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The increase of mobile device enhancement grows. With this development, mobile 
phones are supporting many programs, and everyone takes advantage of them. 
Nevertheless, malware applications are increasing more and more so that people can 
come across lots of problems. Android is a mobile operating system that is the most 
used on smart mobile phones. Because it is the most used and open source, it has been 
the target of attackers. Android security is related to the permissions allowed by users 
to the applications. There have been many studies on permission-based Android 
malware detection. In this study, a permission-based Android malware system is 
analyzed. Unlike other studies, we propose a permission weight approach. Each of the 
permissions is given a different score using this approach. Then, K-nearest Neighbor 
(KNN) and Naïve Bayes (NB) algorithms are applied, and the proposed method is 
compared with the previous studies and the expected experimental results of the 
proposed approach will be higher. 
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1. Introduction 
 

Android is the leading operating system for smartphone users. According to Global Stats in 2019 
counter report, there is 74.85% Android operating system used in the smartphone market and 
followed by iOS which is 22.94%. This mobile device operating system is now leading among other 
mobile operating systems. These market share improvements make the Android operating system a 
clear target for malicious people. According to Nokia's Threat Intelligence Report in 2018, there were 
78% of malware detection events in communication service provider networks in 2018. For this 
reason, the development of security measures for the Android operating system is very important. 
High connectivity possibilities, sensor capabilities, and wireless communication facilities expose them 
to a wide variety of attacks. On the other hand, the limited system resources of mobile devices 
present new challenges in malware detection. Unlike other competing smart-mobile device 
platforms, such as iOS, Android allows users to install applications from unverified sources such as 
third-party app stores and file-sharing websites. The malware infection issue has been very serious 
and a recent report indicates that 97% of all mobile malware target Android devices. In 2017 alone, 
over 3.25 million new malicious Android apps have been uncovered. This roughly translates to an 
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introduction of a new malicious Android app every 10 seconds. These malicious apps are created to 
perform different types of attacks in the form of trojans, worms, exploits, and viruses. Based on the 
Symantec report in 2017. Some notorious malicious apps have more than 50 variants, which makes 
it extremely challenging to detect them all. 

In the existing research, malicious software detection methods use static and dynamic 
approaches to obtain application data [3]. The static approach aims to determine malware before 
the run time. It analyses the source files and classifies them according to the desired permissions and 
system specifications. The main advantages of this method are that it is fast, has low system resource 
requirements, and blocks malware without harming the system yet [3]. The weak point of the method 
is that it is only resistant to known methods and cannot prevent zero-day attacks. 
 
2. Literature Review 
 

The Android operating system is widely used with more than a billion of users including all kind 
of services (cell phone, smart phone, TV etc). According to Urcuqui-López et al., [20], The amount of 
sensitive data “using” these technologies has increased the cyber criminal’s interest to develop tools 
and techniques to acquire that information or to disrupt the device’s smooth operation. 

In the study of Utku et al., [21], they proposed a malware detection system which based on 
multilayer perceptron for detection of Android malware. They using dataset consisting of 7210 
applications including malicious applications in Drebin dataset and normal applications obtained 
through the Google Play Store. 

Azmoodeh et al., [6] gave a system that calculates the risk level of applications at the time of 
installation. They used two parameters to calculate the risk level of the application. The first of these 
is the permissions required by the application. The second is the download rates and user ratings on 
the application market. They constructed a risk analysis of the application with a metric obtained 
through these two parameters. Ali et al., [7] have proposed a system called 'Android Application 
Analyzer' that classifies installed applications as malicious or not. 

The system classifies applications according to the permissions they request and offers the option 
of completely removing from the system for malicious applications. The system uses the Naïve Bayes 
algorithm for classification. Tarute et al., [8] worked on a total of 558 Android Application Package 
(APK) files that they obtained from different data sets. A data set consisting of 330 features was 
obtained by writing 1 for the permissions granted by the application and 0 for any other cases. They 
divided the data set by 71% train and 29% test and applied the classification process. By using 6 
different classifiers in the classification phase, they achieved classification success by 90% with NB, 
93% with Bagging, 94% with KNN, 94% with support vector machine, 92% with stochastic gradient 
descent and 94% with decision tree. 

Despite all the investigations that have been conducted, fewer studies have given focus to 
discussing root exploit malware, particularly for Android mobile devices, except for Droidanalyzer 
[27] and Droidexec [28]. This justifies the investigation conducted on root exploits is rare, especially 
involving Android. Unlike Droidanalyzer and DroidExec, this paper aims to adopt machine learning as 
a means to detect it. The Droidanalyzer [27] used an algorithm to calculate the MD5 hash value which 
was cross-referenced in the database of signatures. In comparison, the similarity recognition applied 
by Droidexec [28] used a structural graph constructor (i.e., function–relation graph extraction and 
opcode component graph constructor). Both had also overlooked detecting root exploits with the 
machine learning strategy. 

Previous study presented a four-layer filtering mechanism, an integrated static analysis method 
which includes the application message summarization value (MD5), then a combination of malicious 
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permissions, the dangerous intentions, and dangerous permissions [19]. The main objective of the 
research is to use an intuitive threat-degree model that detects dangerous permissions. They have 
achieved 100% success rate in detection through MD5 and combination permission, while 99% 
success rate in dangerous intention and permissions using 4006 malicious samples in their testing 
experiment. Thus, this method gets a higher accuracy rate using many samples and had 
experimented using the real mobile device. Table 1 below summarized the existing research that are 
related to this research area in term of methodology and their contribution.  
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Table 1 
Literature review summary 

Method Author name & 
(year) 

Methodology Results/ contribution 

Static Şahin et al., [18] They used a requested permission with Relevance Frequency as weighing 
method to the permission, they analyzed 399 samples from dataset. The 
analysis was conducted with 10 fold cross-validation using KNN and NB. 

Their contribution to malware detection method is 
relatively accurate with the use of RF weighting model. 
They have obtained 93% accuracy in KNN while in 91% 
with NB. 

Static Song et al., [19] 
 

This integrated static model used intuitive threat-degree that detects 
dangerous permissions. The model is composed of four layer filtering 
mechanism (MD5, malicious permission, dangerous permission, dangerous 
intentions). This study used a dataset of 4000 malicious samples. 

This model had an excellent result which achieved 100% 
detection rate for MD5 and combination permissions 
while 99% detection rate for dangerous permission and 
dangerous intentions. 

Static López and 
Cadavid [2] 

Using a binary weighting method on the permission to detect the malware 
applications, employing 558 APKs file, they used 330 features from the 
obtained dataset. They have used 6 multiple classifiers (KNN, SVM, DT, NB, 
Bagging, and stochastic gradient descent). 

The highest rate obtained from the 6 classifiers are KNN, 
SVM and Decision Tree which achieved 94% classification 
rate. 

Static Wang et al., [23] Proposed a framework to efficiently categorize malware from benign apps 
in a large app market. They used ensemble classifiers (KNN, SVM, NB, and 
Random Forest) for extracting 11 static features and employ a dataset of 
100,000 benign set and 8,000 malicious app set.  

Their method obtained 82% correctness in classification 
rate for benign and 99% rate for malware application. 

Static Matsudo et al., 
[16]  

They created a risk analysis system for the apps through, first, permissions 
that required by the app when user installed and second, from user ratings 
on the apps market. The aim is to measure the time and precision of the 
app’s permissions. 

This study managed to get the user to be able to 
distinguished malware app quickly. The system is also 
built for non-tech savvy to be able to detect the malapps 
or non-malapps they are about to install. 

Static Almin and 
Chatterjee [3] 

Proposed a system called 'Android Application Analyzer' that classifies 
installed applications if malicious or benign. Used NB in classifying and its 
clustering technique to classify the permission they requested.  

The system allows user to detect the malware in their 
mobile phones and they have given an option to remove 
it. 

Static Yang and Wen, 
[25] 

Used static analysis for Android app with feature engineering. They used a 
combined features from classes.dex which is an executable file and also 
from Android manifest files and use it for classification during 
testing/training. 

This method managed to get 98% accuracy rate using 
Random Forest classifier. 

Static Milosevic et al., 
[17] 

Used static analysis process through source code analysis and multiple 
machine learning to detect malware app.  

Obtained 87.9% accuracy rate using SVM and 95% 
accuracy rate for the combination of code analysis 
machine learning algorithms. 

Static Wang et al., [22] Used DroidEnsemble to detect malware on Android apps through 
structural feature and string features. Used ensembles (KNN, SVM, and 
Random Forest) machine learning. Employed 1296 malapps and 1386 
benign apps to evaluate the performance of the method. 

It obtained 96% on string features alone and 91% with 
structural features. Overall, DroidEnsemble obtained 98% 
detection accuracy with ensemble for both features.  
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Dynamic Feizollah et al., 
[5] 

Used AndroDialysis to evaluate the Android Intents effectiveness as a 
unique feature for detecting malicious applications. They employed 5,560 
malapps and 1,846 benign apps to evaluate the model. 

AndroDialysis obtained the detection rate of 91% 
accuracy. 

Dynamic Ahmad Firdaus 
and Zainal Abidin 
[1] 

He implemented machine learning as a means to detect root exploit 
malware through identification of the system prototype. 

Achieved accuracy rate of 95% and for the performance 
results, the systems obtained the value of 0.627 MB 
application size within in 18 seconds only. 

Dynamic Zaki et al., [26] Used n-gram system call sequence feature to detect malware and benign 
apps. Several filter and wrapper feature selection methods are also 
analyzed and evaluated.  

This results in the increase of False Positive Rate (FPR), 
True Positive Rate (TPR), as well as the Linear-SVM 
classifier Accuracy in the classification of malicious and 
benign mobile malware application. 

Dynamic Shankar et al., 
[11] 

Used Dynamic Taint Analysis (AndroTaint) method to analyze Android 
malapps. This method works without modifying Android platform by using 
automatic tagging. Used 10-fold cross validation to measure the 
effectiveness of the model. 

AndroTaint obtained 90% accuracy rate and the output 
resulted in less false negative and false positive rate. 

Dynamic Mahindru and 
Singh [14] 

Used 123 extracted dynamic permissions from large dataset of 11000 
apps. To evaluate the model, they used multiple machine learning 
classifications such as SL, DT, K-star, RF and NB.   

The model obtained 99% accuracy rate from SL from 
among all the employed classifiers. 

Hybrid Arshad et al., [4] Proposed a model called SAMADroid, which aims to thoroughly investigate 
the detection method. It is a 3-layer hybrid detection system which are, 
Static and Dynamic Analysis; Machine Learning Algorithms; and Local and 
Remote Host.  

The result of the experiment demonstrates that if the 
efficiency in power and storage consumption is ensured, 
SAMADroid obtained high accuracy in malware detection. 

Hybrid Kabakus et al., [9] Proposed Malicious Application Detector for Android or known as mad4a 
to detect the Android apps characteristics.  This is based on analyzing the 
permissions and network log of applications. 

Based on findings from this method, malapps tend to 
disable mobile data connection which is one way to 
detect it. This method also helped informed digital 
investigators of those miscalculated Android malware 
characteristics. 

Hybrid Lindorfer et al., 
[13] 

Proposed ANDRUBIS analysis system that uses dynamic taint tracking to 
detect malapps. It focused on identifying the nature of an application at 
the Dalvik VM as well as system level.   

The system offers investigators a platform based on the 
static features and dynamic behavior of the apps to build 
post-processing methods. 

Hybrid Kuo et al., [10] Used two methods, the characteristics of the permission for static analysis, 
and Application Program Interface (API) from dynamic analysis. Used SVM 
and Random Forest machine learning in classification technique. 

The highest result of the proposed model is 89% accuracy 
rate and 88% True Positive rate correspondingly. 

Hybrid Martín et al., [15] Proposed AndroPyTool, an automated framework which used the large 
OmniDroid dataset. 22,000 features extracted, benign and malware apps 
samples. 

The results of this experiment show the potential usability 
and feasibility of the automated framework. They have 
also offered dataset which is publicly available.  
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3. Methodology 
3.1 Research Framework 
 

By adapting Relevance Frequency as a weighting method, KNN and Naïve Bayes classification 
algorithms are used to evaluate the accuracy of the proposed method as shown in Figure 1. 

 

 
Fig. 1. Proposed framework 

3.2 Performance Measure 
 

A Confusion matrix (refer to Table 2) is used as a technique for summarizing the classification 
algorithm performance. It shows the results summary of prediction on a classification problem. The 
key to a confusion matrix is the summarized number of correct and incorrect predictions from the 
actual classification with count values which are broken down by each class. It shows the insight of 
the errors being made by your classifier as well as the types of errors that have been made. 

 
i. True Positive (TP) is the actual labelled positive sample in the dataset and classified as 

positive in the classification result.  
ii. True Negative (TN) is the negative labelled sample in the dataset and is actually classified 

as negative in the classification result. 
iii. False Positive (FP) is a sample that is actually labelled negative and classified as positive. 
iv. False Negative (FN) is a sample that is actually labelled positive and classified as negative. 

 
In this study, Accuracy and F1-measure will be used to measure the performance of the model. 

As Accuracy is not the only measurement for the model’s accuracy, F1-score is added as it is the most 
commonly used performance measure in the classification method to balance the precision and 
recall. Here, Precision (𝜋), recall (𝜌), F1-score and Accuracy equation are respectively explained. 

 
i. Precision (𝜋): When the model is accurate/precise from those predicted positive and how 

many are actual positive from them. For example, in malware detection, it is the number 
of applications that are correctly classified as malware. Precision uses false positive rate 
calculation as shown in Eq. (1). 

 

𝜋 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                 (1) 

 
ii. Recall (𝜌): It calculates the number of Actual Positives the model had captured by labelling 

it Positive (True Positive). Thus, Eq. (2) focused on the false negative rate. 
 

𝜌 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                                                           (2) 
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iii. F1-measure (F):  Eq. (3) represents the harmonic mean of precision and recall, to balance 
the two equations. It means to reduce both False Positives and False Negatives. 

 

𝐹1 =
2𝜋𝜌

𝜋+𝜌
                                                                                                                                                             (3) 

 
iv. Accuracy: It is used for calculating the accuracy of the model. In this case, the accuracy of 

the system model that detects malware applications is shown in Eq. (4). 
 

𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
               (4) 

 
Table 2 
Confusion matrix 

 
 

Actual 
Positive 

Actual 
Negative 

Predicted Positive  TP FP 
Predicted Negative FN TN 

 

3.3 Used Dataset 
 

The dataset used in this study occurred by Sahin et al., [18] which contained a set of both 
malicious and benign software. It is composed of 200 benign applications and 199 malware apps 
which are originally taken from www.kaggle.com. There are 330 permissions given as features in the 
dataset. Thus, it would be marked as 1 if the permission is found in the application, else, the score is 
marked as 0. Through this process, it obtained the binary vector. The application of the weighing 
method on the dataset is also emphasized.  
 
3.4 Static Analysis 
 

The static approach aims to identify malware applications before their run-time. It is used to 
analyze the file sources and then classify them accordingly to the system specifications and 
permissions. The static method is fast and has a low resource requirement for the system and it also 
blocks the malware without leaving any harm in the system Sahin et al., [18] and Yan and Yan [24]. 
Technically, the main use of static analysis tools is to analyze Android APK files to inspect their various 
components. The following sub-sections discuss several static analysis tools. 

 
4. Result and Discussion 
 

This section will also evaluate the proposed framework in terms of its accuracy and will be 
compared to the study conducted by Sahin et al., [18]. Furthermore, for requested permission, the 
approach used to map the result to the requested permission’s feature matrix is based on 22 
significant permission that was introduced by Li et al., [12]. 

The results for KNN, NB and SVM classification algorithms were tested using the 399 samples of 
the dataset. As previously discussed, the dataset is randomly selected and divided into 70% training 
data and 30% testing data. To ensure the robustness of the machine learning algorithms, the test was 
conducted by running 10-fold cross-validation in the experiment. The results are presented 
accordingly with the average score of the accuracy of every machine learning classification.  
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The experiment tested the performance of every classification model of machine learning after 
applying the weighted score. The first experiment is KNN, followed by NB, and finally the additional 
machine learning to this study, the SVM.  

The accuracy results of every machine learning are explained in the following sections and 
compared with the previous study which was conducted by Sahin et al., [18]. 
 

4.1 KNN Algorithm Classification Results 
 

According to the K-Nearest Neighbor classification algorithm, Sahin et al., [18] obtained average 
results with 10 cross-validation is 93% accuracy. The result in Table 3 for the proposed method shows 
slightly higher than Sahin et al., [18] which is 94% Accuracy. Thus, based on the proposed method 
using the KNN algorithm, there is a 1% average improvement in the model Accuracy. Moreover, given 
the results of 10-fold cross-validation, the most successful result that obtained 99% is in the eighth 
cross-correlation while Sahin’s is in the 5-fold which gives the score of 97%. 

Hence, the proposed method using KNN gets a moderately higher accuracy rate in the 
classification of malware and benign applications. 

 
Table 3 
KNN classification results using RF method 

10-Fold CV Şahin, et al.,  [18] Proposed framework 

CV1 92% 93% 
CV2 92% 90% 

CV3 93% 95% 

CV4 93% 95% 

CV5 97% 95% 
CV6 92% 90% 

CV7 93% 94% 
CV8 94% 99% 
CV9 93% 94% 

CV10 95% 95% 
Average (accuracy) 93% 94% 

 

4.2 NB Algorithm Classification Results 

In the average result of Sahin et al.,[18], the Naïve Bayes classification algorithm obtained 90% 
accuracy with 10 cross-validation. The result presented in Table 4 shows no significant difference in 
accuracy with an average score of 90% from the proposed framework. Thus, based on the proposed 
method using the NB algorithm, it shows the same rate score as the classification method. On the 
other hand, with the results given to the 10-fold cross-validation, the most successful result that 
obtained 99% is in the 9th cross-correlation while Sahin’s obtained the highest rate score of 92% in 
multiple folds. 

It turns out that the NB classifier offers the same performance based on the average score but 
significantly higher in certain folds of cross-validation.  
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Table 4 
NB classification results using RF method 
10-Fold CV Şahin, et al.,  [18] Proposed framework 

CV1 90% 87% 
CV2 87% 95% 

CV3 91% 90% 
CV4 89% 95% 
CV5 92% 89% 
CV6 92% 80% 

CV7 86% 89% 
CV8 92% 85% 
CV9 91% 99% 
CV10 92% 87% 
Average (accuracy) 90% 90% 

 
4.3 SVM Algorithm Classification Results 
 

The main contribution of this study is to employ the third machine learning algorithm which is 
the SVM. Table 5 shows all the results of the machine learning used in the proposed model. One of 
the highlights of these results is the average score of the SVM Accuracy rate. SVM obtained the 
highest average score of 95% in comparison to the other machine learning algorithms. 
 

Table 5 
SVM classification results using RF method 
 Şahin, et al., [18] Proposed framework 

10-Fold CV KNN NB KNN NB SVM 
CV1 92% 90% 86% 87% 93% 
CV2 92% 87% 90% 95% 95% 
CV3 93% 91% 95% 90% 95% 
CV4 93% 89% 95% 95% 96% 
CV5 97% 92% 95% 89% 93% 
CV6 92% 92% 90% 80% 93% 
CV7 93% 86% 90% 89% 93% 
CV8 94% 92% 99% 85% 93% 
CV9 93% 91% 93% 99% 99% 
CV10 95% 92% 95% 87% 97% 
Average (accuracy) 93% 90% 93% 90% 95% 

 
Support Vector Machine demonstrate a higher performance in the classification method out of 

the three machine learning presented. In Sahin et al., [18] study, they presented only two machine 
learning, KNN and NB that were discussed in the previous sections. Thus, the proposed framework 
uses another machine learning to get more accuracy in detecting and classifying malware 
applications.  

As mentioned in the previous section, F1-score is a combination of precision and recall. It is also 
called the harmonious mean of both precision and recall. In a nutshell, the Precision can be 
considered as a measure of the exactness of the classifiers. Thus, low precision could mean a large 
number of False Positives. On the other hand, Recall is the measurement of a classifier's 
completeness and low recall means a great number of False Negatives Tait et al., [29]. Therefore, F1-
score balanced both precision and recall, which gives more accuracy to the performance metrics.  

The result on accuracy of the proposed model is explained on the above table which clearly 
indicated the higher performance rate on the accuracy of SVM. Below in Table 6 shows the F1-score 
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of the proposed framework which obtained a 95% rate for KNN, 90% for NB and 94% for SVM. In 
comparison with Sahin et al., [18], the proposed framework gets a higher F1-score of 2% on KNN but 
obtained a lower score on NB. On the other hand, the added machine learning in this study which is 
SVM obtained a 94% F1-score. It has achieved at least a 1% higher rate than the other machine 
learning classifiers used by Sahin et al., [18]. 
 

 Table 6 
 F1-Score comparison with the proposed framework 
  Şahin, et al., [18] Proposed framework 

KNN NB KNN NB SVM 
F1-score 93% 93% 95% 90% 94% 

 
5. Conclusion 
 

The importance of mobile device security development has increased throughout the years. This 
has been applied to smartphone and tablet users. Since the Android operating system is widely used 
for storing sensitive data, this has become the main target of the attackers using malapps. For this 
reason, a framework in this study is proposed for mobile malware detection. For each permission, 
we applied a weighted score to avoid a sparse matrix problem for the classification of the malware 
and benign apps. Thus, from the results, it has been found that the weighting method offers good 
results in Android malware detection. Using the three machine learning algorithms to classify the 
applications from malware to benign applications. SVM gets a higher rate with a score of 97% 
accuracy compared to other machine learning methods. It was followed by the KNN which obtained 
95% indicating a slightly higher accuracy in comparison to the previous studies. In addition, KNN gets 
a higher score of 95% which gives a 2% improvement for the F1-score. For future studies, a large 
number of datasets can be tested using the proposed framework to test the model’s accuracy as well 
as using different machine learning algorithms. 
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