
 
Journal of Advanced Research in Applied Sciences and Engineering Technology 31, Issue 1 (2023) 132-143 

 

132 
 

 

Journal of Advanced Research in Applied 

Sciences and Engineering Technology 

 

Journal homepage: 
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index 

ISSN: 2462-1943 

 

Approximate Analytical Solution for Time-Fractional Nonlinear Telegraph 
Equations with Source Term 

 

Abdul Rahman Farhan Sabdin1, Che Haziqah Che Hussin2,*, Graygorry Brayone Ekal1, Arif 
Mandangan1, Jumat Sulaiman1 

  
1 Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia 
2 Preparatory Centre of Science and Technology, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia 
  

ARTICLE INFO ABSTRACT 
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In this study, we considered time-fractional nonlinear telegraph equations (TFNLTEs). 
For solving the TFNLTEs, we deployed a method known as the Multistep Modified 
Reduced Differential Transform Method (MMRDTM). Prior to the multistep technique, 
the nonlinear term in TFNLTEs is replaced with corresponding Adomian polynomials. It 
can be observed that the MMRDTM is much simpler and more straightforward. On top 
of that, it works exceptionally where the obtained solutions are more accurately 
approximated over time. To demonstrate the performance of the MMRDTM in terms of 
its capabilities and accuracies, we provided two numerical examples of solving TFNLTEs 
by using MMRDTM and Modified Reduced Differential Transform Method (MRDTM). By 
comparing the absolute errors of the obtained solutions by both methods, we 
demonstrated that the solutions provided by the MMRDTM much closer to the exact 
solutions compared to the corresponding solutions yielded by the MRDTM. This justified 
that the MMRDTM provides highly accurate and precise solutions for the TFNLTEs. 
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1. Introduction 
 

Various physical phenomena in science and engineering such as diffusion process, rheology, 
damping laws, electric transmission, viscoelasticity, and fluid mechanics can be effectively 
enlightened and demonstrated by fractional partial differential equations (FPDEs). Unfortunately, 
accurate analytical solutions for these kind of equations can only be approximated seldomly. 
Alternatively, approximation and numerical techniques are employed to address such issues. Various 
approaches have been proposed such as finite difference method [1], Adomian decomposition 
method [2], Fourier method [3], variational iteration method [4], wavelet method [5], homotopy 
analysis method [6], Tau method [7], and the fractional Sumudu decomposition method (FSDM) [8]. 

In recent years, the telegraph equations have attracted many researchers due to its usage in 
physical, chemical, and biological sciences. It is a hyperbolic partial differential equation that is used 
to describe radio frequencies, random walk theory, electromagnetic waves, voltage and current on 
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transmission lines, and oceanic diffusion, among other things. It also possesses both diffusion and 
wave motion characteristics. Besides, the telegraph equation is better at modelling reaction-diffusion 
than the standard diffusion equation, and it is a preferable model for understanding several fluid flow 
problems involving suspensions as compared to the heat equation [9]. On the other hand, the non-
standard telegraph equations are well defined by a time-fractional derivative of order α (non-
integer). Moreover, fractional telegraph equations are the generalisation of the standard telegraph 
equations, which naturally come from fractal space-time. The time-fractional telegraph equation 
(TFTE) is important in modeling the Brownian motion. Orsingher and Zhao [10] demonstrated that 
TFTEs determine the telegraph processes with Brownian time and the law of iterated Brownian 
motion. Apart from that, Nirmala and Balachandran [11] studied the application of the TFTEs to 
calculate signal and power losses during transmission media in a communication system. 
Furthermore, Vyawahare and Nataraj [12] modelled a neutron transport in a nuclear reactor using 
the TFTE. Recently, Madhukar et al., [13] showed concrete proof for the damped-hyperbolic nature 
of transient heat conduction in porcine blood and muscle tissue. Through that experiment, they 
found that the TFTE mimics the wave-like nature of heat conduction and temperature profiles as well 
as avoids the requirement for additional adjustable parameters. 

Several authors suggested different ways to obtain solutions of the TFTEs. For instance, the 
reproducing kernel theorem was used by Jiang and Lin [14] to find the solution to this equation. Next, 
Kumar et al., [15] devise a local meshless method to obtain the solution for the TFTEs with linear 
source term using radial basis functions. This is followed by a numerical experiment on various 
complicated domains to demonstrate the method's effectiveness, and it shows a pleasant result. 
Furthermore, Wang and Mei [16] applied the generalized finite difference scheme in time and the 
Legendre spectral Galerkin technique in space to solve the TFTEs with a forcing term. Furthermore, 
Kumar et al., [17] presented a finite difference scheme for the generalised TFTEs with forcing term 
that is defined using generalised fractional derivative terms. Ray [18] formulated and implemented 
a modification to the Fractional Reduced Differential Transform Method (FRDTM) for solving the 
fractional Korteweg–De Vries equation (FKdVEs). This strategy used Adomian polynomials to 
substitute the nonlinear term of the equation. Consequently, the nonlinear problems can have 
solutions in shorter time with fewer calculated terms. Besides that, Hassani [19] proposed variable-
order space–time fractional telegraph equation using transcendental Bernstein series. 

In 2018, Hussin et al., [20] proposed the Multistep Modified Reduced Differential Transform 
Method (MMRDTM) and deployed this method for solving nonlinear Schrodinger equations (NLSE). 
As a result, the MMRDTM performed outstandingly as the NLSEs are successfully approximated with 
high accuracy and precision. Furthermore, the MMRDTM was also applied by Hussin et al., [21] to 
handle Klein-Gordon equations. Once again, the MMRDTM performed outstandingly as 
approximation of the equations are obtained with great precision and efficiency. Motivated by these 
results, Hussin et al., [22] implemented the MMRDTM to determine the approximate analytical 
solutions of the one-dimensional fractional NLSE. As expected, the results are obtained by the 
MMRDTM with high accuracy to the exact solutions. Hussin et al., also use the method to obtain 
solitary wave solutions [23-24]. 

In this paper, we proposed a multistep technique and a variation by using Adomian polynomials 
to discover the solution to the one-dimensional time-fractional nonlinear telegraph equations 
(TFNLTEs) with source term using the MMRDTM. To produce Adomian polynomials, we deployed 
parametrization approaches instead of doing time-consuming high-derivative computations. The 
following one-dimensional TFNLTEs [25] is considered 
 
𝜕2𝛼𝑢(𝑥,𝑡)

𝜕𝑡2𝛼
+ 𝜃

𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
= 𝛾

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
+ 𝑓(𝑥, 𝑡),          (1) 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 31, Issue 1 (2023) 132-143 

134 
 

where 𝑥 ∈ (0, 𝑙) and 𝑡 ∈ (0, 𝜏). The initial conditions are given by 
 
𝑢(𝑥, 0) = 𝜑(𝑥),   
 
𝑢𝑡(𝑥, 0) = 𝜓(𝑥),   
 
where 𝛼 is a parameter defining the fractional derivative’s order. Furthermore, the functions 
𝑓, 𝜑, and 𝜓 are sufficiently smooth prescribed functions. Then, the rates 𝜃 and 𝛾 are arbitrary 
nonnegative and positive constants, respectively. In the case where ½ < 𝛼 ≤ 1, the Caputo 
fractional derivatives are used to describe the time-fractional derivative. 
 
2. Formation of Fractional Multistep Modified Reduced Differential Transform Method 
 

To demonstrate the fundamental concepts behind the use of fractional MMRDTM, let consider a 
general nonlinear partial differential equation 
 
𝐿𝑢(𝑥, 𝑡) + 𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) ,           (2) 
 
subjected to the initial condition, 
 
𝑢(𝑥,  0) = 𝑓(𝑥),             (3) 
 
where 𝐿 ≡  𝐷𝑡

𝛼, 𝑅, 𝑁𝑢(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) are invertible linear operator, remaining part of the linear 
operator, nonlinear term and inhomogeneous term respectively. Next, the following iteration 
formula is formed according to the Reduced Differential Transformation Method (RDTM) 
 
(𝑟 + 1)𝑈𝑟+1(𝑥) = 𝑆𝑟(𝑥) − 𝑅𝑈𝑟(𝑥) − 𝑁𝑈𝑟(𝑥),         (4) 
 
where 𝑈𝑟(𝑥), 𝑆𝑟(𝑥), 𝑁𝑈𝑟(𝑥) and 𝑅𝑈𝑟(𝑥) represent the transformation functions of 𝐿𝑢(𝑥, 𝑡), 
𝑅𝑢(𝑥, 𝑡), 𝑁𝑢(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) respectively. From the initial condition, we have 
 
𝑈0(𝑥) = 𝑓(𝑥).              (5) 
 
Then, the nonlinear term is written as follows 
 

𝑁(𝑢, 𝑡) = ∑ 𝐴𝑛(𝑈0(𝑥), 𝑈1(𝑥), … , 𝑈𝑛(𝑥))𝑡𝑛,∞
𝑛=0          (6) 

 
where 𝐴𝑛 is the correspond Adomian’s polynomials. Recently, a novel technique for calculating the 
Adomian polynomials was claimed in [26], such as 
 

𝐴0 = 𝑁(𝑈0(𝑥)),   

 

𝐴𝑛(𝑈0(𝑥), 𝑈1(𝑥), … , 𝑈𝑛(𝑥)) =
1

2𝜋
∫ 𝑁(∑ 𝑈𝑘(𝑥)𝑒𝑖𝑘𝑥𝑛

𝑘=0 )
𝜋

−𝜋
𝑒−𝑖𝑛𝜆 𝑑𝜆,   

 
where 𝑛 ≥ 1. As demonstrated, this algorithm does not necessitate the time-consuming calculation 
of high derivatives. The function 𝑢(𝑥, 𝑡) can be portrayed on the basis of the differential 
transformation properties such as 
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𝑢(𝑥, 𝑡) = ∑ 𝑈𝑟(𝑥)𝑡𝛼𝑟∞
𝑟=0 .            (7) 

 
Definition 1. If function 𝑢(𝑥, 𝑡) is analytic and differentiated continuously with respect to space 𝑥 
and time 𝑡 in the desired domain, then let 
 

𝑈𝑟(𝑥) =
1

Γ(𝑟𝛼+1)
{ 𝐷𝑡

𝛼𝑟𝑢(𝑥, 𝑡)}𝑡=0.           (8) 

 
The generalized fractional RDTM of the function 𝑢(𝑥, 𝑡) is given by 
 

𝑢(𝑥, 𝑡) = ∑ (
1

Γ(𝑘𝛼+1)
{ 𝐷𝑡

𝛼𝑘𝑢(𝑥, 𝑡)}𝑡=0) 𝑡𝛼𝑘 .          ∞
𝑘=0         (9) 

 
By applying the Riemann-Liouville integral  𝐽𝛼  on both sides of Eq. (2), we obtain 
 
𝑢(𝑥, 𝑡) = 𝐽𝛼𝑔(𝑥, 𝑡) − 𝐽𝛼𝑅𝑢(𝑥, 𝑡) − 𝐽𝛼𝑁𝑢(𝑥, 𝑡) + Φ,                  (10) 
 
where from the initial condition Φ = 𝑢(𝑥, 0) = 𝑓(𝑥). Thus, plugging Eq. (8) and Eq. (6), for 𝑢(𝑥, 𝑡) 
and 𝑁(𝑢, 𝑡) respectively, in Eq. (9) yields 
 

∑ 𝑈𝑟(𝑥)𝑡𝛼𝑟 = 𝑓(𝑥) +  𝐽𝛼(∑ 𝐺𝑟(𝑥)𝑡𝛼𝑟∞
𝑟=0 ) − 𝐽𝛼(𝑅(∑ 𝑈𝑟(𝑥)𝑡𝛼𝑟∞

𝑟=0 )) − 𝐽𝛼(∑ 𝐴𝑟(𝑥)𝑡𝛼𝑟∞
𝑟=0 )∞

𝑟=0       (11) 

 
where 𝑔(𝑥, 𝑡) = ∑ 𝐺𝑟(𝑥)𝑡𝛼𝑟∞

𝑟=0 , and 𝐺𝑘(𝑥) is the transformed function of 𝑔(𝑥, 𝑡). After performing 
Riemann-Liouville integral  𝐽𝛼, we obtain [18], 
 

∑ 𝑈𝑟(𝑥)𝑡𝛼𝑟 = 𝑓(𝑥) +  (∑ 𝐺𝑟(𝑥)
𝑡𝛼(𝑟+1)Γ(𝛼𝑟+1)

Γ(𝛼(𝑟+1)+1)
∞
𝑟=0 ) − (𝑅 (∑ 𝑈𝑟(𝑥)

𝑡𝛼(𝑟+1)Γ(𝛼𝑟+1)

Γ(𝛼(𝑟+1)+1)
∞
𝑟=0 )) −∞

𝑟=0

(∑ 𝐴𝑟(𝑥)
𝑡𝛼(𝑟+1)Γ(𝛼𝑟+1)

Γ(𝛼(𝑟+1)+1)
∞
𝑟=0 ) .                      (12) 

 
Finally, following recursive formula is derived by equating coefficients with similar powers of 𝑡 
 
𝑈0(𝑥) = 𝑓(𝑥), 
 
and 
 

𝑈𝑟+1(𝑥) = 𝐺𝑟(𝑥)
Γ(𝛼𝑟+1)

Γ(𝛼(𝑟+1)+1)
− 𝑅 (𝑈𝑟(𝑥)

Γ(𝛼𝑟+1)

Γ(𝛼(𝑟+1)+1)
) − 𝐴𝑟(𝑥)

Γ(𝛼𝑟+1)

Γ(𝛼(𝑟+1)+1)
 ,                   (13) 

 
for 𝑟 ≥ 0. Using the known 𝑈0(𝑥), all 𝑈1(𝑥), 𝑈2(𝑥), … , 𝑈𝑛(𝑥) components can be determined using 
Eq. (13). Then by replacing these 𝑈0(𝑥), 𝑈1(𝑥), 𝑈2(𝑥), … , 𝑈𝑛(𝑥) in Eq. (8), an approximate solution 
can be acquired as follows [18] 
 

�̃�𝑝(𝑥, 𝑡) = ∑ 𝑈𝑟(𝑥)𝑡𝛼𝑟𝑝
𝑟=0 ,  

 
where 𝑝 is the order of this approximate solution. Consequently, the following series solution is 
obtained 
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𝑢(𝑥, 𝑡) = 𝑙𝑖𝑚
𝑝→∞

�̃�𝑝(𝑥, 𝑡). 

 
Finally, follow the multi-step scheme as obtained in Algorithm 1. 
 
Algorithm 1 Multi-step scheme for fractional approximate solution as follows 
 
Step 1 : By using the nodes 𝑡𝑚 = 𝑘ℎ, divide the interval [ 0, 𝑇 ] into 𝑀 subintervals 

[𝑡𝑚−1, 𝑡𝑚], 𝑚 = 1,2, … , 𝑀, equally sized ℎ = 𝑇/𝑀. 
 
Step 2 : The RDTM is applied over the interval  [0, 𝑡1] to the initial value problem. Then, use the 

initial conditions 𝑢(𝑥, 0) = 𝑓0(𝑥), 𝑢1(𝑥, 0) =  𝑓1(𝑥) to get the following approximate 
solution 

 

𝑢1(𝑥, 𝑡) = ∑ 𝑈𝑟,1(𝑥)𝑡𝛼𝑟  

𝑅

𝑟=0

 

 
where 𝑡 ∈ [0, 𝑡1]. 
 
Step 3 : Use the following initial conditions 
 
𝑢𝑚(𝑥, 𝑡𝑚−1) = 𝑢𝑚−1(𝑥, 𝑡𝑚−1)  
 
(𝜕 𝜕𝑡⁄ )𝑢𝑚 (𝑥, 𝑡𝑚−1 ) = (𝜕 𝜕𝑡⁄ )𝑢𝑚−1 (𝑥, 𝑡𝑚−1 ) 
 
at each subinterval [𝑡𝑚−1, 𝑡𝑚] for the case where 𝑚 ≥ 2. Then, the MMRDTM is used to solve 
the initial value problem over the interval [𝑡𝑚−1, 𝑡𝑚] where 𝑡𝑚−1 replaces t0.  
 
Step 4 : The procedure is reiterated and proceeded in order to yield a sequence of approximate 

𝑢𝑚(𝑥, 𝑡), 𝑚 = 1,2, … , 𝑀, for the solutions 𝑢(𝑥, 𝑡) such as [27-29] 
 

𝑢𝑘(𝑥, 𝑡) = ∑ 𝑈𝑟,𝑚(𝑥)(𝑡 − 𝑡𝑚−1)𝛼𝑟 ,

𝑅

𝑟=0

 

 
where 𝑡𝑖−1 ≤ 𝑡 ≤ 𝑡𝑖. 
 
Step 5 : In fact, the MsFRDTM is executing the subsequent solution as follows 
 

𝑢(𝑥, 𝑡) = {

𝑢1(𝑥, 𝑡)        , 𝑡 ∈ [0, 𝑡1]         

𝑢2(𝑥, 𝑡)        , 𝑡 ∈ [𝑡1, 𝑡2]        
⋮   

𝑢𝑀(𝑥, 𝑡)        , 𝑡 ∈ [𝑡𝑀−1, 𝑡𝑀].
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3. Numerical Results and Discussion 
 

To demonstrate the effectiveness and accuracy of the proposed MMRDTM for approximating 
solutions of fractional nonlinear Telegraph equation (FNLTE),  we provide the following numerical 
examples. 
 
Example 1 The one-dimensional FNLTE is considered as 
 
𝑢𝑡𝑡

𝛼 +  2𝑢𝑡
𝛼 = 𝑢𝑥𝑥 − 𝑢2  − 𝑒2𝑥−4𝑡 + 𝑒𝑥−2𝑡,                    (14) 

 
with the initial conditions 
 
𝑢(𝑥, 0) = 𝑒𝑥, 
 
𝑢𝑡(𝑥, 0) = −2𝑒𝑥. 
 
The exact solution of this equation for 𝛼 = 1 is  𝑒𝑥−2𝑡. 
 
Applying MMRDTM to Eq. (14) and using the basic properties of MMRDTM, one can obtain 
 

𝑈𝑅+2,𝑖(𝑥) = (
Γ(1+𝑟𝛼)

Γ(1+(2+𝑟)𝛼)
) (

𝜕2

𝜕𝑥2 (𝑈𝑟,𝑖(𝑥)) − ∑ 𝐴𝑟,𝑖
𝑛
𝑟=0 − 2 (

Γ(1+(1+𝑟)𝛼)

Γ(1+𝑟𝛼)
) 𝑈𝑟+1,𝑖 + 𝑒2𝑥 (

(−4)𝑟

𝑟!
) −

𝑒𝑥 (
(−2)𝑟

𝑟!
)).             

 
From the initial condition, we assign 
 
 𝑈0(𝑥) = 𝑒𝑥 .   
 
Divide the interval [0, 𝑇] into 𝑀 subintervals by using the nodes 𝑡𝑖 = 𝑖ℎ of equal step size ℎ = 𝑇/𝑀 
such that [𝑡𝑖−1, 𝑡𝑖], 𝑖 = 1,2, … ,10. After that, the RDTM is used to solve the initial value problem over 
the interval [0, 𝑡1]. Then, use the initial conditions 𝑢(𝑥, 0) = 𝑓0(𝑥) and 𝑢1(𝑥, 0) =  𝑓1(𝑥) to obtain 
the following approximate solution 
 

𝑢1(𝑥, 𝑡) = ∑ 𝑈𝑟,1(𝑥)𝑡𝛼𝑟 ,

𝑅

𝑟=0

 

 
where 0 ≤ 𝑡 ≤ 𝑡1. For the case where 𝑖 ≥ 2, the initial conditions 𝑢𝑖(𝑥, 𝑡𝑖−1) = 𝑢𝑖−1(𝑥, 𝑡𝑖−1) and 
(𝜕 𝜕𝑡⁄ )𝑢𝑖(𝑥, 𝑡𝑖−1) is applied at each subinterval [𝑡𝑖−1, 𝑡𝑖]. Then, the RDTM is used to solve the initial 
value problem over the interval [𝑡𝑖−1, 𝑡𝑖], where 𝑡0 is substituted by 𝑡𝑖−1. This procedure is repeated 
continuously to create a series of approximate solutions 𝑢𝑖(𝑥, 𝑡), where 𝑖 = 1,2, … ,10, for the 
solution 𝑢(𝑥, 𝑡) such as 
 

𝑢𝑖(𝑥, 𝑡) = ∑ 𝑈𝑟,𝑖(𝑥)(𝑡 − 𝑡𝑖−1)𝛼𝑟 ,

𝑅

𝑟=0
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where 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖]. In fact, the MMRDTM yields the following solution 
 

𝑢(𝑥, 𝑡) = {

𝑢1(𝑥, 𝑡) 𝑡 ∈ [0, 𝑡1]

𝑢2(𝑥, 𝑡)
⋮   

𝑡 ∈ [𝑡1, 𝑡2]
⋮

𝑢10(𝑥, 𝑡)   𝑡 ∈ [𝑡9, 𝑡10]

. 

 
Figure 1(a) is the exact solution compared to the approximate solutions by the proposed MMRDTM 
and MRDTM in Figure 1(b) and Figure 1(c) respectively with 𝛼 = 0.6. The outcomes of the 
approximate solution for 𝛼 = 0.8 are shown in Figure 2(a) for the MMRDTM and Figure 2(b) for the 
MRDTM respectively. From the obtained results, obviously the approximations produced by the 
MMRDTM very close to the exact solutions compared to the MRDTM.  
 

   
(a) Exact solution (b) MMRDTM (c)MRDTM 

Fig. 1. Comparison graphs of semi-analytical methods for 𝛼 = 0.6 with exact solution for Example 1 
 

  
(a) MMRDTM (b) MRDTM 

Fig. 2. Comparison graphs of semi-analytical methods with 𝛼 = 0.8 for Example 1 
 
Table 1 and Table 2 show the error analyses of the solutions yielded by the MMRDTM and MRDTM 
respectively for Example 1 with different values of 𝛼.  
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Table 1 
Error comparison between MMRDTM and MRDTM for Example 1 with 𝛼 = 0.6 
Time, 𝑡 Exact Solution Absolute Error MMRDTM Absolute Error MRDTM 

0.1 1.349858808 0 0.282102680 
0.2 1.105170918 0 0.2377261703 
0.3 0.9048374180 5.000000x10-10 0.2476273192 
0.4 0.7408182207 3.000000x10-10 0.4234119704 
0.5 0.6065306597 5.000000x10-10 0.8803608197 
0.6 0.4965853038 7.000000x10-10 1.750204400 
0.7 0.4065696597 3.100000x10-9 3.182896167 
0.8 0.3328710837 2.000000x10-9 5.346344380 
0.9 2.245564710 2.600000x10-9 8.425688724 
1.0 0.2231301601 2.59000x10-8 12.62251238 

 
 Table 2 
 Error comparison between MMRDTM and RDTM for Example 1 with 𝛼 = 0.8 
Time, 𝑡 Exact Solution Absolute Error MMRDTM Absolute Error MRDTM 

0.1 1.349858808 0 0.130571465 
0.2 1.105170918 0 0.1114617051 
0.3 0.9048374180 1.0000000x10-10 0.0694857406 
0.4 0.7408182207 2.000000x10-10 0.0317849732 
0.5 0.6065306597 1.000000x10-10 0.0178225805 
0.6 0.4965853038 8.000000x10-10 0.0507412754 
0.7 0.4065696597 1.000000x10-10 0.1622436105 
0.8 0.3328710837 7.000000x10-10 0.3956705629 
0.9 0.2725317930 2.000000x10-9 0.8083715096 
1.0 0.2231301601 1.000000x10-10 1.473732968 

 
Example 2 The one-dimensional fractional nonlinear Telegraph equation is taken into consideration 
 
𝑢𝑡𝑡

𝛼 − 𝑢𝑥𝑥 + 2𝑢𝑡
𝛼 + 𝑢2 = 𝑒−2𝑡 cosh2 𝑥 − 2𝑒−𝑡 cosh 𝑥,                                         (17) 

 
subject to the initial condition 
 
𝑢(𝑥, 0) = cosh 𝑥, 
 
𝑢𝑡(𝑥, 0) = − cosh 𝑥. 
 
The exact solution of this equation for α = 1 is 𝑒−𝑡 cosh 𝑥. 
Firstly, apply MMRDTM to Eq. (17) and use the basic properties of MMRDTM; we will get 
 

  𝑈𝑟+2,𝑖(𝑥) = (
Γ(1+𝑟𝛼)

Γ(1+(2+𝑟)𝛼)
) (

𝜕2

𝜕𝑥2
(𝑈𝑟,𝑖(𝑥)) − ∑ 𝐴𝑟,𝑖

𝑛
𝑟=0 − 2 (

Γ(1+(1+𝑟)𝛼)

Γ(1+𝑟𝛼)
) 𝑈𝑟+1,𝑖 + (

(−2)𝑟

𝑟!
) cosh2 𝑥 −

(
(−2)𝑟

𝑟!
) cosh 𝑥) .                                                              

 
From the initial condition, we write 
 
 𝑈0(𝑥) = 𝑒𝑥 . 
 

Divide the interval [0, 𝑇] into 𝑀 subintervals by using the nodes 𝑡𝑖 = 𝑖ℎ of equal step size ℎ =
𝑇

𝑀
 such 

that [𝑡𝑖−1, 𝑡𝑖], 𝑖 = 1,2, … ,10. After that, the RDTM is used to solve the initial value problem over the 
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interval [0, 𝑡1]. Then, use the initial conditions 𝑢(𝑥, 0) = 𝑓0(𝑥) and  𝑢1(𝑥, 0) =  𝑓1(𝑥) to obtain the 
following approximate solution 
 
𝑢1(𝑥, 𝑡) = ∑ 𝑈𝑟,1(𝑥)𝑡𝛼𝑟 ,𝑅

𝑟=0            
 
where 0 ≤ 𝑡 ≤ 𝑡1. For 𝑖 ≥ 2, we use the initial conditions 𝑢𝑖(𝑥, 𝑡𝑖−1) = 𝑢𝑖−1(𝑥, 𝑡𝑖−1) and 
(𝜕 𝜕𝑡⁄ )𝑢𝑖(𝑥, 𝑡𝑖−1) at each subinterval [𝑡𝑖−1, 𝑡𝑖]. Then RDTM is used to solve the initial value problem 
over the interval [𝑡𝑖−1, 𝑡𝑖], where 𝑡𝑖−1  replaces 𝑡0. This procedure is repeatedly continued to create 
a sequence of approximate solutions 𝑢𝑖(𝑥, 𝑡), where 𝑖 = 1,2, … ,10, for the solution 𝑢(𝑥, 𝑡) such as 
 
𝑢𝑖(𝑥, 𝑡) = ∑ 𝑈𝑟,𝑖(𝑥)(𝑡 − 𝑡𝑖−1)𝛼𝑟 𝑅

𝑟=0          
 
where  𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖]. In fact, the MMRDTM takes the following solution 
 

𝑢(𝑥, 𝑡) = {

𝑢1(𝑥, 𝑡) 𝑡 ∈ [0, 𝑡1]

𝑢2(𝑥, 𝑡)
⋮   

𝑡 ∈ [𝑡1, 𝑡2]
⋮

𝑢𝐾(𝑥, 𝑡)    𝑡 ∈ [𝑡9, 𝑡10].

     

 
Figure 3(a) is the exact solution compare to the approximate solutions by the proposed MMRDTM 

and MRDTM in Figure 3(b) and Figure 3(c) respectively with 𝛼 = 0.5 for the Example 2. The outcomes 
of the approximate solution for 𝛼 = 0.8 are shown in Figure 4(a) for the MMRDTM and Figure 4(b) 
for the MRDTM respectively. From the obtained results, once again the approximations produced by 
the MMRDTM look very close to the exact solutions compared to the MRDTM. 
 

   

(a) Exact solution (b)MMRDTM (c)MRDTM 

Fig. 3. Comparison graphs of semi-analytical methods for 𝛼 = 0.5 with exact solution for Example 2 
 

Table 3 and Table 4 respectively tabulate the error analyses of the solutions yeilded by the 
MMRDTM and MRDTM for Example 2 with different values of 𝛼. Just like the results obtained for the 
Example 1, the applied MMRDTM with 𝛼 = 0.5  and 𝛼 = 0.8 is evidently approximates the exact 
solution with high accuracy compared to the MRDTM for Example 2. 
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(a) (b) 

Fig. 4. Comparison graphs of semi-analytical methods with 𝛼 = 0.8 for Example 2 

 
Table 3 
Error comparison between MMRDTM and MRDTM for Example 2 with 𝛼 = 0.5 
Time, 𝑡 Exact Solution Absolute Error MMRDTM Absolute Error RDTM 

0.1 1.020318167 0 0.8428996819 
0.2 0.9232220555 1.000000000×10-10 0.7546500574 
0.3 0.8353658610 3.041381265×10-10 0.6889462647 
0.4 0.7558702887 1.004987562×10-10 0.6262301629 
0.5 0.6839397204 4.000000000×10-10 0.5561971833 
0.6 0.6188542508 4.000000000×10-10 0.4712445733 
0.7 0.5599624824 8.000000000×10-10 0.3648586583 
0.8 0.5066750067 8.000000000×10-10 0.2310455469 
0.9 0.4584585049 4.200000000×10-9 0.0640865569 
1.0 0.4148304099 6.900000000×10-9 -0.141581026 

 
Table 4 
Error comparison between MMRDTM and RDTM for Example 2 with 𝛼 = 0.8 
Time, 𝑡 Exact Solution Absolute Error MMRDTM Absolute Error RDTM 

0.1 1.020318167 0 0.0554479257 
0.2 0.9232220555 0 0.0606845490 
0.3 0.8353658610 0 0.0536799417 
0.4 0.7558702887 0 0.0413943693 
0.5 0.6839397204 0 0.0270231605 
0.6 0.6188542508 0 0.0125213638 
0.7 0.5599624824 0 0.0005954892 
0.8 0.5066750067 1.0×10-10 0.0108908191 
0.9 0.4584585049 1.0×10-10 0.0168058678 
1.0 0.4148304099 4.0×10-10 0.0165290344 

 
4. Conclusions 
 

We presented a new application of the MMRDTM for solving fractional nonlinear telegraph 
equations (FNLTEs) with source term. We modified the method by substituting the nonlinear term 
with its Adomian polynomials in the multi-step approach. Consequently, the approximated solutions 
are obtained with high accuracy as demonstrated in Example 1 and 2. In a nutshell, MMRDTM 
outperformed the MRDTM to acquire approximate solution for the FNLTEs in terms of practicality, 
consistencency and accuracy. All demonstrated calculations in this paper were obtained by using 
Maple 2022 software. 
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