

Journal of Advanced Research in Applied Sciences and Engineering Technology 33, Issue 3 (2024) 86-97

86

Journal of Advanced Research in Applied

Sciences and Engineering Technology

Journal homepage:
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index

ISSN: 2462-1943

Android Malware Detection using Permission Based Static Analysis

Noor Afiza Mohd Ariffin1,*, Hanna Pungo Casinto1

1 Faculty of Computer Science and Information Technology, University of Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

ARTICLE INFO ABSTRACT

Article history:
Received 5 July 2023
Received in revised form 18 October 2023
Accepted 27 October 2023
Available online 12 November 2023

The increase of mobile device enhancement grows. With this development, mobile
phones are supporting many programs, and everyone takes advantage of them.
Nevertheless, malware applications are increasing more and more so that people can
come across lots of problems. Android is a mobile operating system that is the most
used on smart mobile phones. Because it is the most used and open source, it has been
the target of attackers. Android security is related to the permissions allowed by users
to the applications. There have been many studies on permission-based Android
malware detection. In this study, a permission-based Android malware system is
analyzed. Unlike other studies, we propose a permission weight approach. Each of the
permissions is given a different score using this approach. Then, K-nearest Neighbor
(KNN) and Naïve Bayes (NB) algorithms are applied, and the proposed method is
compared with the previous studies and the expected experimental results of the
proposed approach will be higher.

Keywords:
Android; malware detection; static
analysis; permission weight

1. Introduction

Android is the leading operating system for smartphone users. According to Global Stats in 2019
counter report, there is 74.85% Android operating system used in the smartphone market and
followed by iOS which is 22.94%. This mobile device operating system is now leading among other
mobile operating systems. These market share improvements make the Android operating system a
clear target for malicious people. According to Nokia's Threat Intelligence Report in 2018, there were
78% of malware detection events in communication service provider networks in 2018. For this
reason, the development of security measures for the Android operating system is very important.
High connectivity possibilities, sensor capabilities, and wireless communication facilities expose them
to a wide variety of attacks. On the other hand, the limited system resources of mobile devices
present new challenges in malware detection. Unlike other competing smart-mobile device
platforms, such as iOS, Android allows users to install applications from unverified sources such as
third-party app stores and file-sharing websites. The malware infection issue has been very serious
and a recent report indicates that 97% of all mobile malware target Android devices. In 2017 alone,
over 3.25 million new malicious Android apps have been uncovered. This roughly translates to an

* Corresponding author.
E-mail address: noorafiza@upm.edu.my

https://doi.org/10.37934/araset.33.3.8697

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 33, Issue 3 (2024) 86-97

87

introduction of a new malicious Android app every 10 seconds. These malicious apps are created to
perform different types of attacks in the form of trojans, worms, exploits, and viruses. Based on the
Symantec report in 2017. Some notorious malicious apps have more than 50 variants, which makes
it extremely challenging to detect them all.

In the existing research, malicious software detection methods use static and dynamic
approaches to obtain application data [3]. The static approach aims to determine malware before
the run time. It analyses the source files and classifies them according to the desired permissions and
system specifications. The main advantages of this method are that it is fast, has low system resource
requirements, and blocks malware without harming the system yet [3]. The weak point of the method
is that it is only resistant to known methods and cannot prevent zero-day attacks.

2. Literature Review

The Android operating system is widely used with more than a billion of users including all kind
of services (cell phone, smart phone, TV etc). According to Urcuqui-López et al., [20], The amount of
sensitive data “using” these technologies has increased the cyber criminal’s interest to develop tools
and techniques to acquire that information or to disrupt the device’s smooth operation.

In the study of Utku et al., [21], they proposed a malware detection system which based on
multilayer perceptron for detection of Android malware. They using dataset consisting of 7210
applications including malicious applications in Drebin dataset and normal applications obtained
through the Google Play Store.

Azmoodeh et al., [6] gave a system that calculates the risk level of applications at the time of
installation. They used two parameters to calculate the risk level of the application. The first of these
is the permissions required by the application. The second is the download rates and user ratings on
the application market. They constructed a risk analysis of the application with a metric obtained
through these two parameters. Ali et al., [7] have proposed a system called 'Android Application
Analyzer' that classifies installed applications as malicious or not.

The system classifies applications according to the permissions they request and offers the option
of completely removing from the system for malicious applications. The system uses the Naïve Bayes
algorithm for classification. Tarute et al., [8] worked on a total of 558 Android Application Package
(APK) files that they obtained from different data sets. A data set consisting of 330 features was
obtained by writing 1 for the permissions granted by the application and 0 for any other cases. They
divided the data set by 71% train and 29% test and applied the classification process. By using 6
different classifiers in the classification phase, they achieved classification success by 90% with NB,
93% with Bagging, 94% with KNN, 94% with support vector machine, 92% with stochastic gradient
descent and 94% with decision tree.

Despite all the investigations that have been conducted, fewer studies have given focus to
discussing root exploit malware, particularly for Android mobile devices, except for Droidanalyzer
[27] and Droidexec [28]. This justifies the investigation conducted on root exploits is rare, especially
involving Android. Unlike Droidanalyzer and DroidExec, this paper aims to adopt machine learning as
a means to detect it. The Droidanalyzer [27] used an algorithm to calculate the MD5 hash value which
was cross-referenced in the database of signatures. In comparison, the similarity recognition applied
by Droidexec [28] used a structural graph constructor (i.e., function–relation graph extraction and
opcode component graph constructor). Both had also overlooked detecting root exploits with the
machine learning strategy.

Previous study presented a four-layer filtering mechanism, an integrated static analysis method
which includes the application message summarization value (MD5), then a combination of malicious

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 33, Issue 3 (2024) 86-97

88

permissions, the dangerous intentions, and dangerous permissions [19]. The main objective of the
research is to use an intuitive threat-degree model that detects dangerous permissions. They have
achieved 100% success rate in detection through MD5 and combination permission, while 99%
success rate in dangerous intention and permissions using 4006 malicious samples in their testing
experiment. Thus, this method gets a higher accuracy rate using many samples and had
experimented using the real mobile device. Table 1 below summarized the existing research that are
related to this research area in term of methodology and their contribution.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 33, Issue 3 (2024) 86-97

89

Table 1
Literature review summary

Method Author name &
(year)

Methodology Results/ contribution

Static Şahin et al., [18] They used a requested permission with Relevance Frequency as weighing
method to the permission, they analyzed 399 samples from dataset. The
analysis was conducted with 10 fold cross-validation using KNN and NB.

Their contribution to malware detection method is
relatively accurate with the use of RF weighting model.
They have obtained 93% accuracy in KNN while in 91%
with NB.

Static Song et al., [19]

This integrated static model used intuitive threat-degree that detects
dangerous permissions. The model is composed of four layer filtering
mechanism (MD5, malicious permission, dangerous permission, dangerous
intentions). This study used a dataset of 4000 malicious samples.

This model had an excellent result which achieved 100%
detection rate for MD5 and combination permissions
while 99% detection rate for dangerous permission and
dangerous intentions.

Static López and
Cadavid [2]

Using a binary weighting method on the permission to detect the malware
applications, employing 558 APKs file, they used 330 features from the
obtained dataset. They have used 6 multiple classifiers (KNN, SVM, DT, NB,
Bagging, and stochastic gradient descent).

The highest rate obtained from the 6 classifiers are KNN,
SVM and Decision Tree which achieved 94% classification
rate.

Static Wang et al., [23] Proposed a framework to efficiently categorize malware from benign apps
in a large app market. They used ensemble classifiers (KNN, SVM, NB, and
Random Forest) for extracting 11 static features and employ a dataset of
100,000 benign set and 8,000 malicious app set.

Their method obtained 82% correctness in classification
rate for benign and 99% rate for malware application.

Static Matsudo et al.,
[16]

They created a risk analysis system for the apps through, first, permissions
that required by the app when user installed and second, from user ratings
on the apps market. The aim is to measure the time and precision of the
app’s permissions.

This study managed to get the user to be able to
distinguished malware app quickly. The system is also
built for non-tech savvy to be able to detect the malapps
or non-malapps they are about to install.

Static Almin and
Chatterjee [3]

Proposed a system called 'Android Application Analyzer' that classifies
installed applications if malicious or benign. Used NB in classifying and its
clustering technique to classify the permission they requested.

The system allows user to detect the malware in their
mobile phones and they have given an option to remove
it.

Static Yang and Wen,
[25]

Used static analysis for Android app with feature engineering. They used a
combined features from classes.dex which is an executable file and also
from Android manifest files and use it for classification during
testing/training.

This method managed to get 98% accuracy rate using
Random Forest classifier.

Static Milosevic et al.,
[17]

Used static analysis process through source code analysis and multiple
machine learning to detect malware app.

Obtained 87.9% accuracy rate using SVM and 95%
accuracy rate for the combination of code analysis
machine learning algorithms.

Static Wang et al., [22] Used DroidEnsemble to detect malware on Android apps through
structural feature and string features. Used ensembles (KNN, SVM, and
Random Forest) machine learning. Employed 1296 malapps and 1386
benign apps to evaluate the performance of the method.

It obtained 96% on string features alone and 91% with
structural features. Overall, DroidEnsemble obtained 98%
detection accuracy with ensemble for both features.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 33, Issue 3 (2024) 86-97

90

Dynamic Feizollah et al.,
[5]

Used AndroDialysis to evaluate the Android Intents effectiveness as a
unique feature for detecting malicious applications. They employed 5,560
malapps and 1,846 benign apps to evaluate the model.

AndroDialysis obtained the detection rate of 91%
accuracy.

Dynamic Ahmad Firdaus
and Zainal Abidin
[1]

He implemented machine learning as a means to detect root exploit
malware through identification of the system prototype.

Achieved accuracy rate of 95% and for the performance
results, the systems obtained the value of 0.627 MB
application size within in 18 seconds only.

Dynamic Zaki et al., [26] Used n-gram system call sequence feature to detect malware and benign
apps. Several filter and wrapper feature selection methods are also
analyzed and evaluated.

This results in the increase of False Positive Rate (FPR),
True Positive Rate (TPR), as well as the Linear-SVM
classifier Accuracy in the classification of malicious and
benign mobile malware application.

Dynamic Shankar et al.,
[11]

Used Dynamic Taint Analysis (AndroTaint) method to analyze Android
malapps. This method works without modifying Android platform by using
automatic tagging. Used 10-fold cross validation to measure the
effectiveness of the model.

AndroTaint obtained 90% accuracy rate and the output
resulted in less false negative and false positive rate.

Dynamic Mahindru and
Singh [14]

Used 123 extracted dynamic permissions from large dataset of 11000
apps. To evaluate the model, they used multiple machine learning
classifications such as SL, DT, K-star, RF and NB.

The model obtained 99% accuracy rate from SL from
among all the employed classifiers.

Hybrid Arshad et al., [4] Proposed a model called SAMADroid, which aims to thoroughly investigate
the detection method. It is a 3-layer hybrid detection system which are,
Static and Dynamic Analysis; Machine Learning Algorithms; and Local and
Remote Host.

The result of the experiment demonstrates that if the
efficiency in power and storage consumption is ensured,
SAMADroid obtained high accuracy in malware detection.

Hybrid Kabakus et al., [9] Proposed Malicious Application Detector for Android or known as mad4a
to detect the Android apps characteristics. This is based on analyzing the
permissions and network log of applications.

Based on findings from this method, malapps tend to
disable mobile data connection which is one way to
detect it. This method also helped informed digital
investigators of those miscalculated Android malware
characteristics.

Hybrid Lindorfer et al.,
[13]

Proposed ANDRUBIS analysis system that uses dynamic taint tracking to
detect malapps. It focused on identifying the nature of an application at
the Dalvik VM as well as system level.

The system offers investigators a platform based on the
static features and dynamic behavior of the apps to build
post-processing methods.

Hybrid Kuo et al., [10] Used two methods, the characteristics of the permission for static analysis,
and Application Program Interface (API) from dynamic analysis. Used SVM
and Random Forest machine learning in classification technique.

The highest result of the proposed model is 89% accuracy
rate and 88% True Positive rate correspondingly.

Hybrid Martín et al., [15] Proposed AndroPyTool, an automated framework which used the large
OmniDroid dataset. 22,000 features extracted, benign and malware apps
samples.

The results of this experiment show the potential usability
and feasibility of the automated framework. They have
also offered dataset which is publicly available.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 33, Issue 3 (2024) 86-97

91

3. Methodology
3.1 Research Framework

By adapting Relevance Frequency as a weighting method, KNN and Naïve Bayes classification
algorithms are used to evaluate the accuracy of the proposed method as shown in Figure 1.

Fig. 1. Proposed framework

3.2 Performance Measure

A Confusion matrix (refer to Table 2) is used as a technique for summarizing the classification
algorithm performance. It shows the results summary of prediction on a classification problem. The
key to a confusion matrix is the summarized number of correct and incorrect predictions from the
actual classification with count values which are broken down by each class. It shows the insight of
the errors being made by your classifier as well as the types of errors that have been made.

i. True Positive (TP) is the actual labelled positive sample in the dataset and classified as

positive in the classification result.
ii. True Negative (TN) is the negative labelled sample in the dataset and is actually classified

as negative in the classification result.
iii. False Positive (FP) is a sample that is actually labelled negative and classified as positive.
iv. False Negative (FN) is a sample that is actually labelled positive and classified as negative.

In this study, Accuracy and F1-measure will be used to measure the performance of the model.

As Accuracy is not the only measurement for the model’s accuracy, F1-score is added as it is the most
commonly used performance measure in the classification method to balance the precision and
recall. Here, Precision (𝜋), recall (𝜌), F1-score and Accuracy equation are respectively explained.

i. Precision (𝜋): When the model is accurate/precise from those predicted positive and how

many are actual positive from them. For example, in malware detection, it is the number
of applications that are correctly classified as malware. Precision uses false positive rate
calculation as shown in Eq. (1).

𝜋 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1)

ii. Recall (𝜌): It calculates the number of Actual Positives the model had captured by labelling

it Positive (True Positive). Thus, Eq. (2) focused on the false negative rate.

𝜌 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2)

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 33, Issue 3 (2024) 86-97

92

iii. F1-measure (F): Eq. (3) represents the harmonic mean of precision and recall, to balance
the two equations. It means to reduce both False Positives and False Negatives.

𝐹1 =
2𝜋𝜌

𝜋+𝜌
 (3)

iv. Accuracy: It is used for calculating the accuracy of the model. In this case, the accuracy of

the system model that detects malware applications is shown in Eq. (4).

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (4)

Table 2
Confusion matrix

Actual
Positive

Actual
Negative

Predicted Positive TP FP
Predicted Negative FN TN

3.3 Used Dataset

The dataset used in this study occurred by Sahin et al., [18] which contained a set of both
malicious and benign software. It is composed of 200 benign applications and 199 malware apps
which are originally taken from www.kaggle.com. There are 330 permissions given as features in the
dataset. Thus, it would be marked as 1 if the permission is found in the application, else, the score is
marked as 0. Through this process, it obtained the binary vector. The application of the weighing
method on the dataset is also emphasized.

3.4 Static Analysis

The static approach aims to identify malware applications before their run-time. It is used to
analyze the file sources and then classify them accordingly to the system specifications and
permissions. The static method is fast and has a low resource requirement for the system and it also
blocks the malware without leaving any harm in the system Sahin et al., [18] and Yan and Yan [24].
Technically, the main use of static analysis tools is to analyze Android APK files to inspect their various
components. The following sub-sections discuss several static analysis tools.

4. Result and Discussion

This section will also evaluate the proposed framework in terms of its accuracy and will be
compared to the study conducted by Sahin et al., [18]. Furthermore, for requested permission, the
approach used to map the result to the requested permission’s feature matrix is based on 22
significant permission that was introduced by Li et al., [12].

The results for KNN, NB and SVM classification algorithms were tested using the 399 samples of
the dataset. As previously discussed, the dataset is randomly selected and divided into 70% training
data and 30% testing data. To ensure the robustness of the machine learning algorithms, the test was
conducted by running 10-fold cross-validation in the experiment. The results are presented
accordingly with the average score of the accuracy of every machine learning classification.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 33, Issue 3 (2024) 86-97

93

The experiment tested the performance of every classification model of machine learning after
applying the weighted score. The first experiment is KNN, followed by NB, and finally the additional
machine learning to this study, the SVM.

The accuracy results of every machine learning are explained in the following sections and
compared with the previous study which was conducted by Sahin et al., [18].

4.1 KNN Algorithm Classification Results

According to the K-Nearest Neighbor classification algorithm, Sahin et al., [18] obtained average
results with 10 cross-validation is 93% accuracy. The result in Table 3 for the proposed method shows
slightly higher than Sahin et al., [18] which is 94% Accuracy. Thus, based on the proposed method
using the KNN algorithm, there is a 1% average improvement in the model Accuracy. Moreover, given
the results of 10-fold cross-validation, the most successful result that obtained 99% is in the eighth
cross-correlation while Sahin’s is in the 5-fold which gives the score of 97%.

Hence, the proposed method using KNN gets a moderately higher accuracy rate in the
classification of malware and benign applications.

Table 3
KNN classification results using RF method

10-Fold CV Şahin, et al., [18] Proposed framework

CV1 92% 93%
CV2 92% 90%

CV3 93% 95%

CV4 93% 95%

CV5 97% 95%
CV6 92% 90%

CV7 93% 94%
CV8 94% 99%
CV9 93% 94%

CV10 95% 95%
Average (accuracy) 93% 94%

4.2 NB Algorithm Classification Results

In the average result of Sahin et al.,[18], the Naïve Bayes classification algorithm obtained 90%
accuracy with 10 cross-validation. The result presented in Table 4 shows no significant difference in
accuracy with an average score of 90% from the proposed framework. Thus, based on the proposed
method using the NB algorithm, it shows the same rate score as the classification method. On the
other hand, with the results given to the 10-fold cross-validation, the most successful result that
obtained 99% is in the 9th cross-correlation while Sahin’s obtained the highest rate score of 92% in
multiple folds.

It turns out that the NB classifier offers the same performance based on the average score but
significantly higher in certain folds of cross-validation.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 33, Issue 3 (2024) 86-97

94

Table 4
NB classification results using RF method
10-Fold CV Şahin, et al., [18] Proposed framework

CV1 90% 87%
CV2 87% 95%

CV3 91% 90%
CV4 89% 95%
CV5 92% 89%
CV6 92% 80%

CV7 86% 89%
CV8 92% 85%
CV9 91% 99%
CV10 92% 87%
Average (accuracy) 90% 90%

4.3 SVM Algorithm Classification Results

The main contribution of this study is to employ the third machine learning algorithm which is
the SVM. Table 5 shows all the results of the machine learning used in the proposed model. One of
the highlights of these results is the average score of the SVM Accuracy rate. SVM obtained the
highest average score of 95% in comparison to the other machine learning algorithms.

Table 5
SVM classification results using RF method
 Şahin, et al., [18] Proposed framework

10-Fold CV KNN NB KNN NB SVM
CV1 92% 90% 86% 87% 93%
CV2 92% 87% 90% 95% 95%
CV3 93% 91% 95% 90% 95%
CV4 93% 89% 95% 95% 96%
CV5 97% 92% 95% 89% 93%
CV6 92% 92% 90% 80% 93%
CV7 93% 86% 90% 89% 93%
CV8 94% 92% 99% 85% 93%
CV9 93% 91% 93% 99% 99%
CV10 95% 92% 95% 87% 97%
Average (accuracy) 93% 90% 93% 90% 95%

Support Vector Machine demonstrate a higher performance in the classification method out of

the three machine learning presented. In Sahin et al., [18] study, they presented only two machine
learning, KNN and NB that were discussed in the previous sections. Thus, the proposed framework
uses another machine learning to get more accuracy in detecting and classifying malware
applications.

As mentioned in the previous section, F1-score is a combination of precision and recall. It is also
called the harmonious mean of both precision and recall. In a nutshell, the Precision can be
considered as a measure of the exactness of the classifiers. Thus, low precision could mean a large
number of False Positives. On the other hand, Recall is the measurement of a classifier's
completeness and low recall means a great number of False Negatives Tait et al., [29]. Therefore, F1-
score balanced both precision and recall, which gives more accuracy to the performance metrics.

The result on accuracy of the proposed model is explained on the above table which clearly
indicated the higher performance rate on the accuracy of SVM. Below in Table 6 shows the F1-score

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 33, Issue 3 (2024) 86-97

95

of the proposed framework which obtained a 95% rate for KNN, 90% for NB and 94% for SVM. In
comparison with Sahin et al., [18], the proposed framework gets a higher F1-score of 2% on KNN but
obtained a lower score on NB. On the other hand, the added machine learning in this study which is
SVM obtained a 94% F1-score. It has achieved at least a 1% higher rate than the other machine
learning classifiers used by Sahin et al., [18].

 Table 6
 F1-Score comparison with the proposed framework
 Şahin, et al., [18] Proposed framework

KNN NB KNN NB SVM
F1-score 93% 93% 95% 90% 94%

5. Conclusion

The importance of mobile device security development has increased throughout the years. This
has been applied to smartphone and tablet users. Since the Android operating system is widely used
for storing sensitive data, this has become the main target of the attackers using malapps. For this
reason, a framework in this study is proposed for mobile malware detection. For each permission,
we applied a weighted score to avoid a sparse matrix problem for the classification of the malware
and benign apps. Thus, from the results, it has been found that the weighting method offers good
results in Android malware detection. Using the three machine learning algorithms to classify the
applications from malware to benign applications. SVM gets a higher rate with a score of 97%
accuracy compared to other machine learning methods. It was followed by the KNN which obtained
95% indicating a slightly higher accuracy in comparison to the previous studies. In addition, KNN gets
a higher score of 95% which gives a 2% improvement for the F1-score. For future studies, a large
number of datasets can be tested using the proposed framework to test the model’s accuracy as well
as using different machine learning algorithms.

Acknowledgement
This research was funded by a grant from Universiti Putra Malaysia (IPM Grant 9679500).

References
[1] Ahmad Firdaus, Zainal Abidin. "Mobile malware anomaly-based detection systems using static analysis

features/Ahmad Firdaus Zainal Abidin." PhD diss., University of Malaya, 2017.
[2] Lopez, Christian Camilo Urcuqui, and Andres Navarro Cadavid. "Machine learning classifiers for android malware

analysis." In 2016 IEEE Colombian Conference on Communications and Computing (COLCOM), pp. 1-6. IEEE, 2016.
https://doi.org/10.1109/ColComCon.2016.7516385

[3] Almin, Shaikh Bushra, and Madhumita Chatterjee. "A novel approach to detect android malware." Procedia
Computer Science 45 (2015): 407-417. https://doi.org/10.1016/j.procs.2015.03.170

[4] Arshad, Saba, Munam A. Shah, Abdul Wahid, Amjad Mehmood, Houbing Song, and Hongnian Yu. "SAMADroid: a
novel 3-level hybrid malware detection model for android operating system." IEEE Access 6 (2018): 4321-4339.
https://doi.org/10.1109/ACCESS.2018.2792941

[5] Feizollah, Ali, Nor Badrul Anuar, Rosli Salleh, Guillermo Suarez-Tangil, and Steven Furnell. "Androdialysis: Analysis
of android intent effectiveness in malware detection." computers & security 65 (2017): 121-134.
https://doi.org/10.1016/j.cose.2016.11.007

[6] Azmoodeh, Amin, Ali Dehghantanha, and Kim-Kwang Raymond Choo. "Robust malware detection for internet of
(battlefield) things devices using deep eigenspace learning." IEEE transactions on sustainable computing 4, no. 1
(2018): 88-95. https://doi.org/10.1109/TSUSC.2018.2809665

[7] Ali, Feizollah. "A malware analysis and detection system for mobile devices/Ali Feizollah." PhD diss., University of
Malaya, 2017.

https://doi.org/10.1109/ColComCon.2016.7516385
https://doi.org/10.1016/j.procs.2015.03.170
https://doi.org/10.1109/ACCESS.2018.2792941
https://doi.org/10.1016/j.cose.2016.11.007
https://doi.org/10.1109/TSUSC.2018.2809665

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 33, Issue 3 (2024) 86-97

96

[8] Tarute, Asta, Shahrokh Nikou, and Rimantas Gatautis. "Mobile application driven consumer
engagement." Telematics and Informatics 34, no. 4 (2017): 145-156. https://doi.org/10.1016/j.tele.2017.01.006

[9] Kabakus, Abdullah Talha, and Ibrahim Alper Dogru. "An in-depth analysis of Android malware using hybrid
techniques." Digital Investigation 24 (2018): 25-33. https://doi.org/10.1016/j.diin.2018.01.001

[10] Kuo, Wen-Chung, Tsung-Ping Liu, and Chun-Cheng Wang. "Study on android hybrid malware detection based on
machine learning." In 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS),
pp. 31-35. IEEE, 2019. https://doi.org/10.1109/CCOMS.2019.8821665

[11] Shankar, Venkatesh Gauri, Gaurav Somani, Manoj Singh Gaur, Vijay Laxmi, and Mauro Conti. "AndroTaint: An
efficient android malware detection framework using dynamic taint analysis." 2017 ISEA Asia security and privacy
(ISEASP) (2017): 1-13. https://doi.org/10.1109/ISEASP.2017.7976989

[12] Li, Jin, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-An, and Heng Ye. "Significant permission identification for
machine-learning-based android malware detection." IEEE Transactions on Industrial Informatics 14, no. 7 (2018):
3216-3225. https://doi.org/10.1109/TII.2017.2789219

[13] Lindorfer, Martina, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick Fratantonio, Victor Van Der Veen,
and Christian Platzer. "Andrubis--1,000,000 apps later: A view on current Android malware behaviors." In 2014
third international workshop on building analysis datasets and gathering experience returns for security (BADGERS),
pp. 3-17. IEEE, 2014. https://doi.org/10.1109/BADGERS.2014.7

[14] Mahindru, Arvind, and Paramvir Singh. "Dynamic permissions based android malware detection using machine
learning techniques." In Proceedings of the 10th innovations in software engineering conference, pp. 202-210.
2017. https://doi.org/10.1145/3021460.3021485

[15] Martín, Alejandro, Raúl Lara-Cabrera, and David Camacho. "Android malware detection through hybrid features
fusion and ensemble classifiers: The AndroPyTool framework and the OmniDroid dataset." Information Fusion 52
(2019): 128-142. https://doi.org/10.1016/j.inffus.2018.12.006

[16] Matsudo, Takayuki, Eiichiro Kodama, Jiahong Wang, and Toyoo Takata. "A proposal of security advisory system at
the time of the installation of applications on Android OS." In 2012 15th international conference on network-based
information systems, pp. 261-267. IEEE, 2012. https://doi.org/10.1109/NBiS.2012.110

[17] Milosevic, Nikola, Ali Dehghantanha, and Kim-Kwang Raymond Choo. "Machine learning aided Android malware
classification." Computers & Electrical Engineering 61 (2017): 266-274.
https://doi.org/10.1016/j.compeleceng.2017.02.013

[18] Şahın, Durmuş Özkan, Oğuz Emre Kural, Sedat Akleylek, and Erdal Kiliç. "New results on permission based static
analysis for Android malware." In 2018 6th International Symposium on Digital Forensic and Security (ISDFS), pp. 1-
4. IEEE, 2018. https://doi.org/10.1109/ISDFS.2018.8355377

[19] Song, Jun, Chunling Han, Kaixin Wang, Jian Zhao, Rajiv Ranjan, and Lizhe Wang. "An integrated static detection and
analysis framework for android." Pervasive and Mobile Computing 32 (2016): 15-25.
https://doi.org/10.1016/j.pmcj.2016.03.003

[20] Urcuqui-López, Christian, and Andrés Navarro Cadavid. "Framework for malware analysis in Android." Sistemas y
Telemática 14, no. 37 (2016): 45-56. https://doi.org/10.18046/syt.v14i37.2241

[21] Utku, Anil, Ibrahim Alper Dogru, and M. Ali Akcayol. "Permission based android malware detection with multilayer
perceptron." In 2018 26th Signal Processing and Communications Applications Conference (SIU), pp. 1-4. IEEE, 2018.
https://doi.org/10.1109/SIU.2018.8404302

[22] Wang, Wei, Zhenzhen Gao, Meichen Zhao, Yidong Li, Jiqiang Liu, and Xiangliang Zhang. "DroidEnsemble: Detecting
Android malicious applications with ensemble of string and structural static features." IEEE Access 6 (2018): 31798-
31807. https://doi.org/10.1109/ACCESS.2018.2835654

[23] Wang, Wei, Yuanyuan Li, Xing Wang, Jiqiang Liu, and Xiangliang Zhang. "Detecting Android malicious apps and
categorizing benign apps with ensemble of classifiers." Future generation computer systems 78 (2018): 987-994.
https://doi.org/10.1016/j.future.2017.01.019

[24] Yan, Ping, and Zheng Yan. "A survey on dynamic mobile malware detection." Software Quality Journal 26, no. 3
(2018): 891-919. https://doi.org/10.1007/s11219-017-9368-4

[25] Yang, Manzhi, and QiaoYan Wen. "Detecting android malware with intensive feature engineering." In 2016 7th IEEE
International Conference on Software Engineering and Service Science (ICSESS), pp. 157-161. IEEE, 2016.
https://doi.org/10.1109/ICSESS.2016.7883038

[26] Mas' ud, Mohd Zaki, Shahrin Sahib, Mohd Faizal Abdollah, Siti Rahayu Selamat, and Choo Yun Huoy. "A Comparative
Study on Feature Selection Method for N-gram Mobile Malware Detection." Int. J. Netw. Secur. 19, no. 5 (2017):
727-733.

[27] Seo, Seung-Hyun, Aditi Gupta, Asmaa Mohamed Sallam, Elisa Bertino, and Kangbin Yim. "Detecting mobile malware
threats to homeland security through static analysis." Journal of Network and Computer Applications 38 (2014): 43-
53. https://doi.org/10.1016/j.jnca.2013.05.008

https://doi.org/10.1016/j.tele.2017.01.006
https://doi.org/10.1016/j.diin.2018.01.001
https://doi.org/10.1109/CCOMS.2019.8821665
https://doi.org/10.1109/ISEASP.2017.7976989
https://doi.org/10.1109/TII.2017.2789219
https://doi.org/10.1109/BADGERS.2014.7
https://doi.org/10.1145/3021460.3021485
https://doi.org/10.1016/j.inffus.2018.12.006
https://doi.org/10.1109/NBiS.2012.110
https://doi.org/10.1016/j.compeleceng.2017.02.013
https://doi.org/10.1109/ISDFS.2018.8355377
https://doi.org/10.1016/j.pmcj.2016.03.003
https://doi.org/10.18046/syt.v14i37.2241
https://doi.org/10.1109/SIU.2018.8404302
https://doi.org/10.1109/ACCESS.2018.2835654
https://doi.org/10.1016/j.future.2017.01.019
https://doi.org/10.1007/s11219-017-9368-4
https://doi.org/10.1109/ICSESS.2016.7883038
https://doi.org/10.1016/j.jnca.2013.05.008

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 33, Issue 3 (2024) 86-97

97

[28] Wei, Te-En, Hsiao-Rong Tyan, Albert B. Jeng, Hahn-Ming Lee, Hong-Yuan Mark Liao, and Jiunn-Chin Wang.
"DroidExec: root exploit malware recognition against wide variability via folding redundant function-relation
graph." In 2015 17th International Conference on Advanced Communication Technology (ICACT), pp. 161-169. IEEE,
2015. https://doi.org/10.1109/ICACT.2015.7224777

[29] Tait, Kathryn-Ann, Jan Sher Khan, Fehaid Alqahtani, Awais Aziz Shah, Fadia Ali Khan, Mujeeb Ur Rehman, Wadii
Boulila, and Jawad Ahmad. "Intrusion detection using machine learning techniques: an experimental comparison."
In 2021 International Congress of Advanced Technology and Engineering (ICOTEN), pp. 1-10. IEEE, 2021.
https://doi.org/10.1109/ICOTEN52080.2021.9493543

https://doi.org/10.1109/ICACT.2015.7224777
https://doi.org/10.1109/ICOTEN52080.2021.9493543

