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Topological Data Analysis (TDA) is an emerging field of study that helps to obtain insights 
from the topological information of datasets. Motivated by the emergence of TDA, we 
applied Persistent Homology (PH), one of the tools commonly used to extract 
topological features to cluster the Datasaurus Dozen dataset. This dataset is ideal to 
show PH’s capability in clustering as it consists of twelve distinct point clouds (PC) that 
have identical mean values, standard deviation, and correlation values, yet produce 
dissimilar patterns. The methodology starts with normalizing Datasaurus Dozen, 
followed by computing H1 Persistence Diagrams (PD) for each dataset. Two types of PD 
distances are computed directly: Wasserstein Distance (WD) and Bottleneck Distance 
(BD) and represented as proximity matrix. We also vectorized H1 Persistence Diagrams 
to obtain the average of first five strips of Persistence Landscape (PL) and computed L2 
distance to represent a proximity matrix. These three distance matrices are used to 
generate dendrograms by using Hierarchical Agglomerative Clustering (HAC). 
Regardless of possessing similar descriptive statistics, PH accurately extracts the global 
and local geometric topological information, and clusters them accordingly. It is evident 
that for clustering based on global geometric information, BD is suitable and 
computably cheap, whereas for clustering based on local geometric information, WD 
and average PL vectors are suitable but may incur extra computation. 
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1. Introduction 
 

In 1973, statistician Francis Anscombe created Anscombe’s quartet to demonstrate the 
importance of data visualization before analyzing it and building a model [1]. Anscombe’s quartet 
consists of four dataset groups which all have nearly identical statistical observations that provides 
the same information (variance and mean) for each 𝑥 and 𝑦 point. However, when these datasets 
are plotted, they appear very different from one another. The datasets are plotted as scatter plot 
with the fitted line which shows the difference between the four datasets as shown in Figure 1.  
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From Figure 1, we can deduce that (a) Dataset 1 shows that the dataset fits the linear regression 
model well and (b) Dataset 2 cannot fit the linear regression model but rather forms a smooth curve 
relation as it is a non-linear dataset. As for Figure 1(c), the datasets form in a straight line except for 
one observation further away from the fitted line. This shows that a single outlier is involved in the 
dataset. Similarly, Figure 1(d) shows the presence of a set of outliers in the dataset. 

 

  
(a) Dataset 1 (b) Dataset 2 

  
(c) Dataset 3 (d) Dataset 4 

Fig. 1. Visualization of Anscombe’s Quartet of four datasets in the form of scatter plot [2]. 
 

Although we will be able to visualize the dataset patterns, the failure in differentiating each 
dataset in terms of statistical summary leads us to seek for efficient data analysis method. In this 
study, we will be using Topological Data Analysis (TDA) as a method to differentiate datasets that 
produce similar statistical summary and show its strength by means of clustering. 

Topological Data Analysis (TDA) is an emerging data analysis method used in studying topological 
space or features. In this work, it is used to cluster the characteristics of the data. With the help of 
TDA, we would be able to obtain the hidden insights of the dataset feature from its topological 
information. TDA is also applied in many other fields such as image analysis, time series [2], medicine, 
sensor networks, chemistry [3] etc. Driven by TDA’s performance, we employed Persistent Homology 
(PH) to obtain Persistence Diagrams (PD) and represented distance matrix using Bottleneck distance 
and Wasserstein distance respectively. The third approach is from the PDs, we vectorized its 
topological features using average of Persistence Landscape (PL) for each dataset, thus, by comparing 
these feature vectors with L2 norm, we obtained a distance matrix. With these three types of distance 
matrices, we then applied cluster analysis.  

Cluster Analysis or commonly known as clustering is one of an unsupervised learning method 
used in machine learning. With clustering, observations are separated into groups with similar 
characteristics and assigned into clusters. These observations are segregated based on their 
similarity/dissimilarity measures to help uncover the common characteristics of each cluster [4]. 
Cluster analysis is performed in this study to figure out the dissimilarities of the datasets using 
topological information. In this work, we employed Hierarchical Agglomerative Clustering (HAC), a 
well-known clustering algorithm. This method is used to represent clusters as well as the tree-like 
structure called dendrogram illustrating the flow of how observations are clustered. Four types of 
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clustering linkages are considered: single, complete, average and ward. After clustering the datasets, 
we compared the dendrograms to summarize the efficiency of PH methodology to qualitatively 
differentiate the dataset. 

The objective of this study is twofold: (i) to extract the topological features from Persistence 
Diagram (PD) and obtain three types of distance matrices using Wasserstein Distance (WD), 
Bottleneck Distance (WD) and Persistence Landscape (PL), (ii) to compare the dendrograms obtained 
from BD, WD, and PL Average HAC approach. The comparison of these three approaches would be 
helpful in identifying the dissimilarity and suitability for clustering the dataset with similar statistical 
summary. 

The structure of the paper is organized as follows: The following section introduces the dataset 
and the methods implemented which includes HAC and PH to differentiate the datasets. The 
subsequent section depicts findings and discussions, and the final section is the study’s conclusion 
and future work. 
 
2. Methodology  
2.1 Datasaurus Dozen 
 

Inspired by Anscombe’s Quartet data, Matejka and Fitzmaurice [5] created additional twelve 
datasets which is named as Datasaurus Dozen. These datasets including Datasaurus dataset have the 
same statistical summary (arithmetic means, standard deviations, and correlation coefficient, all to 
two decimal places) as Datasaurus data but it has different appearances visually. The 12 datasets 
consist of horizontal, vertical, and diagonal parallel lines; fuzzier horizontal and vertical swaths; a grid 
and a blob of points; a big “X”; a five-pointed star, single and double circles as shown in Figure 2. 
 

      

 
Fig. 2. The Datasaurus Dozen with different appearance but same statistical summary [5] 
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2.2 Persistent Homology (PH) 
 

Topological Data Analysis (TDA) is a new method for analysing datasets which is rooted from the 
mathematical study of shapes and structure under deformation and stretching [6]. Most datasets are 
now known to be high-dimensional, incomplete, and noisy. TDA offers a comprehensive framework 
for evaluating such datasets in a way that is insensitive to specific metrics and allows for dimensional 
reduction as well as noise resistance of those features. TDA investigates and comprehends point 
cloud data using two methodologies: Persistent Homology (PH) and TDA Mapper. PH is a popular TDA 
tool that has been used successfully in a variety of fields, including financial time series analysis [7], 
haze clustering [8], and dynamical state analysis [9]. TDA Mapper represents the point cloud into a 
graph which consists of vertices and edges, hence summarizing the structure of a data. In this work, 
we employed the Gudhi Python package to generate PD [10] using Vietoris-Rips filtration technique 
with coefficient field ℤ!. ℤ! provides the information about homology computation algebraically, in 
which chosen based on the dimension of the point cloud. For instance, ℤ" has two elements (0 and 
1), whereas ℤ! has three elements (0, 1 and 2). Figure 3 shows the summaries of PH framework 
applied in this work.  
 

 
Fig. 3. General flowchart of PH clustering performed in this study 
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2.2.1 Persistence Diagram (PD) 
 
In TDA, generalization of a graph concept to higher dimension is known to be as a simplicial 

complex, 𝐾. It is a collection of simplices 𝜎 ⊆ 𝑉, set of vertices. Filtration is a collection of simplicial 
complexes which is defined as  

 
𝐾# ⊆ 𝐾" ⊆ ⋯ ⊆ 𝐾$ (1) 

Homology counts the number of structures such as connected components (𝐻%), loops (𝐻#), voids 
(𝐻")  and higher dimensions in a simplicial complex. In a simplicial complex, 𝐾, the d-dimensional 
simplices are denoted as 𝜎#, … , 𝜎&. A d-dimensional chain is a formal sum of d-dimensional simplices 
𝛼 = ∑ 𝑎'𝜎'&

'(# , where 𝑎'  is the coefficient field. The collection of all d-dimensional chains forms a 
vector space denoted as 𝐶)(𝐾). 𝐶)(𝐾) is the dth chain group of a simplicial complex 𝐾 made from all 
d-chains from simplicial complex 𝐾 together with an addition operation. The boundary operator  
𝜕):	𝐶)(𝐾) → 	𝐶)*#(𝐾) is given by 

 

𝜕)(𝛼) =7 𝑎'𝜕)(𝜎'),
&

'(#
 (2) 

 
where the boundary is defined as	𝜕)(𝜎) = ∑ 𝜏+≺-,/01(+)()*# . If 𝜕)(𝛼) = 0, a d-chain 𝛼 ∈ 𝐶)(𝐾) is a 
cycle. It has a boundary when there is a (d+1)-chain 𝛽 such that 𝜕)4#(𝛽) = 𝛼. The group of d-
dimensional cycles is denoted 𝑍)(𝐾) and the boundaries are 𝐵)(𝐾). The d-dimensional homology 
group is defined as  

  
𝐻)(𝐾) = 𝑍)(𝐾)/𝐵)(𝐾).  (3) 

An element of 𝐻)(𝐾) is called a homology class. For instance, zero-dimensional homology is 
defined as 𝐻%(𝐾) for each connected component of 𝐾	[11]. In PH algorithm, we keep track of how 
the homology changes as filtration takes place. We start off with point cloud (PC) dataset which 
represents the collection of data points in any dimension. The data points in each PC represent 
vertices which will relate to edges continuously when a cover (usually a ball cover) for each data point 
intersects with other ball covers creating a simplicial complex 𝐾 at various resolution of the ball radius 
𝜖.  We call this process as the filtration of PC. There are various filtrations available to represent a PC 
in the form of a complex, in this work we employed Vietoris-Rips filtration which is computationally 
cheap as compared to other types of filtrations. For the given filtration in equation (1), we have a 
sequence of homology maps  

 
𝐻)(𝐾#) → 𝐻)(𝐾") → ⋯ → 𝐻)(𝐾$).  (4) 

As we filter over cover with radius 𝜖 ∈ ℝ	, n-dimensional homology 𝐻5(𝐾6)	classes are born at 
time 𝑏'  and die at 𝑑'  where  𝑏' ≤ 𝑑'. Thus, 𝐻5(𝐾$)	can be denoted in the form of multiset intervals 
{(𝑏' , 𝑑')}'(#5  which can be represented in the form of  𝑛78 persistence barcodes or a point in 
Persistence Diagram (PD). For the barcode, each bar corresponds to an interval {𝑏' , 𝑑'} where 𝑏'  
represents birth and 𝑑'  denotes the deaths, which is the endpoint of the bar. In an 𝑛-dimensional 
space, a point cloud can have a collection of n barcodes, one for each dimension.  

Similarly, PD is an equivalent representation of barcode in which bars are now in the form of 
points denoted as tuples 𝑥' = (𝑏' , 𝑑') where 𝑖 = 1, 2, … , 𝑝 of points is a spread in the upper half 
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plane above the diagonal line. The set of all PDs can be represented with multiple distance measures 
where it is a rigorous metric space under the condition of local finiteness of persistence diagrams.  

Two distance measures employed to find the distances between PDs are Wasserstein distance 
(WD) and Bottleneck distance. WD works by summing pth powers of the distance to move each point 
and is more sensitive to noise. BD only takes the farthest distance any point needs to be moved and 
only sees global structure. 

Given two PDs; PD1 and PD2, the pth Wasserstein distance is defined as follows [12]: 
  

𝑊𝐷9(𝑃𝐷#, 𝑃𝐷") = inf
::<→>

(7‖𝑎 − 𝜑(𝑎)‖?
9

@∈<

)#/9 
(5) 

According to Berwald et al., [12], in majority application we let the 𝑞 = ∞. Using 𝑞	 = 	𝑝 to control 
the geometry of the space of persistence diagrams is generally more sensible. In a simpler form, the 
Bottleneck distance is defined as follows [13]: 
 

𝐵𝐷C(𝑃𝐷#, 𝑃𝐷") = inf
::<→>

sup
@∈<

‖𝑎 − 𝜑(𝑎)‖C. 
(6) 

where 𝜑 is a multi-bijective matching point between 𝑋 and 𝑌. 
 
2.2.2 Persistence Landscape (PL) 
 

A Persistence Landscape (PL) is created by first building a triangle that corresponds to a 
generalized persistence interval of the birth and death pair from PD. We denote the birth and death 
pair for a specific 𝐻5 in the piecewise linear function 𝑃(D!,)!): ℝ → [0,∞]. 

 

𝑃(D!,)!)(𝑡) = _
𝑡 − 𝑏' , 𝑖𝑓	𝑡 ∈ (𝑏' ,

D!4)!
"
	),

−𝑡 + 𝑏' , 𝑖𝑓	𝑡 ∈ (
D!4)!
"
, 𝑑'

0, 𝑖𝑓	𝑡 ∉ (𝑏' , 𝑑').

), (7) 

The birth and death pairs {(𝑏' , 𝑑')}'(#5  in PL is the order of functions 𝜆E: ℝ → [0,∞], 𝑘 = 1, 2, 3, … or 
equivalent function 𝜆E: ℕ × ℝ → [0,∞] where 𝜆(𝑘, 𝑡) = 𝜆E given as follows: 

 
𝜆E(𝑡) = 𝑘 −maxk𝑃(D!,)!)(𝑡)l (𝑏' , 𝑑') ∈ 𝑃𝐷}. (8) 

For a detailed explanation on PL, readers are referred to Bubenik and Dlotko [14]. 
 

Next, we extract the first five strips of persistence landscapes {𝜆#, 𝜆", 𝜆!, 𝜆F, 𝜆G	} of 𝐻# and obtain 
the average of each strip. In general, we find the average of a strip of persistence landscapes, �̅�E as 
follows: 

 
�̅�E(𝑡) =

#
$
	∑ 𝜆E

(')(𝑡)$
'(# . (9) 

Let 𝑓H  represent jth set of Datasaurus Dozen dataset, then each dataset has the following  𝐻# 
topological feature vector: 
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𝑓? = (�̅�#, �̅�", �̅�!, �̅�F, �̅�G), (10) 

for each dataset, thus we have 𝑞 = 1, 2, … , 12 feature vectors. To compute dissimilarities between 
each dataset, we used the following norm equations with 𝑝 = 2. 

 

‖𝑓' − 𝑓'4#‖9 = n7|𝑓' − 𝑓'4#|9
$

'(#

p

#/9

 (11) 

2.3 Cluster Analysis 
 

Cluster analysis technique is used mainly to explore datasets and cluster them into different 
cluster based on certain aspects. There are many clustering methods namely K-Means, Mean Shift, 
Spectral clustering, Hierarchical clustering and DBSCAN. Throughout this study, we applied 
Hierarchical Clustering specifically the Hierarchical Agglomerative Cluster (HAC). HAC is applied to 
Datasaurus Dozen using three PH approaches to experiment the feasibility of their respective 
topological vectors to differentiate each dataset. 
 
2.3.1 Hierarchical Agglomerative Clustering (HAC) 

 
Hierarchical agglomerative clustering (HAC) is a bottom-up approach that generates dendrogram 

partitions by progressively merging the n individuals into groups [15]. In short, the observations are 
separated into groups with similar characteristics and assign them into clusters. Dendrograms are 
tree-like structures that are frequently used to depict the relationships between all the data points 
in a dataset [16]. For cluster observations to create a dendrogram, a measure of dissimilarity and a 
linkage criterion is necessary. The linkage criterion is used to calculate the distance between 
observation sets. A dendrogram can be produced by applying linkage techniques such as single 
linkage, complete linkage, group average and Ward to observations. 

The distance matrix also called as dissimilarity matrix used in this work is Bottleneck distance (BD) 
of PD, Wasserstein distance matrix (WD) of PD and PL Average (PL) distance as inputs along with its 
linkage to construct the dendrogram. Four linkages (single, average, ward and complete) were used 
in this work. A single linkage is the shortest distance between a point in one cluster and a point in 
another. Complete linkage is the distance between clusters with the most distant observations. 
Average linkage is defined as the average distance between each cluster point to every point in the 
other cluster [17]. Ward linkage employs the variance for clusters instead of measuring the distance 
directly, hence it is said to suit quantitative variables. 

Cluster validation is an important step in cluster analysis. It aids in determining the quality of 
clustering algorithm results. In this work, we employed Cophenetic Correlation Coefficient (CCC) as 
cluster validation. It is used to assess the dendrogram and the accuracy of the dissimilarity matrix 
generated based on Pearson coefficient (𝑟IJK) where it is calculated between original dissimilarity 
and the cophenetic distance of a dendrogram. If the CCC is close to one, the dendrogram produced 
precisely represents the dissimilarity matrix [18]. 
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3. Results  
3.1 Clustering Based on Bottleneck Distance (BD-HAC) 
 

In this part, we computed the distance between the PD of each dataset with one another using 
the Bottleneck Distance (BD). Each distance was compiled and used as a new input to find the 
dissimilarity matrix to generate the dendrogram. Along with the dissimilarity matrix obtained, we 
employed four different types of linkage to obtain four different dendrograms (Figure 4).  
 

  
(a) 𝐶𝐶𝐶 = 0.99149 (b) 𝐶𝐶𝐶 = 0.98721 

  
(c) 𝐶𝐶𝐶 = 0.99404 (d) 𝐶𝐶𝐶 = 0.94817 

Fig. 4. Four different Bottleneck Distance dendrogram based on different linkages 
  

From these four dendrograms (Figure 4), we chose the complete linkage dendrogram (Figure 4(a)) 
as an example to show the cluster formation and dissimilarity of each cluster. Complete linkage 
dendrogram has one of the highest CCC value and looks well clustered compared to the other 3 
dendrograms.  The BD distance measure used allows the clustering of the Datasaurus Dozen into 
three distinct clusters. The first cluster (Figure 5(a)) consists of three datasets with 1D loop-like 
structure. The second cluster (Figure 5(b)) has datasets with no loop whereas the last cluster (Figure 
5(c)) has one stand-alone circle dataset which has one distinct loop. 
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(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 

Fig. 5. Three distinct clusters based on Complete Linkage dendrogram of BD of PD input 
 
3.2 Clustering Based on Wasserstein Distance (WD-HAC) 
 

Similar to BD-HAC, we computed the distance between the PD of each dataset using the 
Wasserstein Distance (WD). Each distance was compiled into a dissimilarity matrix to generate the 
dendrogram. Next, we employed four different types of linkages to obtain four different 
dendrograms  as shown in Figure 6.  
 

  
(a) 𝐶𝐶𝐶 = 0.69167 
 

(b) 𝐶𝐶𝐶 = 0.71177 
 

  
(c) 𝐶𝐶𝐶 = 0.75949 (d) 𝐶𝐶𝐶 = 0.67754 

Fig. 6. Four different Wasserstein Distance dendrogram based on different linkages 
 

 We chose the complete linkage dendrogram (Figure 6(a)) as an example to show the cluster 
formation and dissimilarity of each cluster. Although both Complete linkage and Ward dendrogram 
has the lowest CCC value and looks well clustered, complete linkage has the higher CCC compared to 
Ward. We have two distinct clusters; the first cluster (Figure 7(a)) consists of all datasets without loop 
except for star shape which has an edgy shape whereas the second cluster (Figure 7(b)) consists of 
datasets with both smooth curvy shape loop. 
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(a) Cluster 1 (b) Cluster 2 
Fig. 7. Two distinct clusters based on Complete Linkage dendrogram of BD of PD input 

 
3.3 Clustering Based on PL Average (PL-HAC) 
 

In this section, we computed the average of PL of each dataset and used this topological vector 
as an input to find the dissimilarity matrix to generate the dendrogram with linkages as stated above. 
All the dendrogram (Figure 8) looks similar with same group of clusters. 
 

  
(a) 𝐶𝐶𝐶 = 0.96566 (b) 𝐶𝐶𝐶 = 0.96711 

  
(c) 𝐶𝐶𝐶 = 0.96787 (d) 𝐶𝐶𝐶 = 0.95284 

Fig. 8. Four different Average Persistence Landscape dendrogram based on different linkages 
 

We chose complete linkage dendrogram (Figure 8(a)) as an example to show the cluster 
formation and dissimilarity of each cluster although all the dendrogram gives the same result. The 
first cluster (Figure 9(a)) shows that the cluster consists of edgy shaped datasets. The second cluster 
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(Figure 8(b)) consists of dataset shape that has rough 1D loop whereas the third cluster (Figure 8(c)) 
is a stand-alone cluster just like in BD-HAC which is a circle. 

 

 

 

 

  

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 
Fig. 9. Three distinct clusters based on Complete Linkage dendrogram of Average PL input 

 
3.4 Comparisons of BD-HAC, WD-HAC, and PL-HAC 

 
Cluster comparisons serve as the foundation of clustering evaluation and temporal evaluation of 

clusters. Due to grouping of elements into clusters, similarity measures must be considered for other 
aspects of clustering such as number of clusters, size distribution of clusters, cluster overlaps and 
scaling relations between levels of hierarchical clustering. Therefore, we used element-centric 
similarity which gives additional specific insights of how two clustering are different based on the 
similarity calculated at the level of individual variable in a dataset.  Element-centric similarity 
technique captures cluster-induced relationships between the observations through cluster 
affiliation graph, a bipartite network in which one vertex set corresponds to the original elements 
and the other to the clusters. In short, it is a per-observation measure, and is obtained by constructing 
cluster induced element graph. 

The element-centric similarity score lies between 0 and 1 where 0 means clusters do not share a 
single element and 1 indicates the clustering is identical [19]. In this study, we compared three 
dendrograms obtained from WD-HAC, BD-HAC and PL-HAC approach using element-centric 
similarity. BD-HAC approach has two number of clusters whereas WD-HAC and PL-HAC has three 
number of clusters. Based on the element-centric similarity value (Table 1), the dendrogram obtained 
using BD is 87% similar to the dendrogram obtained using WD. It is not surprising as these two 
approaches employ distance between PD directly rather than extracting the topological vector as 
represented by average PL. It is also apparent that all three has about 82% similarities, hence 
indicating the stability of PDs as discussed by Otter et al., [6] and Bubenik et al., [14]. Comparing PDs 
obtained directly is simpler and straightforward as shown in equation (5) and (6), using either WD or 
BD. However, obtaining PL requires extra computation work as shown in equation (7) to equation 
(11). As we compare the three approaches, BD approach only considers the most apparent 
topological feature (furthest PD from diagonal line), whereas WD and average PL considers all 
topological feature; whether its far or near the diagonal line. Hence, WD and average PL clusters are 
based on geometric information, namely the curvature of the dataset. This finding is evident as we 
inspect how the star-shape dataset is clustered. For WD and average PL based clusters, the star-
shaped dataset is clustered far away from those datasets having curvy edges.  Hence, this is yet 
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another proof where the points closer to diagonal line in PD is indeed capturing local geometric 
information as reported by Bubenik et al., [20]. 

 
Table 1 
Element-Centric Similarity value compared 
between complete linkage for each HAC approach 

 BD-HAC WD-HAC PL-HAC 
BD-HAC    
WD-HAC 87.18%   
PL-HAC 82.55% 84.03%  

 
4. Conclusions 
 

With the aid of Datasaurus Dozen dataset, we have shown how clustering Persistent Homology 
successfully cluster datasets with the same statistical summary. Since the dataset is 2D, we can easily 
visualize and compare unlike those in high dimension. Overall characteristics analysis of clusters 
formation in three different HAC approach shows that BD-HAC clusters are based on global geometric 
information, whereas WD-HAC and PL-HAC are based on local geometric information. Finally, we 
compared all three HAC approaches by using element-centric similarity (ECS), which showed that the 
similarity range of all approach is within the range of 82-87%. These show that the way each dataset 
cluster in different approach is almost similar and stable. BD-HAC approach can be used if the data 
used is high-dimensional since its computationally cheaper compared to WD-HAC and PL-HAC. As for 
PL-HAC, it can be used for clustering based on local geometric information, although it may involve 
extra computation.  
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