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Fused deposition modelling (FDM) is a popular 3D printing technique that uses a 
thermoplastic filament as the build material. In FDM 3D printing, tensile strength can 
be an issue because the layers of the object are built on top of each other, and if the 
layers do not adhere properly, the object can be weak and prone to breaking. Typically, 
this problem is caused by incorrect parameter settings. Hence, this study was then 
carried out to analyse and improve the printing quality in term of tensile strength of 
the printed part using the response surface methodology (RSM) and the particle swarm 
optimization (PSO) method. The effect of four input parameters such as layer height, 
printing speed, infill density, and print temperature was examined on the tensile 
strength of polylactic acid (PLA) standard samples ASTM D638-IV. The experimental 
design was performed using face-centred central composite designs (FCCD). The 
experimental data were statistically analysed to form a regression model of the tensile 
strength. This model was used to approximate the actual process. The optimization was 
performed using desirability analysis from RSM and PSO to search for the optimal 
parameter for maximum tensile strength. Experimental results showed that PSO 
outperformed RSM with a 1.52 % reduction in tensile strength. The maximum tensile 
strength obtained from PSO was about 39.069 MPa with the optimal process 
parameters of layer height of 0.30 mm, printing speed of 30.17 m/s, infill density of 
79.72 %, and print temperature of 205.92 °C.  
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1. Introduction 
 

The need to reduce product development time has been a major concern for industries in 
maintaining their market competitiveness. Rapid fabrication techniques are being sought as an 
alternative to traditional product development methods. However, the majority of currently used 
techniques are time and labour-consuming. Additive manufacturing methods, including 
stereolithography (SL), laminated object manufacture (LOM), fused deposition modelling (FDM), and 
selective laser sintering (SLS), have been devised to enable the development of prototype parts 
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quickly and with minimal human intervention, without the need for tooling, and at a reasonable cost. 
FDM is among the additive manufacturing techniques that builds components with different shapes 
by sequentially depositing semi-molten plastic in layers. The process utilizes semi-molten plastic that 
is extruded in a predetermined manner from the nozzle tip and subsequently solidifies at the filament 
print temperature. The component is manufactured through the x-y plane-contoured deposition of 
two-dimensional layers. Due to the stacking of distinct layers, the third dimension (z) is not a 
continuous z-coordinate. Fused deposition modelling (FDM) is becoming increasingly popular in 
various manufacturing sectors, including automotive, biomedical implants, aerospace, electronics, 
and telecommunications, due to its ability to produce high-quality prototypes or products. To 
guarantee the consistency and durability of fabricated parts in such circumstances, maintaining strict 
tolerances is crucial. The properties of parts produced via the FDM process, including their 
mechanical and physical characteristics, precision, and quality, are dependent on selected process 
parameters that may conflict with one another [1-3]. Furthermore, the complex nature of the FDM 
process and the conflicting parameters can make it difficult to determine these parameters. There 
are two common approaches to improving mechanical properties, such as developing new materials 
or adjusting the process parameters [4,5]. According to a comprehensive assessment from the 
literature, the qualities of printed components are reliant on many process input parameters and can 
be considerably enhanced with the appropriate adjustments. It is essential to evaluate the influence 
of these process factors on the mechanical characteristics in order to establish the optimal settings 
for manufacturing functioning components [6-9]. 

Studies have shown that enhancing the properties of parts manufactured using FDM, such as 
wear strength, tensile strength, compressive strength, and surface finish, can be achieved through 
two common approaches:  

 
i. the utilization of advanced materials 

ii. the optimization of FDM process parameters 
 
The development of new materials seems to be good for the improvement of prototype models 

in terms of part quality and mechanical properties. However, it still depends on the process 
parameter settings. Improper setting could lead in poor mechanical qualities, low surface quality, 
longer production times, and material waste, which will ultimately increase manufacturing costs and 
resources [10-12]. The second approach has been quite successful as the quality of the printed model 
heavily relies on these settings. Optimizing process parameters can significantly enhance the 
mechanical characteristics and surface quality of a 3D printed model. To achieve optimal 
performance, it's imperative to analyse the influence of different process parameters on the output 
qualities, including dimensional accuracy, surface finish, and mechanical strength. The advancement 
of materials and technology has facilitated the evolution of 3D printing from a prototyping tool to a 
manufacturing process for final products. However, for additive manufacturing technology to be 
viable for mass production, the resulting products must meet strict requirements in terms of their 
essential mechanical properties, dimensional accuracy, surface quality, and other key characteristics. 
Therefore, it's critical to carefully select the optimal process parameters to ensure the consistency 
and reliability of the 3D printed parts for industrial-scale production. 

Recent studies have focused on the optimization of FDM parameters on the effect of the output 
response expressed in terms of mechanical strength. It has been noted that mechanical strength is 
extremely anisotropic. Optimal selection of process parameters can enhance mechanical strength 
[13]. Researchers have used many advanced optimization methodologies to find the best process 
parameter combinations for improving the mechanical properties of printed parts. Numerous 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 38, Issue 2 (2024) 112-128 

114 
 

optimization techniques, including the classical approach and the modern approach, can be used to 
find the optimization process. FDM process optimization strategies have used a variety of 
conventional approaches, including the factorial design method, Taguchi method, and response 
surface methodology (RSM).  

The employment of conventional approaches for enhancing process parameters of fused 
deposition modelling (FDM), such as layer thickness, printing speed, infill density, infill pattern, 
printing temperature, platform temperature, and part orientation, has garnered significant interest 
in the research community. These factors have significantly affect the mechanical properties of the 
3D printed components, requiring proper parameters adjustment to achieve optimal results. As a 
result, a comprehensive analysis of the effects of these process parameters on the mechanical 
characteristics of the printed parts is essential to establish the optimal settings for FDM. Recently, 
Yilan et al., [14] conducted an experimental investigation using fused deposition modelling (FDM) to 
evaluate the impact of three variables, namely infill patterns, infill densities, and printing time, on 
the tensile strength of PLA+ materials. The experiments involved the 3D printing of test specimens 
with various infill patterns and densities using FDM technology. The tensile testing machine's settings 
were optimized through a signal-to-noise ratio analysis to ensure the most precise and reliable test 
results. The results showed that triangle infill pattern had the highest tensile strength at 100% infill 
density and 40 mm/sec printing speed, while the lowest production time was seen with the gyroid 
infill pattern. John et al., [15] employed a Taguchi experimental design with grey relational analysis 
(GRA) to study the influence of input factors on the tensile strength of polylactic acid samples. The 
investigation found that the square pattern produced the highest quality, and the diamond angle 
pattern exhibited the lowest strength (5 MPa) when using a nozzle diameter of 0.8 mm and 0.4 mm, 
respectively. Furthermore, the mechanical properties of the printed samples were primarily affected 
by the geometric patterns and strain rates, whereas nozzle diameter had a less significant effect. 
Three input factors, namely layer thickness, printing speed, and infill %, were studied by Bhosale et 
al., [16] to determine their effect on the surface quality, printing time, and tensile strength of PLA-
printed objects. Box-Behnken designs were used as part of the study's experimental technique. Both 
layer thickness and infill % were shown to have a significant impact on the strength and surface 
quality of the printed items. It was noticed that lowering the layer thickness improved the strength 
and surface quality of FDM-fabricated items. Torres et al., [17] employed the Taguchi method to 
study the influence of FDM parameters and implemented the optimization PLA part using analysis of 
variance. The parameters set by the printer include layer thickness, infill density, printing speed, 
extrusion temperature, infill direction, and part orientation. Results showed that infill density and 
layer thickness affect the tensile strength. Lower layer thickness and slower printing speed, on the 
other hand, will improve surface finish. However, lowering the layer thickness may decrease the 
strength. Furthermore, Altan et al., [18] conducted an analysis of the influence of production process 
variables on the final quality of products manufactured using fused deposition modelling (FDM), 
specifically focusing on surface roughness and tensile strength. The study utilized polylactic acid (PLA) 
as the printing material, and controlled the layer height, deposition head velocity, and nozzle 
temperature independently. It was conducted using a Taguchi L16 orthogonal array. According to the 
findings, the two most important factors in determining the output responses were the layer 
thickness and the velocity of the deposition head. The best tensile strength and surface quality were 
achieved at the lowest layer thickness values. 

The utilization of metaheuristic algorithms for optimizing complex combinations of parameters 
has proven to be a reliable method, capable of providing exceptional results in comparison to 
conventional optimization techniques. These algorithms can be seamlessly integrated with various 
experimental design methodologies, such as the Taguchi method, factorial design, response surface 
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method, and others. The outcome is highly encouraging and demonstrates the efficacy of this 
approach in solving optimization problems. Some of the commonly used meta-heuristic methods 
include genetic algorithms (GA), particle swarm optimization (PSO), differential evolution (DE), grey 
wolf algorithm (GWO), whale optimization algorithm (WOA), and bacterial foraging optimization 
(BFO). Kumar et al., [19] employed the Taguchi methods and genetic algorithm (GA) to improve the 
dimensional accuracy of FDM components made from polymeric bio-composites. The four response 
factors are combined into a single variable, with the width of the FDM components being the most 
important factor for both medical and aeronautical applications. The study revealed that layer 
thickness and orientation angle were critical factors impacting dimensional accuracy, with a highest 
fitness value of 0.377. The use of advanced optimization and manufacturing approaches produced 
positive outcomes, which were confirmed by advanced algorithms. Mohanty et al., [20] evaluated 
the effect of five major processing restrictions on the dimensional accuracy of 3D printed 
components made using FDM technology. Taguchi's technique and different optimization methods 
such as genetic algorithm, simulated annealing, particle swarm, grey-wolf, moth flame, whale, Jaya, 
sunflower, Lichtenberg, and forensic based inquiry were used in 27 tests. The findings revealed that 
part orientation was the most important factor influencing dimensional accuracy. Fountas et al., [21] 
utilized the grey wolf algorithm (GWO) to study the most optimal FDM process parameters for 
improving the functionality and strength of 3D printed parts. The experiments were structured using 
the response surface method and involved testing 27 standard samples made from polyethylene 
terephthalate glycol (PET-G) material, as per ASTM D790 standards. The study took into consideration 
5 important factors, namely printing speed, angle, infill density, layer height, and temperature, and 
found that the GWO effectively determined the best parameters for maximum flexural strength. This 
resulted in a remarkable 15% increase compared to the highest value obtained from the 
experimental data. Deshwal et al., [22] proposed an investigation into the performance of hybrid 
modelling and optimization techniques that combine genetic algorithms with conventional and 
artificial intelligent modelling, namely genetic algorithm-response surface methodology (GA-RSM), 
genetic algorithm-artificial neural network (GA-ANN), and genetic algorithm-adaptive neuro fuzzy 
interface system (GA-ANFIS) to find the best FDM parameter settings for maximum tensile strength. 
Among the proposed methods, GA-ANN had the highest prediction accuracy as well as good tensile 
properties. GA-ANN outperformed the other offered methods in terms of prediction accuracy and 
tensile strength. Sai et al., [23] employed artificial intelligent modelling with an adaptive neuro-fuzzy 
inference system [23] and optimize using whale optimization algorithm (WOA) to demonstrate 
artificial intelligence modelling and optimization on the compressive strength, surface roughness, 
and build time for implant component in biomedical applications. A model of the adaptive neuro-
fuzzy inference system (ANFIS) was developed using data obtained through face-centred central 
composite design (FCCD) experiments. The input parameters for the model were layer thickness, infill 
density, raster angle, and internal structure. The results showed that the ANFIS-WOA approach 
yielded an optimal and precise set of fused deposition modelling (FDM) process parameters that can 
lead to good compressive strength, surface roughness, and minimized build time.  

Literature demonstrates that metaheuristic algorithms have been used in a considerable number 
of FDM optimization studies. Several studies have discovered the use of PSO for FDM optimization. 
Raju et al., [24] conducted a study on the optimization of parameter settings for achieving optimal 
mechanical and surface quality during additive manufacturing. Hybrid particle swarm and bacterial 
foraging optimization (PSO-BFO) evolutionary algorithm and Taguchi method experimental design 
have been utilized to identify the best parameter settings for ABS material. The results showed that 
the optimal mechanical properties could be achieved with a layer thickness of 0.007 mm, part 
orientation of 60∘, sparse type support material, and high infill density. This study provides valuable 
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insights for improving part performance and optimizing parameter settings in additive 
manufacturing. Shirke et al., [25] investigated the use of 3D printing to generate prototypes and 
enhance their mechanical qualities, particularly the tensile strength of ABS prototypes manufactured 
using the fused deposition modelling (FDM) technique. Taguchi's design of experiments was used to 
investigate the mechanical qualities with various process parameters such as layer thickness, nozzle 
diameter, and part bed temperature. The ideal values of these parameters were determined using 
the particle swarm optimization (PSO) technique to attain the highest tensile strength, according to 
the research. Saad et al., [26] also studied the issue of insufficient techniques to select the best 
parameter setting to increase the flexural strength of 3D-printed components. Response surface 
methodology (RSM) was used to collect data using a central composite design and performed analysis 
of variance to obtain a regression model. The input parameters comprised layer thickness, printing 
speed, printing temperature, and outer shell speed, with flexural strength being the output response. 
PSO optimization have obtained the flexural strength of 96.62 MPa with the optimal parameters 
setting. This work provides valuable insights for enhancing the mechanical characteristics of 3D-
printed part via the use of RSM and PSO. 

Although metaheuristic algorithms have gained substantial attention in several research areas of 
FDM, the PSO approach for optimizing FDM process parameters for the tensile strength of printed 
parts has received comparatively less attention. Consequently, the RSM and PSO optimization 
approaches were combined in this work to model and optimize the tensile strength of the printed 
sample in FDM process. The experimental design employed face-centred central composite designs 
(FCCD) with four input parameters (layer height, infill %, printing temperature, and printing speed) 
and a single response (tensile strength). Analysis of variance (ANOVA) was utilized to analyse the 
effect of input factors on the tensile strength of printed parts. In addition, the model accuracy 
between the predicted output and the experimental data was evaluated. Finally, an experimental 
confirmation test was performed to confirm the simulation findings. 

 
2. Methodology  
2.1 Experimental Details 
 

In this study, the samples were printed using the FDM 3D printed model Ender-3 V2 Pro. The 
material used was polylactic acid (PLA). The CAD drawing for the test sample was prepared according 
to ASTM D638 standard and modelled using Catia software. Figure 1 depicts the standard sample and 
its dimensions. The CAD drawing is converted into STL format. Then, the STL file is uploaded into 
CURA slicing software to be transformed into G-code that can be read by the FDM machine.  
 

 
Fig. 1. Sample design according to ASTM D638-IV 

 
The tensile strength of the samples was measured using a universal testing machine (Shimadzu 

AG-X 250kN) as shown in Figure 2. Finally, all the printed samples were analysed using analysis of 
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variance (ANOVA) via Design Expert software. The regression model obtained will be used as the 
objective function for the PSO algorithm to performed the optimization process. 

 

 
Fig. 2. Universal testing machine 

 
2.2 Experimental Design 

 
Design of experiments (DOE) have been widely used in the optimization process because it is 

considered to have a simple and reliable experimental outcome. In addition, the DOE methodology 
is described as the branch of applied statistics concerned with designing, conducting, and analysing 
controlled experiments to ascertain what factors affect the significance of a given parameter or set 
of parameters. The printing process parameters considered in this present work were described as 
follows:  

 
i. Layer height: is the measured height of each layer as it extrudes from the 3D printer's 

nozzle. 
ii. Infill percentage: is the amount of filament printed within the part, and it has a direct 

impact to the material consumption, strength and printing time. With a higher infill 
density, it is possible to print a sturdy part; but it will use more materials and take longer 
time to print. 

iii. Printing temperature: describes the nozzle's temperature during printing, along with the 
modified extrusion rate. A slightly varied printing temperature is used in each printing 
profile to provide optimal printing quality. 

iv. Printing speed: It is the speed for the motors in x-axis, y-axis and z-axis of the 3D printer. 
Improper setting may cause print deformation due to the nozzle sitting on the plastic for 
too long. 

 
The experiment design was held using response surface methodology (RSM) based on face-

centred central composite design (FCCD). There were four input parameters such as layer height (A), 
printing speed (B), infill percentage (C) and printing temperature (D). Table 1 shows the levels for all 
the input parameters.  
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Table 1 
Levels of input parameters 
Parameter Unit Level 1 Level 2 Level 3 
Layer height (A) mm 0.06 0.18 0.3 
Printing speed (B) mm/s 30 45 60 
Infill density (C) % 20 50 80 
Printing temperature (D) °C 190 195 200 

 
The experimental data for the tensile strength is shown in Table 2.  
 

Table 2 
Experimental data for tensile strength 
Number of  
samples 

Parameter setting Tensile strength 
(MPa) 

A (mm) B (mm/s) C (%) D (°C)  
1  0.30 30.00 20.00 195.00 32.294 
2  0.10 60.00 80.00 195.00 26.872 
3  0.20 45.00 50.00 205.00 29.109 
4  0.30 60.00 20.00 215.00 33.418 
5  0.30 60.00 80.00 215.00 36.481 
6  0.10 60.00 20.00 215.00 22.056 
7  0.30 30.00 80.00 215.00 35.527 
8  0.20 45.00 50.00 195.00 29.778 
9  0.10 30.00 20.00 195.00 21.673 
10  0.20 45.00 50.00 205.00 28.674 
11  0.30 45.00 50.00 205.00 32.886 
12  0.20 45.00 50.00 205.00 28.840 
13  0.30 30.00 20.00 215.00 32.292 
14  0.30 30.00 20.00 215.00 33.482 
15  0.10 30.00 80.00 195.00 25.417 
16  0.10 30.00 20.00 195.00 20.084 
17  0.10 30.00 80.00 195.00 25.241 
18  0.10 30.00 80.00 215.00 24.537 
19  0.10 30.00 80.00 215.00 23.233 
20  0.30 30.00 20.00 195.00 30.901 
21  0.30 60.00 80.00 215.00 35.881 
22  0.30 60.00 20.00 215.00 31.849 
23  0.10 30.00 20.00 215.00 14.876 
24  0.20 45.00 80.00 205.00 31.057 
25  0.20 30.00 50.00 205.00 27.549 
26  0.30 60.00 20.00 195.00 32.156 
27 0.20 45.00 50.00 205.00 28.232 
28 0.20 45.00 20.00 205.00 27.269 
29 0.20 45.00 50.00 205.00 30.202 
30 0.10 45.00 50.00 205.00 22.250 
31 0.20 45.00 50.00 205.00 28.935 
32 0.10 30.00 20.00 215.00 16.569 
33 0.10 60.00 20.00 215.00 20.764 
34 0.30 60.00 20.00 195.00 30.984 
35 0.10 60.00 80.00 195.00 25.920 
36 0.20 45.00 50.00 215.00 27.335 
37 0.20 60.00 50.00 205.00 28.459 
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38 0.30 60.00 80.00 195.00 33.261 
39 0.30 30.00 80.00 195.00 35.955 
40 0.30 30.00 80.00 195.00 36.597 
41 0.10 60.00 80.00 215.00 26.056 
42 0.10 60.00 80.00 215.00 25.425 
43 0.30 60.00 80.00 195.00 36.065 
44 0.30 30.00 80.00 215.00 37.042 
45 0.10 60.00 20.00 195.00 21.793 
46 0.10 60.00 20.00 195.00 21.555 

 
The 46 runs of the printed samples are shown in Figure 3. 
 

 
Fig. 3. Printed samples 

 
2.3 Statistical Analysis and Regression Modelling 

 
Analysis of variance (ANOVA) is a statistical analysis method that evaluate the impact of 

independent factors on the dependent variable. In this study, ANOVA will be used to examine the 
effect of input factors on tensile strength. The significant of the fitted cubic models is calculated by 
the contribution percentage, p-values for ANOVA. For p-values, the parameter is assumed to be 
substantially efficient if the value is less than 0.05. The real relationship between the input factor and 
the output response is unknown. Therefore the step in the RSM is to obtained an approximation of 
the true functional real relationship between the output response and the input factor [27]. The 
regression model from ANOVA was developed to demonstrate how the response reacts as a function 
of the input parameter. In most cases, a quadratic model of the second order is utilized because of 
its superior performance in curvature modelling near promising regions [28]. The relationship 
between the various input components and the final response is expressed by Eq. (1). 

 

                                                                                                      (1)                                                               

 
where y is the predicted output response while 𝛽0 is a constant. The terms 𝛽𝑗, 𝛽𝑗𝑗 and 𝛽𝑖𝑗 are referred 
as the coefficients for the first order, second order and the interaction of input parameters 
respectively. The input process parameter value is represented by the terms xj, and the experimental 
measurement error is represented by the terms e. 
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2.4 PSO Algorithm 
 
Particle swarm optimization (PSO) is a nature-inspired optimization algorithm that effectively 

searches for the optimal solution within the search space. It is a population-based optimization 
method inspired by the behaviour of schooling fish and flocking birds. PSO operates using a 
methodology that is practically identical to that of evolutionary computation techniques. The 
initialization process is based on random populations, and the optimal solution is located via updating 
generations. Unlike typical optimization techniques, this technique just requires the objective 
function and does not rely on the gradient or differential form of the objective function [29]. 

Particle swarm optimization and a regression model for tensile strength were used to find the 
best process parameters. The PSO flowchart that represents the 3D printer optimization approach is 
shown in Figure 4. Several variables must be set during the PSO initialization phase, including the 
number of iterations, the number of populations, the dimension of particle velocity, the dimension 
of particle position, and the size of the process input parameters such as layer height (A), printing 
speed (B), infill density (C), and print temperature (D). The particle's position consists of the process 
input parameters of the FDM 3D printer, whereas the fitness function is represented by the 
regression model of the tensile strength. The fitness function for each particle position will be 
evaluated to complete the initialization process. Once the initialization process is completed, the 
main program will run to search for the optimal input parameter for the maximum tensile strength. 
The main program consists of three sections which is updating particle velocity and its position, 
evaluation particle position, and updating local best and global best.  The particle velocity and particle 
position are updated based on Eq. (2) and Eq. (3), respectively. 

 
                                                                                            (2) 

 
                                                                                                                                                                                (3) 

 
where i is the particle number, k is the iteration counter, vi is the i-th particle velocity, xi is the i-th 
particle position, rand1 and rand2 are the random variables, c1 is the cognitive parameter, and c2 is 
the social parameter. 

The main program begins with updating the particle velocity and particle position. Then, the 
fitness function is evaluated based on the current particle position. If the new fitness function (i.e., 
tensile strength value) is better than the old one, then the new fitness function value will replace the 
old fitness value and become the local best fitness (pbest). The new particle position will also replace 
its previous position and become the new local best position (pbest). Then, at the next level, the same 
fitness function value is compared with the global best fitness (gbest). If the new fitness value of 
tensile strength is more than the previous global best fitness (gbest), the new fitness value will 
replace the previous global best fitness (gbest). The process described will be repeated iteratively 
until a pre-determined maximum number of iterations has been reached. At this point, the algorithm 
will terminate, and the solution that was found at the end of the last iteration will be returned as the 
final result. The maximum number of iterations is typically set in advance to ensure that the algorithm 
terminates within a reasonable amount of time and does not continue searching indefinitely. The 
choice of the maximum number of iterations can be influenced by various factors such as the 
complexity of the problem, the number of variables, and the computational resources available. It is 
important to choose a suitable value for the maximum number of iterations to balance the need for 
a thorough search of the solution space with the need for efficient computation.  

1 1 2 2( 1) ( ) . ( ) . ( )i i pbest i gbest iv k v k c rand x x c rand x x+ = + - + -

( 1) ( ) ( 1)i i ix k x k v k+ = + +



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 38, Issue 2 (2024) 112-128 

121 
 

 
Fig. 4. PSO algorithm for optimization of tensile strength 

 
3. Results  
3.1 Analysis of Variance 

 
An analysis of variance (ANOVA) is applied to examine the effect of input parameters on the 

output response, i.e., tensile strength. The effect of process factors such as layer height (A), printing 
speed (B), infill density (C), and print temperature (D) on the output response (tensile strength) has 
been evaluated using analysis of variance (ANOVA). The ANOVA results are shown in Table 3. 

Based on the 95 % confidence level, p-values of less than 0.05 indicate that the parameter has a 
significant impact on tensile strength. According to Table 3, the most significant parameter for tensile 
strength is layer height and infill density, which has a p-value of < 0.0001, followed by print speed, 
and print temperature. layer height and print speed (AB), layer height and infill density (AC), layer 
height and print temperature (AD), print speed and infill density (BC), and print speed and print 
temperature (BD) are significant model terms for the tensile strength interaction between 
parameters. 
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Table 3 
ANOVA results for tensile strength 
Source Sum of squares df Mean square p-value Comment 
Model 1322.82 9 146.98 < 0.0001 Significant  
  A 1092.71 1 1092.71 < 0.0001 -  
  B 7.27 1 7.27 0.0095 -  
  C 172.35 1 172.35 < 0.0001 -  
  D 2.78 1 2.78 0.0988 -  
  AB 16.26 1 16.26 0.0002 -  
  AC 6.04 1 6.04 0.0172 -  
  AD 16.24 1 16.24 0.0002 -  
  BC 3.12 1 3.12 0.0810 -  
  BD 6.06 1 6.06 0.0170 -  
Residual 34.84 36 0.97  -  
Lack of Fit 18.52 15 1.23 0.1611 Not Significant 
Pure Error 16.32 21 0.78  -  
Cor Total 1357.66 45   -  
    0.9743 Adequate  
    0.9679 Adequate  

 
Figure 5 shows the comparison between experimental and predicted values of the RSM model 

for tensile strength. In order to assess the quality of the fit, it is important to examine the distribution 
of the data points around the fitted line. A good fit is indicated by data points that are closely 
clustered around the line. However, data points that are far from the mean, located on either the left 
or right of the plot, can have a significant effect on the fitted line by exerting a greater influence on 
its slope or intercept. Such data points are known as leverage points and can effectively pull the fitted 
line towards them. 

 

 
Fig. 5. Comparison of experimental and predicted tensile 
strength values 

 
As a result, the developed regression model fits the experimental tensile strength value quite 

well. The regression model for the tensile strength is shown in Eq. (4). 
 

                   (4) 

 

4 3

 s ,    66.4798 60.71685 0.4343 0.13523 0.30163 0.47515 ...
0.14478 0.71233 6.93896 10 2.90173 10                                               
Tensile trength Ts A B C D AB

AC AD BC BD- -

= - - + - - -

- + - ´ + ´
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3.2 RSM Optimization Results 
 
The optimization was employed using Response Surface Methodology (RSM) to find the best 

parameter settings for the maximum tensile strength. This optimization process was carried out via 
Design Expert software. The input parameters and output response must be set before performing 
the optimization process. All the limits for the input parameters were set based on the minimum and 
maximum level factors (i.e., level 1 and level 3). The goal for tensile strength is set to ‘maximize' to 
achieve maximum tensile strength. 

From Table 4, the maximum tensile strength of 36.149 MPa has been predicted with the optimum 
setting of the input parameters: layer height, printing speed, print temperature, and infill density at 
0.30 mm, 30.00 mm/s, 209.85 °C and 75.72 % respectively. It shows that tensile strength could be 
improved with the minimum setting of layer height and printing speed, and the higher setting for 
infill density and printing temperature. According to the ANOVA analysis, layer height and infill 
density have the most influence on tensile strength. Lower layer thickness and higher infill density 
with higher printing temperature will give a good bonding within the molten material. From this 
results, proper tuning of input parameters may improve the tensile strength of the printed part. 

 
Table 4 
RSM optimization result for tensile strength 
Process parameter   Unit Values 
Layer Height (A)  mm 0.30 
Printing Speed (B)  mm/s 30.00 
Infill Density (C)  % 75.72 
Printing Temperature (D) °C 209.85 
Optimum Tensile Strength (Ts) MPa 36.149 

 
3.3 PSO Optimization Results 

 
The aim of PSO optimization is to search for the optimal parameter settings that lead to the 

maximum tensile strength. The optimal parameters setting of the objective function (tensile 
strength) is searched within the range of process input parameters. The tensile strength regression 
model in Eq. (4) is set for the objective function in the PSO optimization process. In this optimization 
process, the input process parameters are represented by the particle position and velocity, while 
the fitness or objective function is represented by the regression model. Therefore, the accuracy and 
reliability of the tensile strength regression model are crucial for the success of the PSO optimization 
process. It is worth noting that selecting the optimal values for these parameters is crucial for 
achieving the best possible performance of the PSO algorithm. Table 5 depicts these parameters, 
which have a significant impact on the speed and accuracy of the PSO algorithm. 

 
Table 5  
Optimal solution of PSO setting 
Parameter  Setting value  
Population number (No of particles)  300  
Iteration number (Particles steps)  500  
Dimension (No. of process parameter)  4  
C1 (cognitive acceleration constant)  1.5  
C2 (social acceleration constant)  1.5  
W (PSO momentum)  0.4  
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Figure 6 illustrates the convergence profile for determining the maximum tensile strength using 
PSO. After 150 iterations, the fitness value quickly converges to the optimal solution.  

 

 
Fig. 6. Convergence of PSO algorithm 
for tensile strength  

 
The optimal solution is presented in Table 6. It demonstrates that the maximum tensile strength 

could be achieved with a layer height of 0.30 mm, a print speed of 30.17 mm/s, an infill density of 
79.72 %, and a print temperature of 205.92 °C. These results indicate that increasing the layer height 
and infill density may enhance the tensile strength of the printed part. 

 
Table 6  
Tensile strength optimal result from PSO 
Process parameter Unit Values 
Layer Height (A) mm 0.30 
Printing Speed (B) mm/s 30.17 
Infill Density (C) % 79.72 
Printing Temperature (D) °C 205.92 
Optimum Tensile Strength (Ts) MPa 36.377 

 
3.4 Experimental Tests 

 
To confirm the effectiveness of the proposed optimization method in determining the optimal 

FDM process parameters for achieving maximum tensile strength, a confirmation experiment was 
carried out. The results of the experiment are presented in Table 7, which indicates that the PSO 
optimization method has generated superior results for tensile strength when compared to the RSM 
method. Specifically, the PSO method has yielded an improvement of about 0.63% and 1.52% for the 
predicted and actual experimental tests, respectively, when compared to the RSM method. These 
findings serve as evidence of the efficacy of the PSO optimization method in enhancing the tensile 
strength of FDM products.  

 
Table 7  
Tensile strength optimal result from PSO 
 Input Parameter Predicted, Ts 

(MPa) 
Exp., Ts 
(MPa) 

A (mm) B (mm/s) C (%) D (°C)   
RSM 0.30 30.00 75.72 209.85 36.149 38.484 
PSO 0.30 30.17 79.72 205.92 36.377 39.069 
Percent Improvement 0.63 % 1.52 % 
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Figure 7 shows the experimental confirmation results for tensile strength taken from the 
universal testing machine. It may be inferred that the application of metaheuristic approaches, such 
as PSO, can reduce the tensile strength of printed parts due to their ability to search for the ideal 
parameter settings. 

 

 
Fig. 7. (a) Graph from Universal Tensile Machine for RSM validation. 
(b) Graph from Universal Tensile Machine for PSO validation 

 
4. Conclusions 

 
In this study, the optimization of the process parameters of the FDM machine with respect to 

maximizing the tensile strength has been implemented using the PSO algorithm and RSM. 
Furthermore, regression and ANOVA analysis were used to develop the functional relationship 
between process parameters and tensile strength. The process parameters considered are layer 
height, print speed, infill density, and print temperature. A comparison study showed that the 
performance of the PSO algorithm has improved the tensile strength on the sample part by about 
0.63 % and 1.52 % for the predicted and actual experimental tests, respectively. On the basis of the 
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statistical analysis, the layer thickness and infill density were considered to be the two most 
significant parameters. This can be attributed to the fact that increasing the layer height and infill 
density may enhance the tensile strength of the printed part. The optimum parameters for setting 
the maximum tensile strength were found to be a layer height of 0.3 mm, a print speed of 30.17 
mm/s, and infill density of 79.72 %, respectively. This research can be expanded to encompass other 
output characteristics of the printed model, such as surface roughness, dimensional accuracy, 
material consumption, and build time, by utilizing the same optimization method. By exploring the 
impact of FDM process parameters on these outputs, it is possible to achieve even greater 
improvements in the overall quality and efficiency of the manufacturing process. 
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