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This research paper focuses on developing a traffic sign recognition system based on 
the You Only Look At Coefficients (YOLACT) model, a one-stage instance segmentation 
model that offers high performance in terms of accuracy and reliability. However, the 
YOLACT performance was influenced by various conditions such as day/night and 
different angles of objects. Therefore, this study aims to evaluate the impact of different 
angles and environments on the system performance. The paper discusses the 
framework, backbone structure, prototype generation branch, mask coefficient, and 
mask assembly used in the system. ResNet-101 and ResNet-50 were used as the 
backbone structure to extract feature maps of objects in the input image. The prototype 
generation branch generates prototype masks using fully convolutional networks (FCN), 
and the mask coefficient branch generates the Mask assembly using the sigmoid 
nonlinearity. Two models, YOLACT and Mask-RCNN, were evaluated by mean precision 
(mAP) and frames per second (FPS) with the front view dataset. The results show that 
YOLACT outperforms Mask-RCNN in terms of accuracy and speed. For an image 
resolution of 550x550, YOLACT with Resnet-101 is considered the best model in this 
article since it achieves over 80% precision, recall, specificity, and accuracy in various 
conditions such as day, night, left and right, and forward-looking angles. 
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1. Introduction 
 

Automation using autonomous systems is becoming increasingly popular across different 
industries, with its ability to execute programs or control operations on machines [1]. Autonomous 
driving, one of the most famous research areas, has become a widely used product worldwide. In this 
area, the level of autonomy is classified in five levels (1-5 levels) by the Society of Automotive 
Engineers (SAE) from driver assistance to full automation [2]. To improve the autonomous driving 
system, research and development (R&D) teams seek to achieve SAE level 5 [3]. They collect and 
store relevant sensory data, analyze data sets, and interpret the results as a production control 
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system to eventually reach a state where an autonomous car can sense information and accurately 
navigate the road. 

Despite the advancement in self-driving cars that use algorithms to collect data from sensors, 
artificial intelligence (AI) could be integrated into the machine to achieve flexibility and effectiveness 
[4]. Deep learning approach is one of the most prominent research and development in vehicle 
autonomy, requiring continuous application and development of expertise in traffic signs. Using deep 
learning approaches such as YOLACT improves drivers' ability to comprehend road signs while driving. 

This study aims to address the problem of drivers' inability to read and interpret road signs 
correctly. This is highlighted as it can lead to road accidents and fatalities. The parameters that cause 
such various factors include wear and tear, poor observation, and environmental conditions such as 
too much light or too much darkness [5-7]. To address this, recent research has shown that the 
integration of computer vision and deep learning can be used to assist drivers in recognizing traffic 
signs [8]. However, conventional deep learning algorithms have shown decent results, but they were 
sometimes time-consuming and discontinuous in following frames [9]. 

This study seeks to use YOLACT to increase the driver's ability to comprehend road signs while 
driving in the UTHM (Universiti Tun Hussein Onn Malaysia) and improve the recognition of road signs 
in adverse settings such as strong or dim illumination, wear, and deterioration. The research also 
intends to investigate the effects of variable features such as the visual brightness of objects in an 
image on YOLACT's performance. The objectives of this research are to develop instance 
segmentation utilizing the YOLACT at UTHM in Malaysia, compare Frame Per Second (FPS) and mean 
Average Precision (mAP) on the front traffic signs between the Mask-RCNN and YOLACT, and evaluate 
the reliability of the traffic sign right-left view, front view, day view, and night view provided by 
YOLACT.  
 
2. Literature Review 

 
The traffic sign recognition system generally includes two stages: detection and classification. 

Traffic sign detection is used to obtain inherent information (such as color or shape) and other natural 
information from images. After that, features are extracted from actual candidate regions. Using a 
recognition system, it plays a role in different types of traffic sign classification tasks. For example, 
the Histogram of Oriented Gradients (HOG) features for dimensionality with Iterative Nearest 
Neighbours-based Linear Projections (INNLP) and classification with Iterative Nearest Neighbours 
(INNC) reached 98.53% accuracy for traffic sign images [10]. Other machine learning algorithms used 
in traffic sign recognition include SVM classifiers with HOG feature [11], MLP (Multi-Layer Perceptron) 
with the radial histogram features [12], SVM with LIPID (local image permutation interval descriptor) 
[13], CNN etc. [14,15]. However, these methods could still be improved by data augmentation and 
the application of multiple CNNs, as these usually result in higher memory and computational costs. 

In segmentation, the basic structure of object recognition is performed using a hierarchical 
method. In the concept of neural network, the basic structure is described as three layers, namely 
the input layer, hidden layer and output layer. The various methods used in segmentation all produce 
different results in terms of time to identify the objects in the image and structure in the architecture 
[16].  

Object detection has many types of methods for object segmentation such as semantic 
segmentation [17] and instance segmentation [18]. Semantic segmentation treats multiple objects 
within a single category as one entity, and instance segmentation identifies individual objects within 
these categories. For example, instance segmentation can be used for any object such as a detected 
vehicle [18]. It is used in Artificial Intelligence for object recognition and is a usual method for object 
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detection in neural networks, a branch of Convolutional Neural Networks (CNN) with machine 
learning or deep learning. R-CNN (regions with convolutional neural networks) combines regional 
interest with CNN. There are several methods for generating recognition categories in detected 
objects' shadow areas. Regional suggestions include object [19], selective search [20], and category-
independent object suggestions [21]. On the other hand, R-CNN is unable to comprehend the specific 
region proposal method. As a result, a selective search method is employed in order to achieve a 
comparison with previous object detection results. To further improve R-CNN, some functions can 
be combined to improve performance in detection or training speed, such as Mask R-CNN [22] and 
Fast R-CNN [23]. For example, Fast R-CNN selects the SoftMax with boundary box for the generating 
output step. 

The instance segmentation approach used in object recognition has two major architectures: 
one-stage instance segmentation and two-stage instance segmentation. The instance segmentation 
approaches have been widely used in object detection systems. For example, two-stage 
segmentation [24] works in two steps. The first step generates the bounding box by using a regional 
proposal, and the second step classifies each of the region proposals by using a classifier such as the 
ResNet . In addition, the one-stage segmentation [25] is lightweight and uses many samples to classify 
various images at different scales and ratios. These provide functionality such as object localization 
and classification. 

Compared to two-stage segmentation, one-stage segmentation generally has higher speed but 
lower accuracy. For example, Mask-RCNN [25] is a two-stage segmentation method that achieves 
higher accuracy than one-stage methods. However, two-stage segmentation has limitations in terms 
of speed, making it difficult to achieve real-time segmentation (<30FPS). On the other hand, one-
stage segmentation is lighter and faster, and is suitable for linear combination. YOLACT [26] is a 
lightweight option that achieves real-time instance segmentation at 30FPS. 

Different methods are used in one-stage segmentation to improve accuracy, such as location-
sensitive pooling [27,28] or methods that combine semantic segmentation and direction prediction 
logic [29]. However, the limitation of one-stage segmentation still lies in its lower accuracy compared 
to two-stage segmentation. The structure, layout, and results of one-stage segmentation can vary 
depending on the method used in the first-level segmentation. 

According to Figure 1, compared with other methods (such as Mask R-CNN) used in the same 
device and MS COCO [30], YOLACT is the fastest frame per second (FPS). For the fps and mean 
Average Precision (mAP) results in the article by Bolya, Daniel, et al., [31] YOLACT obtained 29.8 mAP 
and 33.5 fps. For YOLACT, it is possible to achieve real-time instance segmentation in a one-stage. 
The YOLACT system structure is shown in Figure 2. It starts with the FPN method, which uses a 
different backbone for constructing feature extraction. These are used to generate prototype 
generation branches (protocols) with ReLU [32] and mask coefficients, and then merge them for mask 
assembly. Then, many parameters used on the score threshold filter the image, and these parameters 
become the output image and are displayed as segmented regions in the object. 
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Fig. 1. Comparison methods in term of frame per 
second (FPS) [14] 

 

 
Fig. 2. YOLACT architecture 

 
A real-time instance segmentation algorithm, in different domains has been utilized such as 

marine situational awareness, metal screw defect detection, teeth and facial landmark 
segmentation, railroad track inspection, railway catenary fastener detection, and instance 
segmentation accuracy improvement. 

In marine situational awareness [33,34], YOLACT was used to recognize ships' classes and 
geographic locations in real-time from static oblique view images. The results showed that YOLACT 
had a faster FPS than DetectoRS, but a lower performance of overall mAP. In metal screw defect 
detection, YOLACT was used to detect surface defects of screw heads, and the results showed high 
accuracy and reliability with a detection result of 40.11 mAP box and 41.37 mAP mask. 

In the domain of teeth and facial landmark segmentation [35,36], YOLACT was evaluated with 
Mask R-CNN, MS R-CNN, and D2Det, and it obtained a 0.50 mAP and 0.55 mAR. However, MS R-CNN 
achieved the highest performance at 0.67 mAP and 0.69 mAR. 

In railroad track inspection [37], YOLACT was used with ResNet-50, ResNet-101, Res2Net-50, and 
Res2Net-101, and Mask R-CNN for real-time instance segmentation of railway tracking components. 
The results showed that Mask R-CNN obtained the highest mask coefficient at 63.9mAP, while Yolact-
Res2Net-101 obtained the highest bbox at 59.9mAP. 
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In railway catenary fastener detection [38], YOLACT was used with Reinforcement Learning and 
F-RCNN to perform semantic segmentation for the part of looseness of fasteners. The YOLACT 
obtained the best mask mAP of 0.975 and less than 1.1 FPS compared with YOLACT++ for 
segmentation performance. 

Finally, in instance segmentation accuracy improvement [39], YOLACT was designed with multiple 
feature extraction and FPN to enhance instance segmentation. The results showed that ResNetSt50 
has 49.66 mAP higher than other feature extraction methods. 

Traffic signs on the road have a significant impact on drivers' decision-making during driving. 
According to Bazire et al., [40], most road traffic accidents occur due to non-compliance with traffic 
signs. Under normal circumstances, the frequency of traffic volume during the day is higher than at 
night, but there are more road accidents at night than during the day. This is due to reasons such as 
reduced light levels [41]. 
 
3. Methodology 
 

This section describes the main framework, backbone structure, Prototype Generation branch, 
mask coefficient and mask assembly. 
 
3.1 Main Framework 
 

This paper presents a traffic sign recognition system based on YOLACT, a real-time one-stage 
instance segmentation model. YOLACT's instance segmentation architecture is similar to that of 
Mask-RCNN and Faster-RCNN, but it processes pixel-level information directly on the image, without 
using the repooling operation. 

YOLACT performs two main tasks: (1) generating prototype masks and (2) predicting the masking 
coefficient of each instance in each layer. The architecture starts with Feature Pyramid Networks 
(FPN) and feature backbones to extract object features from images (Figure 3). Then, the prototype 
generation branch (protonet) generates prototype masks using fully convolutional networks (FCN) at 
a fixed image size and uses the largest image size layer. 

In addition, YOLACT predicts masking coefficients between each layer of FPN using a prediction 
head and non-maximum suppression (NMS) method, where each anchor encodes the representation 
of the instance in the prototype space. Finally, the protonet and mask coefficient branches are 
combined to form a Mask assembly.  

 

 
Fig. 3. The main structure of YOLACT [25] 
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The most significant step in the development of the traffic sign segmentation was image 
preparation. It consists of image acquisition, resizing, and identification which affects the accuracy of 
objects and the reliability of data analysis. The traffic sign images were captured in different 
conditions, including day, night, frontal, and right-left view in Universiti Tun Hussien Onn Malaysia 
(UTHM) premise. Capture an image from the same smartphone camera with 1.5 m distance, same 
angle and adjust its size to 1:1 for all the images. The captured image displayed the resolution as 
3456 x 3456 pixels. The number of traffic signs collected for traffic signs totaled 512 images. 

 

3.2 Backbone Structure 
 

The backbone structure acts as a feature extractor to obtain feature maps of objects in the input 
image. After modifying or tuning the model, each structure is developed to meet specific 
requirements for detection accuracy and efficiency. The accuracy of models has greatly improved 
with the use of ResNet in the backbone structure. In lightweight architectures, MobileNet [42] can 
be used as in this article [43]. In YOLACT, ResNet structures were employed to enhance the 
performance of the models, including YOLACT-ResNet-50 and YOLACT-ResNet-101. 

ResNet is a convolutional neural network backbone structure. Each ResNet series has a unique 
set of convolutional layers, and the performance of each ResNet series is determined by the number 
of these layers. For example, ResNet-50 has 49 convolutional layers between conv1 and conv5_x, as 
well as one average pooling layer, while ResNet-101 has 100 convolutional layers between conv1 and 
conv5_x, and one average pooling layer. In YOLACT, ResNet-50 was found to be more accurate than 
other backbone architectures, such as VGG-16 [43]. ResNet consists of five stages: Conv1, Layer1, 
Layer2, Layer3, and Layer4, corresponding to C1 to C5. This experiment employed two ResNet 
methods: ResNet-50 and ResNet-101, both of which were obtained from YOLACT. 

The bottleneck structure depicted in Figure 4 was designed for ResNet-50 and ResNet-101. As 
shown in Figure 4, the bottleneck structure begins with a 1x1 convolutional layer in the initial stage 
and ends with another 1x1 convolutional layer for inferring image resolution. 

 

 
Fig. 4. Bottleneck of 
structure [9] 

 
 
 
 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 34, Issue 2 (2024) 327-341 

333 
 

3.3 Prototype Generation Branch 
 

The prototype generation branch (protonet) was a fully connected network attached to the P3 
layers in the feature Pyramid Networks (FPN) [44]. The FPN received information from the output 
layers of the backbone structure to generate protonet and prediction head. Corresponding to the 
FPN and backbone structure, the output between C3 to C5 was used to analyze data for [P3, P4, P5]. 
In YOLACT type models, P5 was upsampled to P6 and P7 with one-fourth dimensions to increase 
detection performance on small objects, while P2 was omitted. In the last layer of the FCN, k 
prototype masks were generated for the entire image. Each of the k channels represented a 
prototype.  

Unlike RetinaNet, NMS performs mask coefficients between each layer (P3 to P7) and this system 
produces three branches in the predicted head: one branch was the predicted class confident as c, 
one of the branches was four bounding box regressors, and one branch was mask coefficients as k 
prototype. Therefore, the equation forms to 4+c+k. 

To generate mask prototypes, k channels were used to attract the layers P3, as shown in Figure 
3. The value of k=32 channels was used for the last layers of the FPN to perform instance 
segmentation. The Rectified Linear Unit (ReLU) nonlinear activation function was used to unbind the 
prototype net and generate prototypes to make them more interpretable. Furthermore, the number 
of prototype masks was independent of the number of categories, distributing the representation of 
the generated prototypes. 
 
3.4 Mask Coefficient and Mask Assembly 
 

Based on the protonet branch and predicted head branch in Figure 3, these were combined to 
generate the mask assembly. The generated prototypes were removed by using the tanh activation 
function. The masks were created by linearly combining the protonet output and mask coefficients. 
The final masks were created using the sigmoid nonlinearity. This process is illustrated by Eq. (1): 
 
𝑀 =  𝜎𝑃𝐶𝑇              (1) 
 
where M is the mask assembly, P denotes an h × w × k matrix of prototype masks, and C denotes an 
n × k matrix of mask coefficients for n instances that survived NMS and score thresholding. 

Feng Gou et al., [45] describes how YOLACT trained different backbone weights using various 
hyperparameters. The initial learning rate, momentum, iteration, and batch size were kept constant 
throughout when training models with different backbones. Two image resolutions were used: 
512x512 pixels and 550x550 pixels. The batch size used was 2. Table 1 displays the hyperparameters 
considered and their default values during the different phases. 

 
 Table 1  
 Considered hyper-parameters and the default 

Parameters Default value 

Initial learning rate 10-3 
Momentum 0.9 
Iterations 10k 
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4. Result and Discussion  
 

In this section, an experiment was conducted to evaluate the applied method. Firstly, two models 
were trained and tested on the same dataset, and their performances were assessed. Then, the 
performance of the two adopted methods, YOLACT and Mask-RCNN, were compared using the 
training sets of these datasets to illustrate their usefulness. To evaluate the performance of the two 
models, mean Average Precision (mAP) and frames per second (FPS) were calculated. Additionally, 
YOLACT was used to test four different conditions, including front view, day, night, and right-left view 
conditions. 
 
4.1 Dataset 
 

This segment provides a brief overview of the dataset used in YOLACT, including the resizing, 
labeling, and file format. 

The COCO format is widely used for custom datasets in large-scale object detection and 
segmentation evaluations. For this dataset, a ratio of 0.6:0.2:0.2 was used to split the dataset into 
training, validation, and testing sets [46]. For the front view dataset, 320 images were split into 192 
for training, 64 for validation, and 64 for testing. The same number of untrained images were used 
for testing for the front view, daytime, left-right view, and night-time datasets. 

To prepare the training and validation datasets for both models, images were resized to a 
resolution of 550x550 pixels and 512x512 pixels before completing the annotations file. The Labelme 
tool was used to produce the COCO format in a JSON file for the training, validation, and testing 
datasets. The background category was labeled as 0, Parking Lot sign as 1, No Entry sign as 2, Stop 
sign as 3, and Name sign as 4. 
 
4.2 Labeling Tool 
 

To understand the masking process of the images used, object labeling was performed. The 
Labelme software was executed in Ubuntu 18.04 operating system where a Graphical User Interface 
appears to selectively label each object, as shown in Figure 5. Figure 6 illustrates the original jpg 
image before and after the instance label visualization process on the Labelme tool. 

 

 
Fig. 5. Label different types of road signs 
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(a) (b) 

Fig. 6. Original jpg image process on LABELME tool: (a) before 
instance label visualization; (b) after instance label visualization 

 
4.3 Implementation Details 
 

The implementation was carried with the YOLACT and Mask-RCNN models executed on an Nvidia 
GeForce 950m GPU and an Intel Core i7-7700 CPU. For the YOLACT model, the hyperparameters were 
set as described above, except for the batch size which was set to 2 to fit within the GPU's memory 
capacity. The momentum and iteration were set to 0.9 and 10000, respectively, and the initial 
learning rate was 0.001. The input size was varied between 550x550 pixels and 512x512 pixels. The 
PyTorch library provided by Facebook, along with the CUDA and CuDNN packages developed by 
NVIDIA, were used to configure, and accelerate the model training process. For the Mask-RCNN, the 
default settings were used, with a resolution of 512x512 pixels. 
 
4.4 Evaluation of YOLACT and Mask-RCNN  
 

The performance of YOLACT and Mask-RCNN models was evaluated based on their accuracy in 
detecting traffic signs for the front view dataset using the COCO mAP (mean average precision) 
metric. Before evaluating the mAP, the intersection over union (IOU) and average precision (AP) were 
calculated using a confusion matrix that included True Positive (TP), True Negative (TN), False Positive 
(FP), and False Negative (FN) values. The IOU measured the overlap between the ground truth and 
predicted boundary, and a prediction was considered accurate if the IOU was greater than 0.5. The 
AP was calculated by averaging precision across all recalls that ranged from 0 to 1. Precision, recall, 
specificity, and accuracy were calculated based on the confusion matrix using Eq. (2), (3), (4), and (5), 
respectively. The YOLACT model used ResNet-101 backbone weights, while the Mask-RCNN used 
ResNet-50 backbone weights. 
 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)           (2) 
 
𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)            (3) 
 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)           (4) 
 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)         (5) 
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For the Average Precision, it calculated the equation for the value of the area of the precision-
recall curve. The precision-recall (PR) curve was the plot of the precision value as a function of the 
recall value. It shows the trade-off between the two metrics for varying confidence values for the 
model detections in the Eq. (6) and has shown below. 
 

𝐴𝑃𝑎 = ∫ 𝑃𝑑𝑅
1

0
              (6) 

 
where P was precision and R was recall. Each AP was calculated individually for each class. The values 
of the AP averaged to become the mean Average Precision. It was the mean of the average precision 
overall class and has shown below Eq. (7). 
 

𝑚𝐴𝑃 =   
1

𝑛
∑ 𝐴𝑃𝑖𝑖=𝑛              (7) 

 
where the n was the number of classes. Meanwhile the frames per second in this model use the 
following Eq. (8). 
 
𝐹𝑃𝑆 = 1/(𝑇𝑖𝑚𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑚𝑎𝑔𝑒)        (8) 

 
Figure 7 presents a concise view of the results, with YOLACT outperforming Mask-RCNN in terms 

of speed. In terms of performance on the training and validation datasets, Mask-RCNN achieves 
higher performance compared to YOLACT, obtaining 100% mAP. However, YOLACT achieves a 
different range of performance between 0 and 4% for each category. For the validation and testing 
datasets, all models show a drop in performance, ranging from 0% to 12.5%. Mask-RCNN experiences 
the highest drop, dropping from 100% to 87.5% between the validation and testing datasets. On the 
other hand, YOLACT-ResNet-50 at 512x512 pixels has the lowest drop of 0.26% between the 
validation and testing datasets. For the test dataset performance, YOLACT-ResNet-101 at 512x512 
pixels has the highest mAP performance of 96.52%, while the lowest mAP of 87.50% is observed for 
Mask-RCNN-ResNet-50. With a ResNet-50 backbone and an image size of 550x550 pixels, YOLACT 
achieves the highest FPS of 5.06 and a mAP of 92.53% in the test dataset. This performance is 4% 
better for FPS than the 512x512 pixel resolution but 0.66% lower for mAP. With a ResNet-101 
backbone and an image size of 550x550 pixels, YOLACT achieves the highest FPS of 3.25 and a mAP 
of 94.99% in the test dataset. In comparison to the 512x512 pixel resolution, it performed with a 2% 
increase in FPS but a decrease of 1.53% in mAP. In contrast, Mask-RCNN's results in Table 2 are the 
lowest, with 0.78 FPS and 0.68 FPS for ResNet-50 and ResNet-101, respectively. 

 

 
Fig. 7. The FPS against the model used 
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Table 2  
YOLACT and MASK-RCNN for mask mAP on traffic sign’s front view dataset 
Models Image 

resolution 
FPS Train  

(% mAP) 
Validation  
(% mAP) 

Test  
(% mAP) 

Yolact-ResNet-50 512x512 4.84 93.45 93.45 93.19 
Yolact-ResNet-101 512x512 3.18 99.50 99.50 96.52 
Yolact-ResNet-50 550x550 5.06 93.21 93.21 92.53 
Yolact-ResNet-101 550x550 3.25 99.15 99.15 94.99 
Mask-RCNN-ResNet-50 512x512 0.78 100.00 100.00 87.50 
Mask-RCNN-ResNet-101 512x512 0.68 100.00 100.00 93.75 

 
4.5 Evaluation the Testing Datasets Between Front View, Days, Right-left View, and Night Conditions 
 

Based on the dataset, tests were conducted to evaluate the performance of YOLACT-ResNet-50 
and YOLACT-ResNet-101 on front, right-left, day, and night views using precision, recall, specificity, 
and accuracy. Tables 3 and 4 present the performance indices of the two models, computed using 
Eq. (2)-(5). Figure 8 shows the results for objects predicted with an IOU score above 0.5, and the 
performance of the confusion matrix is computed using four indices for each image. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig 8. The example output of each condition (a) Front-view, (b) 
Night-time, (c) Days, and (d) Left-right view conditions 

 
Table 3 presents the overall results for different conditions and image resolutions. The 512x512 

pixel resolution performs better than the 550x550 pixel resolution in terms of overall precision, recall, 
specificity, and accuracy, except for precision. The 512x512 resolution achieves 92.31%, 80.81%, 
99.48%, and 84.35% for precision, recall, specificity, and accuracy, respectively, while the 550x550 
resolution obtains 97.45%, 72.92%, 99.35%, and 78.04% for these metrics. YOLACT-ResNet-50 
exhibits different performances ranging from 0% to 7% for front and right-left views at both image 
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resolutions. In daytime conditions, the values range from 0% to 29% away from nighttime conditions. 
The recall performance is the lowest for ResNet-50, with the model having low sensitivity in 
recognizing objects in nighttime conditions, reaching 59.38% and 67.19% in 550x550 and 512x512 
nighttime conditions, respectively. Overall, ResNet-50 with 512x512 pixels performs well in terms of 
the four metrics, except for nighttime conditions where precision, recall, and accuracy are low. 
 

Table 3 
YOLACT-ResNet-50 for four conditions 
Image resolution Condition Front (%) Right and Left view (%) Days (%) Nights (%) Overall (%) 

512x512 Precision 100.00 98.22 100.00 71.00 92.31 
Recall 87.50 85.73 82.81 67.19 80.81 
Specificity 100.00 99.49 100.00 98.44 99.48 
Accuracy 90.00 87.41 86.25 73.75 84.35 

550x550 Precision 98.53 95.83 97.92 97.50 97.45 
Recall 81.25 75.00 76.04 59.38 72.92 
Specificity 99.48 98.96 99.48 99.48 99.35 
Accuracy 85.00 80.00 79.66 67.50 78.04 

 
Table 4 presents the performance of YOLACT-ResNet-101, with a precision of 95.75%, recall of 

90.99%, specificity of 98.44%, and accuracy of 92.24% at the 512x512 resolution. At the 550x550 
resolution, the model achieves a precision of 94.73%, recall of 92.16%, specificity of 98.19%, and 
accuracy of 92.59%. YOLACT-ResNet-101 performs differently in front and right-left view conditions, 
with the four metrics differing by 0% to 7% at both image resolutions. The values range from 0% to 
11% in daytime and nighttime conditions. The recall is the lowest for ResNet-101, with the model 
having low sensitivity in recognizing objects in nighttime conditions, reaching 85.94% in both image 
resolutions. Overall, YOLACT achieves more than 80% performance for both backbones, except for 
ResNet-50's recall and accuracy for 550x550 pixels in right-left view, day, and night conditions, 
ResNet-50's 512x512 pixel nighttime condition, and ResNet-50's precision for nighttime in 512x512 
pixels. 

 
Table 4  
YOLACT-ResNet-101 for the four conditions 
Image resolution Condition Front (%) Right and Left view (%) Days (%) Nights (%) Overall (%) 

512x512 Precision 95.50 91.83 97.22 98.33 95.72 
Recall 92.19 89.06 96.77 85.94 90.99 
Specificity 98.44 96.88 98.96 99.48 98.44 
Accuracy 93.75 91.25 95.19 88.75 92.24 

550x550 Precision 92.50 93.94 96.97 95.50 94.73 
Recall 89.06 95.21 98.44 85.94 92.16 
Specificity 97.40 97.94 98.97 98.45 98.19 
Accuracy 91.25 94.99 96.53 87.57 92.59 

 
It was deduced that the best model was YOLACT-ResNet-101 with a 550x550 image resolution. 

This is because YOLACT prioritizes lightweight ability over performance. ResNet-50 struggled to 
recognize objects during nighttime conditions and had reduced recall as the resolution increased. In 
contrast, ResNet-101 achieved over 80% image resolution performance with YOLACT. 
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5. Conclusions 
 

This study evaluates real-time instance segmentation models and their application to four 
conditions. The evaluated model consists of a fully convolutional model with a backbone, FPN, 
protonet, and prediction heads. The FPN structure detects objects of different scales, while the 
improved backbone structure extracts input features. Two concurrent processes create instance 
masks assembly, one performed by protonet and the other by the prediction head. The YOLACT 
model was evaluated with different backbone configurations, and YOLACT-ResNet-101 with 550x550 
image resolution outperforms Mask-RCNN in terms of FPS, making it the preferred model for 
handling image resolution. Based on the results, for the four examined traffic sign conditions, it 
achieved better than 80% performance and worked well at night according to the four performance 
values. The study suggests improving the YOLACT system's performance by using advanced transfer 
learning models, developing general classification models, and using high-performance GPUs. 
Overall, YOLACT shows high performance in traffic sign detection and classification, and it is 
recommended for use in self-driving systems. 
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