑥). In addition, 

the set of inverse transformation values, {𝑉𝜌(𝑥)}𝜌=0
𝑛  yields the following approximate solution: 

 
𝜈(𝑥, 𝑡) = ∑ 𝑉𝜌(𝑥)𝑡𝜌∞

𝜌=0 ,          𝑡 ∈ [0, 𝑇].  

 

Equal step size 𝑠 =
𝑇

𝑅
 is applied, while the interval [0, 𝑇] is divided to generate 𝑅 subintervals 

[𝑡𝑟−1, 𝑡𝑟] and nodes 𝑡𝑟 = 𝑟ℎ such that for 𝑟 = 1,2, … , 𝑅. The upcoming procedures are used to 
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compute MMRDTM. Firstly, the modified RDTM is implemented to the initial value problem (IVP) of 
the interval [0, 𝑡1]. Consider the initial conditions as follows 
 
𝜈(𝑥, 0) = 𝑔0(𝑥), 𝜈1(𝑥, 0) = 𝑔1(𝑥).  
 
The approximation result is obtained as 
 

𝜈1(𝑥, 𝑡) = ∑ 𝑉𝜌,1(𝑥)𝑡𝜌𝜌
𝜌=0 ,          𝑡 ∈ [0, 𝑡1]  

 
At each subinterval [𝑡𝑟−1, 𝑡𝑟], the initial conditions are 
 
𝜈𝑟(𝑥, 𝑡𝑟−1) = 𝜈𝑟−1(𝑥, 𝑡𝑟−1),  
 

(
𝜕

𝜕𝑡
) 𝜈𝑟(𝑥, 𝑡𝑟−1) = (

𝜕

𝜕𝑡
) 𝜈𝑟−1(𝑥, 𝑡𝑟−1)  

 
The initial conditions are utilised for 𝑟 ≥ 2. By integrating multistep RDTM with the IVP on 

[𝑡𝑟−1, 𝑡𝑟], the term 𝑡0 is replaced by 𝑡𝑟−1. For 𝑟 = 1,2, … , 𝑅, the repetition of the procedures is 
performed to construct an approximate solutions sequence 𝜈𝑟(𝑥, 𝑡) as follows 
 

𝜈𝑟(𝑥, 𝑡) = ∑ 𝑉𝜌,𝑟(𝑥)(𝑡 − 𝑡𝑟−1)𝜌𝜌
𝜌=0 ,          𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟].  

 
After all, the following solutions are proposed by the MMRDTM 
 

𝜈(𝑥, 𝑡) = {

𝜈1(𝑥, 𝑡), 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑡1]

𝜈2(𝑥, 𝑡), 𝑓𝑜𝑟 𝑡 ∈, [𝑡1, 𝑡2]
⋮

𝜈𝑅(𝑥, 𝑡), 𝑓𝑜𝑟 𝑡 ∈, [𝑡𝑅−1, 𝑡𝑅−2].

  

 
Observe that the proposed MMRDTM is straightforward. It offers enhanced computing efficiency 

regardless of the circumstances of the value of 𝑠. It is vital to take note that when the step size  
𝑠 = 𝑇 in the modified RDTM, MMRDTM is conserved. 
 
3. Numerical Results and Discussion 
 

Two examples have been solved by applying the MMRDTM to assess its superiority and precision 
in solving NLTEs with source term. 
 
Example 1: Consider the following second-order NLTE [21] 
 
𝑢𝑥𝑥 = 𝑢𝑡𝑡 + 2𝑢𝑡 + 𝑢2 − 𝑒2𝑥−4𝑡 + 𝑒𝑥−2𝑡,          (7) 
 
which is subject to the following initial conditions 
 
𝑢(𝑥, 0) = 𝑒𝑥,  
 
𝑢𝑡(𝑥, 0) = −2𝑒𝑥.  
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The exact solution of this equation is 𝑒𝑥−2𝑡. 
 
To obtain Eq. (8), the basic properties of MMRDTM is applied as in Eq. (7) 
 

𝑈𝜌+2,𝑖(𝑥) = (
1

(𝜌+2)(𝜌+1)
)  

(
𝜕2

𝜕𝑥2
(𝑈𝜌,𝑖(𝑥)) − ∑ 𝐴𝜌,𝑖

∞
𝜌=0 − 2(𝜌 + 1)𝑈𝜌+1,𝑖 + 𝑒2𝑥 (

(−4)𝜌

𝜌!
) − 𝑒𝑥 (

(−2)𝜌

𝜌!
)).     (8) 

 
The following can be written from the initial condition 
 
𝑈0(𝑥) = 𝑒𝑥 .  
 
with equal step size 𝑠 = 0.1, where the interval [0,2] is divided into 20 subintervals by using the 
nodes 𝑡𝑖 = 𝑖𝑠 such that [𝑡𝑖−1, 𝑡𝑖], 𝑖 = 1, 2, … , 20. The core idea of the MMRDTM is mainly to impose 
the RDTM on the IVP over the interval [0, 𝑡1]. For 𝑖 ≥ 2, the initial conditions 
 
𝑢𝑖(𝑥, 𝑡𝑖−1) = 𝑢𝑖−1(𝑥, 𝑡𝑖−1), (𝜕 𝜕𝑡⁄ )𝑢𝑖(𝑥, 𝑡𝑖−1) = (𝜕 𝜕𝑡⁄ )𝑢𝑖−1(𝑥, 𝑡𝑖−1)  
 
are employed at every subinterval [𝑡𝑖−1, 𝑡𝑖]. Then, the MRDTM is deployed to the IVP over the interval 
[𝑡𝑖−1, 𝑡𝑖], where 𝑡𝑖−1 substitutes 𝑡0. Next, a multistep procedure for reiterating an operation  
𝑢(𝑥, 0) = 𝑓0(𝑥), 𝑢1(𝑥, 0) =  𝑎. The process is continued and repeated to generate an approximate 
solutions sequence 𝑢𝑖(𝑥, 𝑡), 𝑖 = 1,2, … ,20 to obtain the solution 𝑢(𝑥, 𝑡) such that: 
 

𝑢𝑖(𝑥, 𝑡) = ∑ 𝑈𝜌,𝑖(𝑥)(𝑡 − 𝑡𝑖−1)𝜌,                𝒫
𝜌=0 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖].  

 
Meanwhile, the MMRDTM yields the following solution 
 

𝑢(𝑥, 𝑡) = {

𝑢1(𝑥, 𝑡) 𝑡 ∈ [0,0.1]

𝑢2(𝑥, 𝑡)
⋮

𝑡 ∈ [0.1,0.2]
⋮

𝑢20(𝑥, 𝑡) 𝑡 ∈ [1.9,2.0].

  

 
Figure 1(a), Figure 1(b), and Figure 1(c) display the graph of the exact solution, approximate 

solution of MMRDTM for 𝑡 ∈  [−5,5] and 𝑥 ∈  [−5,5], and approximate solution of RDTM for 𝑡 ∈
 [−5,5] and 𝑥 ∈  [−5,5], respectively. Apparently, the multistep approximate solutions for this sort 
of NLTEs with source term are significantly closer to the exact solutions. 
 

   
(a) (b) (c) 

Fig. 1. Graphs of semi-analytical methods and exact solution for Example 1, (a) Exact Solution, 
(b) MMRDTM, (c) MRDTM 
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Table 1 summarises the error analyses of MMRDTM and MRDTM compared to the exact solution 
of Example 1. 
 

Table 1 
Absolute error comparison of Exact Solution, MMRDTM, MRDTM for Example 1 
Time, 𝑡 Exact Solution Absolute Error MMRDTM Absolute Error MRDTM 

0.1 1.349858808 1.000000 × 10−9 4.10000000 × 10−9 
0.2 1.105170918 0 5.10000000 × 10−7 
0.3 0.9048374180 8.000000 × 10−10 8.51400000 × 10−6 
0.4 0.7408182207 4.000000 × 10−10 6.2307700 × 10−5 
0.5 0.6065306597 5.000000 × 10−10 2.9036380 × 10−4 
0.6 0.4965853038 1.000000 × 10−10 1.0172416 × 10−3 
0.7 0.4065696597 4.000000 × 10−10 2.9271258 × 10−3 
0.8 0.3328710837 1.300000 × 10−9 7.2936741 × 10−3 
0.9 0.2725317930 4.000000 × 10−10 1.62832857 × 10−2 
1.0 0.2231301601 2.000000 × 10−10 3.33375932 × 10−2 
1.1 0.1826835241 1.000000 × 10−10 6.36399764 × 10−2 
1.2 0.1495686192 2.000000 × 10−10 1.146699606 × 10−1 
1.3 0.1224564283 7.000000 × 10−10 1.968487101 × 10−1 
1.4 0.1002588437 7.000000 × 10−10 3.242782373 × 10−1 
1.5 0.08208499862 1.380000 × 10−9 5.155764634 × 10−1 
1.6 0.06720551274 2.74000 × 10−9 7.948098663 × 10−1 
1.7 0.05502322006 6.000000 × 10−11 1.192525185 
1.8 0.04504920239 1.761000 × 10−8 1.746881320 
1.9 0.03688316740 4.260000 × 10−8 2.504882420 
2.0 0.03019738342 3.420000 × 10−9 3.523712910 

 
Example 2: Consider the following second-order NLTE [29] 
 
𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 2𝑢𝑡 + 𝑢2 = 𝑒−2𝑡cosh2 𝑥 − 2𝑒−𝑡 cosh 𝑥,                  (10) 
 
which is subjected to the initial condition as follows. 
 
𝑢(𝑥, 0) = cosh 𝑥,  
 
𝑢𝑡(𝑥, 0) = − cosh 𝑥,  
 

The exact solution of this equation is 𝑒−𝑡 cosh 𝑥. Fundamental principles of MMRDTM are applied 
to Eq. (10), yielding 
 

𝑈𝜌+2,𝑖(𝑥) = (
1

(𝜌+2)(𝜌+1)
)  

(
𝜕2

𝜕𝑥2
(𝑈𝜌,𝑖(𝑥)) − ∑ 𝐴𝜌,𝑖

∞
𝜌=0 − 2(𝜌 + 1)𝑈𝜌+1,𝑖 + (

(−2)𝜌

𝜌!
) cosh2 𝑥 − 2 (

(−1)𝜌

𝜌!
) cosh 𝑥)              (11) 

 
We can write the following initial condition for U as follows 
 
𝑈0(𝑥) = cosh 𝑥.                       (12) 
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with equal step size 𝑠 = 0.1. 20 subintervals are produced after dividing the interval [0,2] by using 
the nodes 𝑡𝑖 = 𝑖𝑠 such that [𝑡𝑖−1, 𝑡𝑖], 𝑖 = 1, 2, … , 20. The core idea of the MMRDTM is to initially 
implement the RDTM to the IVP over the interval [0, 𝑡1]. For 𝑖 ≥ 2, the initial conditions 
 
𝑢𝑖(𝑥, 𝑡𝑖−1) = 𝑢𝑖−1(𝑥, 𝑡𝑖−1), (𝜕 𝜕𝑡⁄ )𝑢𝑖(𝑥, 𝑡𝑖−1) = (𝜕 𝜕𝑡⁄ )𝑢𝑖−1(𝑥, 𝑡𝑖−1)  
 
are employed at every subinterval [𝑡𝑖−1, 𝑡𝑖], and the MRDTM is deployed to the IVP over the interval 
[𝑡𝑖−1, 𝑡𝑖], where 𝑡𝑖−1 substitutes 𝑡0. Next, a multistep procedure for reiterating an operation 
𝑢(𝑥, 0) = 𝑓0(𝑥), 𝑢1(𝑥, 0) =  𝑎. The process is repeatedly executed to generate an approximate 
solutions sequence 𝑢𝑖(𝑥, 𝑡), 𝑖 = 1,2, … ,20, obtaining the solution 𝑢(𝑥, 𝑡) as follows, 
 

𝑢𝑖(𝑥, 𝑡) = ∑ 𝑈𝜌,𝑖(𝑥)(𝑡 − 𝑡𝑖−1)𝜌,                𝒫
𝜌=0 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖].  

 
Finally, the MMRDTM yields the following solution 
 

𝑢(𝑥, 𝑡) = {

𝑢1(𝑥, 𝑡), 𝑡 ∈ [0,0.1]

𝑢2(𝑥, 𝑡),
⋮

𝑡 ∈ [0.1,0.2]
⋮

𝑢20(𝑥, 𝑡), 𝑡 ∈ [1.9,2.0].

  

 
Figure 2(a), Figure 2(b), and Figure 2(c) visualise the graph of the exact solution, approximate 

solution RDTM for 𝑡 ∈  [−5,5] and 𝑥 ∈  [−5,5], as well as approximate solution MMRDTM for 𝑡 ∈
 [−5,5] and 𝑥 ∈  [−5,5], respectively. Undoubtedly, the solutions of multistep approximation for 
this type of NLTEs with source term are significantly closer to the exact solutions. Table 2 summarises 
the error analyses of MMRDTM and MRDTM compared to the exact solution of Example 2. 
 

   

(a) (b) (c) 

Fig. 2. Graphs of semi-analytical methods and exact solution for Example 2, (a) Exact Solution, 
(b) MMRDTM, (c) MRDTM 
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Table 2 
Absolute error comparison of Exact Solution, MMRDTM, MRDTM for Example 2 
Time, 𝑡 Exact Solution Absolute Error MMRDTM Absolute Error MRDTM 

0.1 1.020318167 0 1.00000000 × 10−9 
0.2 0.9232220555 0 2.80000000 × 10−9 
0.3 0.8353658610 1.000000 × 10−10 4.72000000 × 10−8 
0.4 0.7558702887 0 3.49000000 × 10−7 
0.5 0.6839397204 3.000000 × 10−10 1.64440000 × 10−6 
0.6 0.6188542508 3.000000 × 10−10 5.82300000 × 10−6 
0.7 0.5599624824 4.000000 × 10−10 1.6930400 × 10−5 
0.8 0.5066750067 1.000000 × 10−10 4.2614700 × 10−5 
0.9 0.4584585049 3.000000 × 10−10 9.6077200 × 10−5 
1.0 0.4148304099 9.000000 × 10−10 1.9859120 × 10−4 
1.1 0.3753540770 4.123105626 × 10−10 3.8264200 × 10−4 
1.2 0.3396344138 2.236067978 × 10−10 6.9573200 × 10−4 
1.3 0.3073139261 1.000000 × 10−10 1.2048972 × 10−3 
1.4 0.2780691394 0 2.0019781 × 10−3 
1.5 0.2516073621 9.219544457 × 10−10 3.2096761 × 10−3 
1.6 0.2276637559 2.100000002 × 10−9 4.9884339 × 10−3 
1.7 0.2059986852 2.000000250 × 10−10 7.5441501 × 10−3 
1.8 0.1863953183 2.300000020 × 10−9 1.11367864 × 10−2 
1.9 0.1686574586 5.400000 × 10−9 1.60898675 × 10−2 
2.0 0.1526075793 2.700000005 × 10−9 2.28009038 × 10−2 

 
4. Conclusions 
 

This paper successfully applied a series of solutions to second-order non-linear telegraph 
equations with source term using MMRDTM. The solutions revealed were evaluated by comparing 
them to exact and MRDTM solutions. We modified the method by substituting the non-linear term 
with its Adomian polynomials in the multistep approach. The results showed that the solutions 
approximated to non-linear telegraph equations with source term can be acquired with high 
precision. In a nutshell, the proposed MMRDTM performs better than the MRDTM in terms of 
performance, consistency, and precision for obtaining analytical approximation solutions of NLTEs 
with source term. All computations in this paper were carried out using the Maple software. 
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