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Efficient investigation tools are required to elucidate the changes in climatic change 
caused by various climate processes, variables, and socioeconomic development 
activities around the world. In this study, we track the changes of daily rainfall at three 
flood-prone sites in Terengganu between 2012 to 2017. In recent years, topological data 
analysis (TDA) has been applied in many fields of data analytics to rank, classify, and 
cluster time series datasets. In this work, we employ Persistent Homology to quantify 
and identify topological patterns from a rainfall data. A sliding window (SW) approach 
is used for each 1D rainfall dataset to embed in higher dimensions before computing its 
Persistence Diagrams (PD). The topological information obtained from PD, namely 
connected components (H0) is then retrieved and vectorized in the form of Persistence 
Curves (Persistence Landscape (PL), Persistence lifetime Curve (PLC), and Persistence 
Lifetime Entropy (PLE)) to identify unusual rainfall patterns. We employ various types 
of L1-norms from these Persistence vectors to identify anomalies in rainfall data which 
can be used as an early warning flood system. The irregular pattern of Persistence 
lifetime and Persistence entropy mismatch the actual flood events suggesting that the 
irregular points may not be as closely related to flood risk. However, PL analysis of the 
irregular points shows match of about 59% to the flood events. It is expected that other 
determining factors, for example, land use, cloud cover, and wind information, which 
can be obtained via satellite gridded data may increase the predictability of flood events 
thus promotes an effective flood risk management strategies. 
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1. Introduction 

 
Rainfall patterns play a critical role in many aspects of the environment and human society, 

including agriculture, water resources, and natural disasters. Rainfall data can be used to make 
informed decisions about weather forecasting, crop planning, and water conservation efforts. 
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However, rainfall data can be highly variable, both spatially and temporally [1]. Rainfall is influenced 
by a wide range of meteorological processes, including temperature, humidity, atmospheric 
pressure, and wind. It is also influenced by climate change, which causes shifts in temperature, 
precipitation, and other weather patterns. This makes  it difficult to identify patterns or trends in the 
data, and accurately predict future rainfall patterns. In addition, rainfall patterns can vary significantly 
both within a single location and over time, making it difficult to identify trends or make reliable 
predictions. 

A critical transition in rainfall data refers to a point at which the pattern or distribution of rainfall 
changes significantly. This can be due to a variety of factors, such as changes in atmospheric 
conditions, shifts in weather patterns, or the influence of climate change. Critical transitions are 
abrupt changes in the state of ecosystems, climate, financial systems, or other complex dynamical 
systems that occur when changing conditions reach a critical or bifurcation threshold [2]. Critical 
transitions in rainfall data can have significant impacts on local ecosystems and economies, as they 
can affect the availability of water for agricultural, industrial, and domestic purposes. They can also 
have indirect impacts on sectors such as energy, transportation, and tourism. Identifying critical 
transitions in rainfall data can be challenging due to the inherent variability of rainfall patterns and 
the potential for data quality issues. However, it is important to understand these transitions to 
better predict and prepare for future changes in rainfall patterns which can be irregular. 

Identifying irregular patterns in rainfall data can be important in a variety of contexts because it 
can help to uncover underlying trends or issues that may not be immediately apparent. For example, 
in the field of finance, irregular patterns in data can be a warning sign of fraudulent activity or 
financial instability [3,5]. In healthcare, irregular patterns in data can be an indication of a medical 
condition or other health issue [6]. In general, being able to identify irregular patterns can help to 
improve decision making and enable more informed actions to be taken. 

Persistent homology (PH) is a mathematical tool that can be used to identify topological features 
in data, such as connected components, loops, and voids [7,8]. These features can be used to identify 
irregular patterns in data, as they can highlight areas where the data exhibits unusual structure or 
behaviour. One reason why PH might be used to identify irregular patterns in rainfall data is that it 
can provide a more comprehensive and robust analysis of the data compared to traditional methods 
[9-11]. Traditional methods, such as statistical analysis or machine learning algorithms, may be 
limited in their ability to capture complex patterns or structures in the data. PH, on the other hand, 
can identify a wide range of topological features, which can allow for a more detailed and nuanced 
understanding of the data. In addition, PH might be used to identify irregular patterns in rainfall data 
that is relatively insensitive to noise or perturbations in the data. This can be particularly useful when 
analyzing rainfall data, as this data is often affected by factors such as instrumentation errors, 
exposure, and evaporation, which can introduce noise or bias into the data.  

Recently, Gidea et al., [3,4] have introduced a method to investigate financial crisis using PH. The 
method highlighted by them  shows that PH is robust to financial data analysis. PH is also able to 
provide various topological summaries that act to provide the necessary data to detect the financial 
crisis. In the last decade, there has been a growing body of empirical and theoretical studies, inspired 
by analysis of abrupt transitions in complex natural systems, devising early warning signals (EWS) in 
financial markets. Motivated by these studies, in this paper, we investigate whether the application 
of PH to rainfall time series could help detect a critical transition in extreme events based on the 
irregular patterns in rainfall data. Therefore, we apply the PH method to investigate the behaviour of 
rainfall time series in different locations. We compare three different types of topological summaries 
in vector representations which involve the connected component (𝐻!) to detect the warning signal. 
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The arrangement of this paper starts with the introduction of rainfall data and its details in 
Section 2. In Section 3 we provide a concise and informal review of Persistent Homology (PH) and key 
concepts employed in this paper. Section 4 describes the topological summaries used in this paper, 
followed by methodologies. Section 6 presents our findings on rainfall data, which demonstrate that 
the time series of the norms of persistent lifetime curve, persistence lifetime entropy and persistence 
landscapes to its variability that can be used as a new EWS for flood events. Finally, section 7 
concludes the paper. 

 
2. Rainfall Data 

 
Terengganu is a state that experiences flooding almost every year. Therefore, the rainfall data 

collected in this state is particularly important for determining the distribution of precipitation and 
highlighting regions affected by floods. The Malaysian Department of Irrigation and Drainage (DID) 
manages almost 90 rainfall stations around the state. In this research, we analyzed precipitation 
information from three stations: Kemaman, Hulu Terengganu, and Besut. The data utilized spans 
from year 2012 to 2017. The specifics of the data are shown in Table 1. Figure 1 illustrates the 
rainfall data for three stations that we used in this paper. 

 
Fig. 1. Daily rainfall data plot for Kemaman, Hulu Terengganu and Besut stations between 2012-2017 

 
Table 1 
Details of rainfall stations with data from 2012-2017 (1826 days)  

District Station 
ID Station Name Latitude Longitude 

Maximum 
rainfall 
(mm) 

Average 
rainfall 
(mm) 

Standard 
deviation 

rainfall 
(mm) 

Kemaman (K) 4234109 JPS. Kemaman 04˚13ʹ 55ʹʹ 103˚ 25ʹ 
20ʹʹ 293.2 7.2 22.1 

Hulu 
Terengganu 
(H.T) 

5029036 
Rumah Pam 
Paya Kemat 

05˚ 00ʹ 30ʹʹ 102˚ 58ʹ 
10ʹʹ 352.4 11.1 28.7 

Besut (B) 5625003 Paya Peda Besut 05˚ 36ʹ 00ʹʹ 102˚ 30ʹ 
55ʹʹ 799.5 12.4 41.0 
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3. Persistent Homology 
 

Persistent homology (PH) is a way of studying the topology of a space by tracking how topological 
features change as the space is filtered [10,12]. The key idea is that a topological feature that appears 
in the space at some point will typically persist for some range of filters before disappearing. By 
studying this persistence, we can gain insight into the topological structure of the space. For instance, 
considering a topological space 𝑋 and a family of filters 𝐹 on 𝑋,a  filter 𝑓 ∈ 𝐹 is a function that assigns 
to each point 𝑥 ∈ 	𝑋 a real number 𝑓(𝑥). We assume that the filters are ordered, so that for any two 
filters 𝑓 and 𝑔, if 𝑓(𝑥) 	< 	𝑔(𝑥) for all 𝑥 ∈ 𝑋, then 𝑓 comes before 𝑔 in the ordering. Given a filter 𝑓, 
we can define the sublevel set of 𝑋 at 𝑓 to be the set of all points 𝑥 ∈ 𝑋 such that 𝑓(𝑥) ≤ 𝑟, where 𝑟 
is a real number. If we vary 𝑟 over all real numbers, we obtain a nested sequence of sublevel sets  
𝑋! 	⊇ 𝑋" 	⊇ 𝑋# ⊇ ⋯ ⊇ 𝑋$ where 𝑋! is the entire space 𝑋 and 𝑋%&" obtained by taking the sublevel 
set of 𝑋%  at some filter 𝑓 ∈ 𝐹. We can use this nested sequence of sublevel sets to define a sequence 
of topological spaces 𝑋!, 𝑋", 𝑋#, … , 𝑋$. Each of these spaces is obtained by taking the union of all the 
sublevel sets in the sequence up to a certain point. 

To perform PH, we compute the topological features (e.g. connected components (𝐻!), loops 
(𝐻"), or higher-dimensional holes) of each of these spaces, and record the range of filters for which 
each feature exists [13]. This range is called the feature's persistence. We can then visualize the 
persistence of the topological features using a persistence diagram, which is a plot with the filters on 
the 𝑥-axis (birth) and the 𝑦-axis (death). Each topological feature is represented by a point in the 
diagram.  The 𝑥-coordinate and 𝑦-coordinate of the point represents the birth and death filters of 
the feature, respectively. There are a few different ways to compute persistent homology, depending 
on the specific form of the filters and the topological features. In this work we employed Vietoris-
Rips complexes [8,14] which is the common filter to perform the PH. 
 
4. Topological Summaries 
 

Topological summaries are mathematical tools that allow us to extract key information from 
complex datasets. These summaries are often used in data analysis, machine learning, and other 
areas in need of large and complex dataset analysis. One important type of topological summary is 
the persistent homology, which captures the topological features of a dataset across multiple scales 
which is visualized using persistent diagram. Another important tool in persistent homology is the 
persistence life curve, which plots the persistence of each topological feature as a function of scale. 
Finally, the persistence landscape is a higher-dimensional extension of the persistence diagram that 
captures more information about the persistence of topological features. 
 
4.1 Persistent Diagram 

 
The most fundamental instrument for topological summaries is the persistent diagram (PD) 

where we can use it to represent the multiset of birth (𝑏) and death (𝑑) points of the topological 
features [15]. A multiset is a mathematical structure that is similar to a set but allows for multiple 
instances of the same element. For 𝑏 < 𝜀 < 𝑑,  a multiset can be represented as a collection of (𝑏, 𝑑), 
where each (𝑏, 𝑑) can appear more than once. The number of times (𝑏, 𝑑)  it appears in the multiset 
is known as its multiplicity and denoted as 𝑚(𝑠). Let’s define a diagonal multiset as 

 
∆= [(𝜀, 𝜀)|𝑥 ∈ ℝ, 𝑚(𝜀, 𝜀) = ∞]      (1) 
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In general, we define a persistent diagram, 𝑑𝑔𝑚 as union of two multisets 𝑑𝑔𝑚 = ∆ ∪ [(𝑏, 𝑑)	|	𝑏 <
𝑑 ∈ ℝ ∪ {∞}] [16]. The topological feature observed in this paper is a connected component (𝐻!) 
that persist in the 𝑑𝑔𝑚. The PD based on the multiset would then encode information about the 
(𝑏, 𝑑) of the connected components as the scale of the space changes. As the scale increases, new 
connected components may appear, while others may merge or disappear. The 𝑑𝑔𝑚 would show 
this by having points representing the connected components appear at the birth time, persist 
through a range of scales, and then disappear at the death time. 
 
4.2 Persistence Life Curve 

 
Normalized persistence curve (PC) with stable persistence summary was suggested for PD by 

Chung and Lawson [16]. They provide a generic PC to describe the topological vector. Let 𝑑𝑔𝑚 be the 
set of all PD and 𝐹 be the set of all functions. We denote the 𝛩 be the set of summary statistics or 
operators that map multi-sets to real numbers. Let a map 𝑃 ∶ 𝐷 × 𝐹	 × 𝛩	 → 	ℝ  so 

 
𝑃(𝐷, 𝜓, 𝑇)(𝜀) = 𝑇([𝜓(𝑑𝑔𝑚; 𝑏, 𝑑, 𝜀)|(𝑏, 𝑑) ∈ 𝑑𝑔𝑚'])     (2) 

 
where 𝑃(𝑑𝑔𝑚,𝜓, 𝑇)(𝜀) is called the persistence curve of 𝑑𝑔𝑚 with respect to 𝜓 and 𝑇. We use a 
user-defined function, 𝜓, while 𝑇 is a summary statistic or operator that maps multi-sets to real 
numbers. In this paper, we include two types of PC defined as follows:  
 

a. For lifetime curve (PLC), we let the function 𝜓(𝑑𝑔𝑚; 𝑏, 𝑑, 𝜀) = 𝑑 − 𝑏 and 𝑇 = ∑. Then, 
 

𝑃(𝑑𝑔𝑚,𝜓, ∑)(𝜀) = ∑([𝑑 − 𝑏|(𝑏, 𝑑) ∈ 𝑑𝑔𝑚'])     (3) 
 

b. For life entropy curve (PLE), we define the function 𝜓(𝑑𝑔𝑚; 𝑏, 𝑑, 𝜀) = − ()*
+
log ()*

+
  and 

𝑇 = ∑ where 𝐿 = ∑ (𝑑 − 𝑏)(*,()∈(01 . Then,  
 

𝑃(𝐷, 𝜓, ∑)(𝜀) = ∑(Q= − ()*
+
log ()*

+
R(𝑏, 𝑑) ∈ 𝑑𝑔𝑚'S)    (4) 

 
4.3 Persistence Landscape 

 
Persistence landscape (PL) is a practical and reliable approach for extracting homology summaries 

that persist throughout time [17]. PL is a set of piecewise linear functions in the 2D space specified 
by the birth-death coordinates of PD. For each birth-death point (𝑏, 𝑑) ∈ 𝑑𝑔𝑚, the piecewise 
function is defined as 

 

Λ(",$)(𝜀) = &
𝜀 − 𝑏 𝑖𝑓	𝜀 ∈ 	 -𝑏, !"#$ /
𝑑 − 𝜀 𝑖𝑓	𝜀 ∈ 	 -!"#$ , 𝑑/
0 𝑖𝑓	𝜀 ∉ 	 (𝑏, 𝑑	)

     (5) 

 
The 𝑘-th PL defined by 𝜆2(𝜀) = max2YΛ(𝑏𝑖,𝑑𝑖)(𝜀)	|	(𝑏, 𝑑) ∈ 𝑑𝑔𝑚Z consists of finite number of 
collections off diagonal points, then, the corresponding sequence of functions 𝜆2: ℝ → [0,+∞] 
where 𝑘 ∈ 𝑁. Let 𝜓(𝑑𝑔𝑚; 𝑏, 𝑑, 𝜀) = min	{𝜀 − 𝑏, 𝑑 − 𝜀} and 𝑇 = max2 [16]. Then, 
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𝑃(𝑑𝑔𝑚,𝜓, ∑)(𝜀) ≡ 𝜆2 .     (6) 
 
By using tools such as PD, PLC, PLE, and PL we can gain insights into the topological features of a 

dataset and track their evolution over different scales. These summaries are particularly useful in 
data analysis and machine learning, where they can help us identify important features and patterns 
in large datasets. 
 
5. Methodology  
 

In this section, we describe the methods used in our study, which involve phase space 
reconstruction, 𝐿"-norm, and irregularity detection. Phase space reconstruction is a technique used 
to transform a time series into a high-dimensional space, which allows us to analyze the dynamics of 
the system under study. The 𝐿"-norm is a mathematical tool that allows us to measure the magnitude 
of the difference between two sets of data. It is particularly useful in our study because it can 
effectively capture the irregularities in the data that we are analyzing. Finally, we will discuss 
irregularity detection, which is a method used to identify and quantify the irregularities in the data. 
 
5.1 Phase space reconstruction 

 
By using the daily window sliding with constant window 𝑤 = 60, we can divide 𝑋 into a collection 

of sliding windows of size 60 as {𝑋(60), 𝑋(61), … , 𝑋(1826)} where 𝑋(𝑗) ⊂ 𝑋 for all 𝑗 ∈
{60,61, … ,1826}. For each 𝑗, sliding windows at the rainfall day 𝑗 is denoted as 𝑋(𝑗) =
{𝑥(𝑡) ∈ ℝ}345)6!&"

5 , is a data consisting of 60 days.  
To use the topological approach, 1D rainfall data must be embedded into a higher dimension 

using Taken’s embedding [18], which requires two crucial parameters: time-delay (𝜏) and dimension 
(𝑑). Let a time series 𝑥: 𝑡 → ℝ and a parameter 𝜏, a time delay embedding that is a lift to a time 
series 𝜙: 𝑡 → ℝ(  defined by 

 
𝜙(𝑡) = (𝑥(𝑡), 𝑓(𝑡 + 𝜏), … , 𝑓(𝑡 + (𝑑 − 1)𝜏))    (7) 

 
In this research, we use time-delay 𝜏 = 1 to ensure that each subsequent point in the higher 

dimensional space is separated by a constant time interval and dimension 𝑑 = 3. A 3D point cloud is 
created for each time-window to strike a balance between capturing the complexity of the system 
dynamics and avoiding overfitting. In matrix form, we can illustrate the point cloud data (PCD) in 
(60 − 𝑑) × 𝑑 matrix as below: 

 

𝑋(𝑗) = m
𝑥(𝑗 − 60 + 1) 𝑥(𝑗 − 60 + 2) 𝑥(𝑗 − 30 + 3)

⋮ ⋮ ⋮
𝑥(𝑗 − 2) 𝑥(𝑗 − 1) 𝑥(𝑗)

o    (8) 

where 𝑗 = 60,… ,1826. 

5.2 𝐿"-norm  
 

In this study, we implemented 0-dimensional topological features, called connected components, 
on PCDs. For each PCD, the PH was applied to calculate all persistent pairs and all pairs obtained will 
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be vectorized in a PLC, PLE and PL. Let 𝑃 = 𝑃(𝑑𝑔𝑚,𝜓, ∑)(𝜀) be the vector form, for each persistence 
summary, 𝐿"-norm will be calculated as follows:  

 
‖𝑃‖ = ∑ 𝑃%$

%4"  .      (9) 
 
As a result, we obtain 𝐿"-norm time series denoted as 𝑌 = {𝑦(𝑗) ∈ ℝ}546!"7#6  where 𝑦(𝑗) is a 𝐿"-norm 
value at the rainfall 𝑗 = 60,… ,1826. For PL, we use the average of five strip denoted as, 
 

𝑌8+ =
"
9
∑ ‖𝑃‖29
24" .      (10) 

 
5.3 Irregular Detection 

 
To find the changes of the irregular patterns in the rainfall data using the topological information 

derived as 𝑌, we compute the differentiated value (DV) for two days [4]. Then, after computing the 
DV, we applied sliding window for identifying the local threshold of the irregular patterns. The sliding 
window is set to 10% of the number data obtained. For each window we are going to compute the 
mean and standard deviation which becomes our local thresholds. Then we compare with the DV. 
The irregular pattern will appear outside the band where we use the following band formula: 

 
𝑏𝑎𝑛𝑑(𝑢) = 𝑦u: ± 𝐶𝜎:      (11) 

 
where 𝐶 ∈ ℝ is a constant, 𝑦u: and 𝐶𝜎: are the mean and standard deviation for window 𝑢. To test 
the effectiveness of the irregular patterns obtained, we let 𝐶 = 5 and compared it to the actual flood 
dates reported by DID between June 2012 and May 2017 to assess its efficacy. 
 
6. Result and Discussions 

 
This section summarises the outcomes of our phase space reconstruction, persistence diagrams, 

and persistence landscapes produced by applying PH to the daily precipitation data from stations in 
Terengganu. We propose the notion of sliding windows since our purpose is to examine data based 
on the variation of daily topological information. With 𝜏 = 1, the length of the sliding window 
employed in this work is 60 days. We then use Takens' embedding with  𝜏 = 1 and 𝑑	 = 	3 to a time 
series for each sliding window of precipitation data. We then acquire three-dimensional point cloud 
data from the phase space reconstruction. We extracted and tested for H0 and H1 topological 
information, thus we let 𝑑	 = 	3. However, user may increase the dimension if higher order of 
homology is needed.  

Each window is marked by the end date of the data it contains; hence, the output for each 
window is derived only from the data of prior dates. This time-ordered series of sliding windows is 
subjected to 𝐻! to examine the daily transition of topological properties. There are three distinct 
time series findings, including 𝐿"-norm of the PLC, PLE and PL.  

The PH analysis of the rainfall data identified several irregular patterns in the data. The points 
highlighted in Table 2 represent the irregular patterns of the topological summary. The PH may be 
indicative of a complex or dynamic system, as the presence of irregular points suggests that there 
are deviations from regular or expected patterns in the data. The irregular points could be the result 
of external factors or influences that are not reflected in the rest of the data. For example, if the data 
represents rainfall patterns, the irregular points could be caused by unusual weather events such as 
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floods [19]. The irregular points could be caused by errors or uncertainties in the data collection 
process. It is important to carefully consider and investigate the potential sources of such errors when 
analyzing the data. The irregular points could represent opportunities for further study or 
investigation. For example, if the data represents rainfall patterns, the irregular points could be 
indicative of areas that are particularly susceptible to drought or flood, and further analysis could 
help to identify the underlying causes of these patterns. 

We retrieved the flood start date provided by DID for each of the three sites between June 2012 
and May 2017 to match the beginning of the irregularity points in the rainfall data. Based on the 
observation and comparison of irregular points in PH and flood events, it has been determined that 
an alert signal should be implemented. We will provide a signal based on the difference between the 
irregular point and flood events.  The total number of days before or after the flood, with 35 days 
being the maximum ever recorded is also given. Additionally, it is possible for alert signal to be sent 
out more than once. Therefore, the lowest value will be chosen and inserted into the table. The word 
"No" will be shown if the irregular value does not match with the flood events and “false” for signal 
outside the given range. Table 3 contains the results of the analysis. 

 
Table 2 
Irregular patterns detection from station Kemaman, Hulu Terengganu and Besut using three type of 
persistence representations (PLC, PLE and PL). 

Type Kemaman Hulu Terengganu Besut 

PLC 

   

PLE 

   

PL 
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Table 3 
Details of signal (days) using irregular value. 

District Actual flood 
events PLC PLE PL 

KEMAMAN 

25/12/2012 No No 25/12/2012 (first day) 
2/12/2013 No 15/9/2013 (false) 3/12/2013 (1 day late) 

9/1/2014 1/2/2014 (after 23 
days) 11/3/2014 (false) 5/12/2013 (early 34 

days) 

19/12/2014 29/8/2014 (false) 17/7/2014 (false) 16/12/2014 (early 3 
days) 

24/12/2014 No 3/11/2014 (early 36 
days) 

17/12/2014 (early 7 
days) 

None  9/3/2015 (false) 13/2/2015 (false) 
None 1/8/2015 (false) 29/9/2015 (false) 29/12/2015 (false) 
None  8/10/2015 (false) 30/12/2015 (false) 
None 26/2/2016 (false) 26/2/2016 (false) 30/11/2016 (false) 
None  12/11/2016 (false) 1/12/2016 (false) 

3/1/2017 27/5/2017 (false) 25/3/2017 (false) No 
21/1/2017 No 27/5/2017 (false) No 

HULU 
TERENGGANU 

24/12/2012 No 12/10/2012 (false) 25/12/2012 (1 day 
late) 

31/12/2012 No 25/12/2012 (early 5 
days) 

26/12/2012 (early 5 
days) 

2/12/2013 27/5/2013 19/8/2013 (false) 4/12/2013 (2 days 
late) 

18/12/2014 10/3/2014 (false) 18/11/2014 (early 30 
days) 18/12/2014 (first day) 

30/12/2014 27/6/2014 (false) No 19/12/2014 (early 11 
days) 

None 22/3/2015 N/A 29/12/2015 (false) 
31/12/2016 No No No 

3/1/2017 24/4/2017 (false) No No 
22/1/2017 No No No 

BESUT 

24/12/2012 3/9/2012 (false) No No 
31/12/2012 No 31/12/2012 (first day) No 

None N/A 26/4/2013 (false) 1/1/2013 (false) 
None N/A 20/11/2013 (false) 5/12/2013 (false) 
None N/A N/A 6/12/2013 (false) 

18/12/2014 2/2/2014 (false) 19/3/2014 (false) 18/12/2014 (first day) 

27/12/2014 16/5/2014 (false) No 19/12/2014 (early 8 
days) 

None N/A 27/4/2015 (false) N/A 
None N/A 12/9/2015 (false) N/A 

31/12/2016 14/5/2016 (false) 13/5/2016 (false) No signal 

3/1/2017 4/3/2017 (false) 1/1/2017 (early 2 
days) 

2/1/2017 (early 1 
day) 

21/1/2017 22/3/2017 (false) No 5/1/2017 (early 16 
days) 
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Table 3 shows the first day record of 22 flood events that occurred in the past in Kemaman, Hulu 
Terengganu and Besut. Overall, the irregular pattern of PL has the best performance to match the 
irregular pattern with actual flood events compared to the other patterns. The total number of alerts 
that can be found is 13 signals, which is equal to 59%. This suggests that there is some level of 
correlation between the PL vector and flood, but the correlation may not be as strong as desired. 
This may indicate that the irregular points identified by PL are not the only factors influencing flood 
risk. On the other hand, PLC and PLE irregular patterns do not match with the actual flood events. 
The mismatch between the PLC, PLE and actual flood events suggests that the irregular points 
identified by persistent homology may not be closely related to the flood events. However, the 59% 
match in the persistence landscape analysis indicates that the irregular points do show some 
association with the flood events, although it does not capture all the factors that contribute to flood 
risk. Another reason is the irregular points identified by PH are related to other aspect of the data or 
variables, such as the dynamics of the weather systems that create the rainfall patterns rather than 
the floods themselves. This could indicate that while the irregular points do not directly cause flood 
events, they may be an indicative of conditions that are favorable for flood events to occur.  

 We test only for the connected component (𝐻!) because it is a relatively simple topological 
feature to compute and understand, making them a useful starting point for rainfall data analysis 
tasks. While 𝐻! is useful for identifying regular patterns, such as connected regions in the rainfall 
data, other homology groups, such as 𝐻"and 𝐻#, can also be used to identify more complex or 
irregular patterns. 𝐻" can be used to identify loops or cycles in the data, which may indicate patterns 
such as repeating structures or cyclical behavior. 𝐻#, on the other hand, can be used to identify voids 
or holes in the data, which may indicate patterns such as missing or hidden structures. Furthermore, 
the use of multiple homology groups can provide an enhanced comprehensive understanding of the 
data topology and can give insights into different types of patterns that may not be visible from the 
𝐻! alone. 
 
7. Conclusion 

 
This study examines the application of PH to determine the irregular rainfall pattern and its 

relationship to actual flood events. The proposed method was evaluated using rainfall data from 
three distinct stations in Terengganu. Three topological summaries from PH were utilized to identify 
the signal of topological features based on the date of rainfall, and the differentiated value (DV) of 
𝐿"-norm was then applied to identify the irregular points.  

In general, PL could be utilized as a preprocessing step to examine rainfall data in the hydrological 
area. The signal of topological features derived using PL shows that PH can produce a signal based on 
the DV.  The comparison of three distinct types of topological summaries via PH were carried out 
where PL analysis of the irregular points showed match of about 59% to the flood events. On the 
other hand, the mismatch between the PLC and PLE of the irregular points and the pattern of flood 
events suggest that the irregular points may not be as closely related to flood risk as initially thought 
and that other factors may also be important in determining flood risk. Further research may be 
necessary to fully understand the relationship between the topological feature of rainfall and flood 
events and to develop effective flood risk management strategies. 

In conclusion, there are other factors influencing flood risk that are not reflected in the employed 
PD vectorization effectively. Land use and topography also play a role in determining flood risk, and 
these factors may not be captured by the vectorized PD of the rainfall data. Further research may be 
necessary to extract other vectorization method which include 𝐻" and 𝐻# of PD to identify irregular 
points, flood risk, and other factors that contribute to flood events. It may also be useful to consider 
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other analysis methods such as critical slowing down theory (mean, variance, autocorrelation, and 
power spectral) that can provide better understanding of the system. 
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