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Motion artifacts in ECG signals recorded during physical exercises activities can affect 
the diagnosis of arrhythmia. To minimize the faults in arrhythmia detection, it was 
important to choose accurate algorithm for detecting QRS in ECG signal with noises 
produced during physical movements of the patients. Therefore, choosing the QRS 
detection algorithm with good competency for the signal affected by noises and motion 
artifacts is needed for arrhythmia detection analysis. The QRS detection based on 
Discrete Wavelet Transform was implemented and presented in this paper.  The 
performance of the algorithm was assessed using the MIT-BIH Arrhythmia Database 
and MIT-BIH Noise Stress Database. For the MIT-BIH Arrhythmia database, the average 
Sensitivity (Se) and positive Predictivity (+P) of the algorithm were 98.24% and 98.61%, 
respectively. The algorithms had a lower average false negative rate (FNR) than the pan 
Tompkins algorithm when applied to the MIT-BIH noise stress test database, which was 
0.033% for record 118 and 0.032% for record 119, respectively.  The results 
demonstrated that the algorithms perform well when dealing with arrhythmia data and 
motion artifact at various levels of signal to noise ratio. 
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1. Introduction 
 

The electrocardiogram (ECG) signal provides information about the condition of the heart 
through the representation of the electrical waves of the cardiac cycle [1]. It has been used to detect 
abnormalities in cardiovascular for long-term monitoring by cardiologists for a variety of diagnosis 
purposes including the detection of arrhythmia [2,3]. However, the performance of arrhythmia 
detection can be affected in ECG signals recorded during running and physical exercises activities. 
This is because of the signal producing contaminated with noises arising from body movements 
activities [1,4]. 

The QRS complex is the prominent and peculiar feature of an ECG signal [3]. One of the important 
steps can provide substantial input to improve arrhythmia detection is accurately identified of the 
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QRS complex in heartbeat since it directly influences the final detection process [5,6]. ECG signal 
variability changes over time and relying on individual activities, exhibit stochastic and nonstationary 
behaviour that reflect the variations in the amplitude of the heartbeats. However, the signal quality 
degraded by real-world motion artifacts occurs unpredictably and directly interferes with the nature 
of the signal that can impair the reliability of the QRS detection and diagnosis process [5]. Even 
though, numerous QRS detection techniques have previously been proposed and have become even 
more prevalent recently [6,7-9]. Due to the physical noise variation of the patients, choosing the QRS 
detection algorithm with good competency with the noisy data is needed in the analysis of 
arrhythmia detection [10,11]. 

Among the various QRS detection techniques, the Wavelet transforms a considered be less 
computational and complex but contributes good efficiency for analysis ECG especially in 
nonstationary signals [12,13]. Wavelet transform was used on a wide range of applications to solve 
the problem in ECG signal including the ECG characteristics waves detection [14]. Nonetheless, one 
of the problems with the many detection techniques is their attention commonly for good quality 
clinical data and lack of evaluation using noisy data. Hesitate with that, the QRS detection algorithm 
based on discrete wavelet transform was implemented and presented in this paper using arrhythmia 
data with motion artifact noises to evaluate the performance of the algorithm. These findings will 
contribute to our main goal of developing a method for detecting arrhythmia during running and 
physical exercise activities in the future.  

This paper is organized as follows: Section II describes the databases used in this study, the 
discrete wavelet transform algorithm, the QRS detection implementation, and the evaluation 
matrices used to measure performance. Finally, Section IV presents the conclusion of this study. 

 
2. Material and Method  
2.1 Database 

 
The ECG recordings from two databases provided by the Physionet website are used in this study. 

Two annotated ECG signals are used which are: 1) MIT-BIH Arrhythmia Database (MIT-BIH) [14,15] 
and 2) MIT-BIH Noise Stress Test Database (MIT-NST) [14]. The database was selected to identify the 
limitations of the algorithms towards standard arrhythmia data and noises elements in the signal. 
MIT-NST data has been selected to understand the effect of motion artifact, since the standard real-
life data during physical activities is hard to collect.  

MIT-BIH is an open-source arrhythmia database. This database is employed widely by a 
researcher to test their algorithms for QRS detection [6-9]. The database consists of 48 ECG 
recordings from 47 subjects; all sampled at 360Hz for half an hour duration using a Holter monitor. 
In most records, the upper signal obtains from modification of Lead II except for record 102, 104 and 
114 that acquire from lead V5 [15]. However, the normal QRS complex is frequently recognized in 
the upper signal because the normal beats in the lower signal are commonly difficult to identify. In 
this paper, all the recordings were used for the evaluation from the MIT-BIH database excluded 
recordings 102, 104 and 114. Record 222 was also omitted because of many Nodal (junctional) 
escapes in the signal [9]. 

The MIT-NST is also an open-source database for arrhythmia with 12 half-hour ECG recordings 
[14,15]. The recordings have noisy sections for each file with 24, 18, 12, 6, 0 or -6 db of signal to noise 
ratio (SNR). This database provides three half-hours of noise recordings and is generated through the 
addition of calibrated noise from physically active volunteers to clean recordings (record 118 and 119 
from the MIT-BIH database). During two-minute segments following with two-minute clean sections, 
each file was added with the noise after the first 5 minutes. 
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The ECG signal in MIT-NST contained the electrode motion artifacts in the arrhythmia beat with 
the beat annotations to recognize the QRS complex even when the noise conceals the signal visually. 
Two cardiologists manually annotated all recordings in the databases, and the annotation was also 
encapsulated in this dataset [15,16]. The heartbeat annotation for the fiducial points such as QRS 
complex and the abnormal beat is essential to assess the QRS detection and arrhythmia detection 
performance. It is basic to have the actual QRS location on ECG data for assessment of the detection 
algorithms to evaluate the performance accuracy. 

 
2.2 Discrete Wavelet Transform 

 
A wavelet is a set of functions in the form of small waves that represent the signal. In the wavelet 

domain, the signal has focused on energy with time and suited to implement to the nonstationary 
signal analysis such as an ECG [12]. Wavelets are useful because they are limited in time and 
frequency also can give better resolution compared with Fourier transform [12,18]. Also, wavelet 
analysis is based on the signal decomposition by using the family of wavelet functions like Fourier 
series analysis where the basis function was chosen from sinusoids. When a signal is deconstructed 
into wavelets, it is called a Wavelet Transform. 

In the wavelet transform, a signal convolves with predefined mother wavelet to decompose a 
signal. The wavelet transforms allowed a sparser representation of the signal to divide the signal into 
different frequency bands. It decomposes a specified signal into several levels associated with the 
signal frequency components and analyses each level with a particular resolution. Because signal 
features are often localized in time and frequency, analysis and estimation are easier when working 
with reduced sparser representations. Consequently, the wavelet transform can be a beneficial 
approach intended for analysis of the ECG signal. 

The wavelet transform is the operation of the wavelet function Y(t) and the signal ƒ(t). The 
discrete wavelet transform is expressed as Eq. (1). 

 
𝑋!,# = ∫ f(t)Y$,%(t)dt

&
'& 																																																																																																																																		   (1)	

                                                                
The original will reconstruct by selecting an orthonormal wavelet basis Y j, k (t). To produce 

approximation coefficients A, the scaling function can be convolved with the signal. The 
approximation coefficient of the signal ƒ(t) can be defined as Eq. (2)       

 
𝐴!,# = ∫ f(t)f$,%(t)dt

&
'& 																																																																																																																																	   (2)	

  
Where f (t) is scaling function, j is scale and k are locations respectively. The original signal ƒ(t) 

below discrete wavelet transform with a range of scale n, can be denoted as Eq. (3). 
 

𝑓(𝑡) = 𝑓((𝑡) +	∑ 𝑑!(𝑡)(
!)* 																																																																																																																																  (3) 

        
Where 𝑓((𝑡) define signal approximation and is specified by Eq. (4). 
 

𝑓((𝑡) = 𝐴(,#f(,#(𝑡)																																																																																																																																												   (4) 
 

and dj (t) is detail signal approximation in scale j. 
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In the wavelet transform, a signal convolves with predefined mother wavelet to decompose a 
signal. The wavelet transforms allowed a sparser representation of the signal to divide the signal into 
different frequency bands. It decomposes a specified signal into several levels associated with the 
signal frequency components and analyses each level with a particular resolution. Because signal 
features are often localized in time and frequency, analysis and estimation are easier when working 
with reduced sparser representations. Consequently, the wavelet transform can be a beneficial 
approach intended for analysis of the ECG signal. 

 
2.3 QRS Detection Implementation 

 
The wavelet-based approach for QRS detection is executed using MATLAB software. Figure 1 

shows the comparison of implementation Symlets Wavelet Transform.   
 

 
Fig. 1. Comparison of Symlets Wavelet Transform 

 
There is no specific way to choose a wavelet instead of the selection is focused on application-

oriented were related to a particular application [17]. The wavelet selection determines when the 
form of signal to be analysed. It is a common practice to consider more accurate physical properties 
that resemble the appearance signal to select the wavelet function. There are several wavelets 
familiar such as Haar, Daubechies, Biorthogonal, Symlets, and Coiflets. However, the Symlets (Sym4) 
wavelet has been found to provide more similarity features than others [16]. Besides, the energy 
spectrum that focused on low frequencies shows that wavelet structural resemblance with QRS 
complexes as shown in Figure 1. 

Figure 2 and Figure 3 illustrate the process flow of the QRS detection algorithm and their 
implementation to finding the QRS peak.  
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Fig. 2. Process flow of the QRS detection algorithm 

 
In the Figure 3, record 200 and 203 from MIT-BIH database was used to show the implementation 

process. In this study, the decomposition process used default Sym4 transform to decomposed ECG 
signal into levels 4 and 5. The QRS complex was retained, and samples are reduced when the original 
ECG signal down samples by wavelet decomposition by making a maximum value of 80% of the 
threshold. In this case, the values for invariably QRS peaks are above the threshold.  Then, the 
decomposed signal be reconstructed into an actual signal by first multiplying the down-sampled 
signal. To reconstruct the ECG waveform to a frequency-localized version, scales 4 that corresponds 
to the approximate frequency 11.25, 22.5 Hz bands and scale 5 with 5.625, 11.25 Hz wavelet 
coefficients were used. Then the wavelet coefficients produced the squared absolute values of the 
signal approximation that employed a QRS algorithm to identify the R peak. The output after the 
isolation of scales 4 and 5 is shown in Figure 3 (b). Figure 3 (c) shown the final output of R peak in 
QRS complex from the wavelet transform (red circle) and the annotation. 
 

 
a) Record 200 

 

 

 Discrete Wavelet Transform  
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b) Record 203 

Fig. 3. Raw signal data, Output of isolating QRS wave (Level 4 and 5) and R 
peak detection for a) Record 200 and b) Record 203 

 
2.4 Performance Evaluation 

 
The performance measures to evaluate the algorithms were described in this section. A MATLAB 

toolbox called the Physionet Waveform Database (WFDB) toolbox and reference annotation of the 
heartbeat read from the downloadable MATLAB package, is used for evaluation [19]. Three 
measurements were used to evaluate the accuracy of the algorithms in this study which is the 
Sensitivity (Se), Positive predictivity (+P) and False negative rate (FNR).  

The measurement of Se, +P, and FNR is computed by the Eq. (5), Eq. (6) and Eq. (7). Sensitivity is 
also known in the literature as recall and positive predictivity as a precision while the false negative 
rate is known as misclassification rate [17]. 

 
𝑆𝑒 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                                                   (5) 

 
+𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)                                                  (6) 

 
𝐹𝑁𝑅 = 𝐹𝑁/(𝐹𝑁 + 𝑇𝑃)												                                                                                                              (7) 

 
To assess the performance of the algorithms, each recognized QRS need to be categorized as TP, 

FP and FN where TP denotes as the number of true positive beats or correct detection of R peak in 
QRS complexes, FP denotes as the number of false positive beats or misdetection, and FN as the 
number of false negative beats or undetected QRS peak in the evaluation phase. Sensitivity reflected 
the proportions of TP to a total number of TP and FN value as shown in Eq. (5). Positive predictivity 
reflected the proportions of TP towards the total of TP and FP value. The false negative rate is the 
value of the proportion of FN value to total FN and TP value. 
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3. Results and Discussion  
 
All the data was processed in MATLAB version R2017B and a 4.00GHz Intel Core i7-7y75 

processor. ECG signal from MIT-BIH [14-15] and MIT-NST [16] database is used for the validation. The 
evaluation was divided into two sections to demonstrate the competency of the discrete wavelet 
transform for QRS detection:  

 
i. the evaluation of QRS detection on arrhythmia data 

ii. the evaluation of QRS detection in a noisy element with a different signal-to-background 
noise ratio (SNR).  

 
The measurement for the evaluation performance is Se, +P, and FNR as shown in Eq. (5) to Eq. 

(7). 
 

3.1 Evaluation of QRS Detection on Standard Arrhythmia Data 
 
The discrete wavelet transform was implemented in this study to find reliable QRS detection 

towards detection of arrhythmia. The evaluation was performed on arrhythmia database to examine 
the ability of the QRS detection algorithm. The MIT-BIH database collected in clinical settings devote 
the ECG arrhythmia recordings with practically contribute with artifact. The discrete wavelet 
transform algorithm was applied to the 44 records from MIT-BIH database as shown in Table 1. 
Record 105 is also being considered for evaluation as a difficult noisy recording [20]. 

Table 1 shows the results obtained when the algorithm was applied to standard arrhythmia data. 
According to this table, the algorithm performs well, with a total average of 98.24% Se, 98.61% +P, 
and 0.02% FNR.  The respective QRS detection performance for each records had high Se (all > 90% 
except record 105 and 108 with 83.48% and 77.82%) and high +P (all > 97% except record 105 with 
46.12%). The algorithm did achieve 100% for both Se and +P from 25% of all the records of the MIT-
BIH database. However, the presence of high-grade noise and artifact in an ECG signal with the 
multiform arrhythmia can occasionally influence the detection accuracy of the algorithm, and thus, 
increasing the value of false negative as seen in results for records 105 and 108.  The result from the 
above record should be mostly recognized to either the constraint of the algorithm or the constraint 
of this data records itself. 

 
Table 1 
QRS detection algorithm performance with MIT-BIH database 

Records TP FN FP Se (%) +P (%) FNR (%) Records TP FN FP Se (%) +P (%) FNR (%) 
100 2273 0 0 100 100 0.000 202 2125 11 0 99.49 100 0.005 
101 1863 2 5 99.84 99.73 0.001 203 2929 51 17 98.29 99.42 0.017 
103 2084 0 0 100 100 0.000 205 2650 6 0 99.77 100 0.002 
105 2147 425 2508 83.48 46.12 0.142 207 1679 181 2 90.22 99.88 0.089 
106 2015 12 1 99.41 99.95 0.006 208 2869 86 62 97.09 97.88 0.028 
107 2135 2 1 99.91 99.95 0.001 209 3005 0 2 100 99.93 0.000 
108 1372 391 0 77.82 100 0.182 210 2566 84 5 96.83 99.81 0.031 
109 2529 3 1 99.88 99.96 0.001 212 2748 0 0 100 100 0.000 
111 1930 194 0 90.78 100 0.084 213 3251 0 1 100 99.97 0.000 
112 2539 0 0 100 100 0.000 214 2256 6 1 99.73 99.96 0.003 
113 1795 0 47 100 97.45 0.000 215 3361 2 0 99.94 100 0.001 
115 1953 0 0 100 100 0.000 217 2205 3 2 99.86 99.91 0.001 
116 2391 21 4 99.13 99.83 0.009 219 2154 0 0 100 100 0.000 
117 1535 0 0 100 100 0.000 220 2048 0 0 100 100 0.000 
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118 2278 0 2 100 99.91 0.000 221 2419 8 0 99.67 100 0.003 
119 1987 0 3 100 99.85 0.000 223 2601 4 0 99.85 100 0.002 
121 1859 4 0 99.79 100 0.002 228 2012 41 5 98 99.75 0.020 
122 2476 0 0 100 100 0.000 230 2256 0 3 100 99.87 0.000 
123 1518 0 1 100 99.93 0.000 231 1571 0 0 100 100 0.000 
124 1619 0 0 100 100 0.000 232 1748 32 0 98.2 100 0.018 
200 2598 3 4 99.88 99.85 0.001 233 3077 2 0 99.94 100 0.001 
201 1882 81 0 95.87 100 0.040 234 2750 3 0 99.89 100 0.001 
Average 98.24 98.61 0.02 

 
3.2 Evaluation of QRS Detection on ECG Signal contained with Motion Artifacts Noises  

 
The experiment was carried out in this study to better understand the effects of the noise 

element with SNR on the performance of the QRS detector. We tested the 12 corrupted signals from 
the MIT-NST database from records 118 and 119 of the MIT-BIH database at various SNRs to see how 
different levels of noise affected a detection algorithm. In this study, varying SNRs such as 24db, 
18db, 12db, 6db, 0db, and -6db for records 118 and 119 are used, as shown in Tables 2 and 3. The 
noise influence had an effect on the MIT-NST records for electrode motion artifact (EM). Electrode 
motion artifact is frequently regarded as one of the most difficult noises to remove because it cannot 
be easily removed by simple filters and, like other types of noise, can mimic the presence of ectopic 
beats [21]. 

According to the tables, the performance of the algorithms degrades as SNR decreases. When 
compared to other signals, a signal with SNR 24db to 6db achieves high Se >95% for both records, 
while a signal with SNR 24db and 18db achieves high +P >95%. Furthermore, the signal with SNR 24db 
to 12db performs well with 0% FNR. For SNR values less than 0db, the algorithm performance of Se 
and +P degrades significantly in both records, depending on the amount of noise and signal quality. 
An analysis performance shows that when increasing the noise contribution, FN remains highest, 
which makes the performance worse. 

 
Table 2 
Comparison of Discrete Wavelet Transform with Pan 
Tompkins algorithm applied to the Record 118 
SNR 
(dB) 

Discrete Wavelet Transform Pan Tompkins 
Se (%) +P (%) FNR (%) Se (%) +P (%) FNR (%) 

24 100 99.91 0.000 100 99.96 0.000 
18 100 97.14 0.000 100 99.96 0.000 
12 100 85.06 0.000 99.96 95.39 0.000 
6 98.16 73.34 0.018 97.76 79.39 0.022 
0 92.76 64.4 0.072 91.09 70.87 0.089 
-6 89.29 58.2 0.107 71.47 60.50 0.285 
Average 96.70 79.68 0.033 93.38 84.3 0.066 
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Table 3 
Comparison of Discrete Wavelet Transform with Pan 
Tompkins algorithm applied to the Record 119 

SNR (dB) Discrete Wavelet Transform Pan Tompkins 
Se (%) +P (%) FNR(%) Se (%) +P (%) FNR (%) 

24 100 99.85 0.000 100 100 0.000 
18 100 97.55 0.000 100 99.9 0.000 
12 100 83.55 0.000 99.95 87.92 0.001 
6 98.94 71.1 0.011 98.09 74.28 0.019 
0 93.31 61.53 0.067 89.63 64.34 0.104 
-6 88.83 53.96 0.112 66.48 54.21 0.335 
Average 96.85 77.93 0.032 92.36 80.10 0.076 

 
In this study, the performance of a discrete wavelet transform was compared to the well-known 

Pan Tompkins algorithm for QRS detection [8,22]. Considering the Pan Tompkins algorithm performs 
with low computational and complexity and high efficiency in clean ECG signals, how the algorithm 
behaves in a noisy environment must be considered. Table 2 and Table 3 show the comparison of the 
result between these two algorithms. In this comparison, both algorithms tested on the same 
conditions, nor using the same data. According to the results, the discrete wavelet transform has 
good sensitivity in the noisy artifact signal with a total average of Se is 96.70% compared with Pan 
Tompkins algorithm 93.38% for record 118.The performance of the algorithms also good in the 
record 119 with 96.85% sensitivity compared 92.36% of Pan Tompkins algorithm. 

For the signal with the low-level SNR -6db, the algorithm performs better than Pan Tompkins 
algorithm with 89.29% compared 71.47% sensitivity for record 118, 88.83% compared 66.48% for 
record 119. Although the algorithm has good sensitivity for both records, the performance of +P in 
the comparison is significantly lower for record. According to the results in Tables 2 and 3, the 
algorithms outperform the pan Tompkins algorithm by 79.68% for record 118 and 77.93% for record 
119. It can be noticed that the performance of the discrete wavelet transform algorithm will score 
higher detection rate with higher FN that degraded the +P value. Based on the comparison results, 
we can conclude that the discrete wavelet algorithm outperforms the others in MIT-NST data, with 
0.033% FNR versus 0.066% FNR for record 118 and 0.032% FNR versus 0.076% FNR for record 119. 

 
4. Conclusion and Future Works 

  
This paper successfully implemented and evaluated a discrete wavelet transform for QRS 

detection using the Symlets 4 wavelet. The algorithms were carried out with less computational and 
complexity. This study found that the choice of mother wavelets was application-oriented, with the 
choice focusing on the type of data itself. Our results show that the algorithms perform well when 
dealing with arrhythmia data and motion artifacts at various levels of signal to noise ratio. It was also 
discovered that artifacts and noises have an impact on algorithm performance. The algorithms' ability 
to identify QRS in a noisy element, particularly a motion artifact signal, must also be validated. The 
findings will be used to develop a method for detecting arrhythmia during physical exercise. 
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