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Most of the robots nowadays become more intelligent in line AI technology are being 
applied in industry. Deep Reinforcement Learning (DRL) is involves gaining knowledge 
by making errors and fixing them. Hence, the robot will learn from mistakes and keep 
improving by process. Deep Reinforcement Learning is a kind of machine learning 
method that focuses on teaching models to act in ways that maximize rewards in an 
environment. Since the algorithm receives feedback in the form of rewards or 
consequences for its actions, this is often accomplished through trial and error. Soft 
Actor Critic (SAC) is the most recent Deep Reinforcement Learning technique. In this 
research, to design a simulation robot that can be trained by using Soft-Actor Critic. This 
purpose is to train and evaluate the performance of robot in MATLAB and VMware 
platform. According to this study, robots might learn and adapt to their surroundings 
more quickly and effectively with the aid of a system that utilises a suitable reward 
together with a guidance technique. Decisively, the simulation shows that the Soft Actor 
Critic algorithm successfully simulates the control of flying fire fighter robot in terms of 
stability. 
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1. Introduction 
 

Fires are one of the most common calamities that occur in Malaysia every year, with almost 
50,000 cases reported each year. Unfortunately, these issues are predicted to increase in the future, 
and there is an urgent need for more efficient and effective means of reducing the risk of fatality and 
injury. The unpredictable scale of these disasters is beyond the scope of human mission planning, 
and critical high-temperature situations and complex environments result in extremely hopeless 
conditions and further difficulties for rescue operations. The application of robotic technology can 
significantly improve disaster response, recovery, preparedness, and efficiency, while ensuring the 
safety of responders, and could also be the solution to these issues. 
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However, current robots cannot exhibit the same level of performance in the extreme 
environment of disasters as they can in controlled indoor or laboratory environments. Their ability 
to respond to unexpected situations is low, and there is a need for robots that can adapt to changing 
conditions and perform critical tasks under high-stress conditions [1]. In this work, the focus is on 
creating robots that can be used in unknown extreme environments where the situation is always 
changing, such as sudden fire explosions, falling building structures, death, and major injury [2]. 
When fighting a fire, for example, it is preferable for firefighters to be stationed far from the flames 
and to directly spray water on the fire source. However, direct access to the fire source is challenging, 
and it may be difficult for a firefighter to extinguish a fire that has spread throughout a building, 
especially if it is a large-scale blaze. The goal in this situation is to keep the fire inside the building 
from spreading outdoors. 

To address this challenge, a number of traditional robot systems have been developed, including 
fire hose-equipped terrestrial mobility robots or search robots [3-5]. However, these robots are often 
built to walk on flat surfaces, and accessing the interior of a burning building can be difficult. These 
robots are categorized by Amano [6], who believes that aspects to think about include size and 
weight. Various research has suggested a solution to forest or metropolitan fires, where many flying 
robots fly in formation to eliminate the flames [7,8]. Ghamry et al., [7] created an algorithm to 
determine an unmanned aerial vehicle's (UAV) best flight formation for spotting forest fires. Yamada 
et al., [8] introduced the idea of remotely extinguishing a flame by mounting a drone to the end of a 
fire hose. However, this research has not yet been applied practically, such as by performing an action 
like fire extinguishing. To move the hose of the UAV closer to the fire source, issues like the payload 
and the impact of the hose's tension on the flight must be overcome. 

Hence, in this study, a novel flying robot with water-jet propulsion for a flying firefighter robot is 
proposed. The concept of the flying fire-fighter robot using water jet propulsion for extinguishing fire 
on high-rise buildings is introduced. In robotics, flying robots with water-jet propulsion have emerged 
as one of the most promising robotic approaches in solving the limited mobility of conventional 
robots with large rigid structures and heavy payloads. The robots have higher mobility to reach high 
places by flying, and soft-robotic; slim design that can move in small opening areas and non-rigid 
designs that can change shape depending on their environment. 

However, the robot's attachment to a non-rigid water hose causes complex mathematical 
modelling. Although several researchers have proposed different types of modelling recently, this 
study is different from such previous works in terms of the novel concept of the flying soft-robotic 
mechanism using high-pressured water propulsion. This study aims to control the complex flying 
water hose robot that can steadily fly. The robot head is a rigid body with nozzles, and the hose-like 
body is composed of a flexible hose. The study models soft-robotics using three assumptions. Firstly, 
the hose-like body of the soft-robot is divided into multiple links connected by elastic joints and 
dampers [9]. Each link is treated as a rigid body and each joint can bend in three different directions. 
Secondly, the model has its edge fixed at the origin and there is no ground. Lastly, the reaction force 
produced by the water jet is treated as an external force applied to the center of mass (COM) of each 
link, ignoring the fluid-structure interaction. The model parameters are based on the actual soft-
robot and system identification is used to estimate the spring stiffness and damper coefficient for 
each joint. However, the complexity of the soft-robotics' dynamic model makes it difficult to develop 
a control system. 

Boston Dynamics has created advanced robots with mobility, dexterity, and intelligence. The 
motion controllers for wheeled mobile robots are often based only on their kinematics. However, to 
reduce tracking errors, it's important to consider the dynamics of the robot, especially when 
performing high-speed movements or transporting heavy loads. Commercial mobile robots typically 
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have internal controllers that accept velocity commands, but control signals generated by dynamic 
controllers are usually torques or voltages [10]. 

To address this issue, researchers have developed advanced control strategies that take into 
account both the kinematics and dynamics of the robot. For instance, the use of feedback control 
can be an effective way to control the robot's motion and prevent instability. Additionally, optimal 
control techniques can be used to determine the optimal motion trajectory of the robot, which can 
help to reduce tracking errors and improve the robot's overall performance. 

Another key area of research in robotics is the development of machine learning algorithms for 
robot control. Reinforcement learning is a method of machine learning that focuses on how software 
agents should perform actions in an environment. It is a part of deep learning that allows us to 
optimize some aspect of the cumulative reward. Reinforcement learning allows robots to learn a 
wide range of performance skills. However, robotic reinforcement learning implementations often 
sacrifice the individuality of the learning process to reduce training times with actual systems. Deep 
Reinforcement Learning (DRL), which trains general-purpose neural network policies, alleviates this 
limitation. However, direct deep reinforcement learning algorithms have been limited to simple 
functions in simulated settings because of their high sample complexity. 

Model-based deep reinforcement learning has shown promising ability to control complex robots 
such as flying soft-robotics. This type of control requires continuous control which is possible through 
deep reinforcement learning. The deep-learned control has shown robustness in real-world 
scenarios. In this case, a proposal is made to use deep reinforcement learning and the Boston 
Dynamics controller for a firefighter robot. DRL requires a model to learn the complex flight control 
of soft-robotics which allows for frequent model updates and is easier to train outside of policy [11]. 
Soft Actor-Critic (SAC) is the state-of-the-art DRL algorithm for use in real-world robots, which uses 
off-policy updates combined with a stable stochastic actor-critic formulation. 

The project’s objective is to develop an SAC controller using MATLAB software to ensure the 
stability of the robot's flying movement and analyze its performance. The project scope includes 
controlling the robot's stability using dynamic controllers in MATLAB software with Gazebo simulator, 
enabling the robot to fly up to 1m high, and ensuring locomotion stability using Lagrange dynamic. 

This paper presents the details of the proposed robotic technology, methodology, and expected 
outcomes. The paper is structured as follows: section II provides background information on 
firefighting robots and their limitations. Section III discusses the methodology used in this study, 
including the materials and instruments used. Section IV explains the expected outcomes of the 
study, including the implications for the field and future research. Finally, section V summarizes the 
main points of the introduction and previews the upcoming sections of the paper. 
 
2. Literature Review 
 

This chapter discusses previous studies related to the construction and formulation of a 
firefighter robot using dynamic control. Both the approaches and procedures for this research are 
clarified. To ensure that the project meets its aims, the literature study provided analyses and reports 
on industrial science related to this project. 

Robots come in various forms, from walking on two, four, six or more legs, to flying in the air, to 
performing surgeries, and working in factories [12]. Model-based Deep Reinforce Learning Artificial 
Intelligence has shown a promising ability to control complex robot automation. This complex control 
requires continuous control that is possible by using deep- reinforce learning. The deep-learned 
control has shown robustness in a real situation, making it an ideal candidate for flying soft robotics. 
Formulating Deep Reinforce learning requires modelling for learning the complex flight control of 
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soft robotics. There have been several firefighter robot experiments conducted previously, and the 
functionality, speed, and performance of these robots differ. The Tactical Hazardous Operations 
Robot (THOR) as shown in Figure 1 (left) is a humanoid robot designed for the Shipboard Autonomous 
Firefighting Robot (SAFFiR) program of the United States Navy [13,14]. It is a humanoid robot that 
can traverse dangerous floors on spacecraft as well as use hoses and a gateway. THOR can walk and 
run semi-autonomously with the assistance of a remote operator. However, the machine is inefficient 
and exposed to damage from fire and water. The Thermite RS1 as shown in Figure 1 (right) is a 
remote-controlled robot designed to traverse dangerous terrain and withstand exposure to extreme 
elements [15,16]. The turbine-aided firefighting robot (TAF 20) is a sophisticated robot firefighter 
that can clear blocking cars, expel smoke from a house, and blast water mist or foam [17]. When 
fighting major burning, this positions the firefighters at far less risk enabling TAF to enter and 
extinguish the fire without endangering anyone while reducing the risk of explosions [18]. The Fire 
Ox is an autonomous firefighting vehicle designed to combat fires and treat hazardous items as a first 
aid device [19]. 
 

  
(a) (b) 

Fig. 1. (a) Tactical Hazardous Operations Robot (THOR); 
(b) Thermite RS1 [13,15] 

 
All the above robots are designed to improve on previous firefighter disadvantages. They are 

land-based, providing more stability on the ground, and can bring high workload, are heat resistant, 
remote controlled from a distance, and have many other functions. However, the disadvantage of 
these robots is that they cannot stay in water during combustion for too long as the momentum of 
the water is large. Water discharge is another weakness for the robot, as the pressure of water 
decreases as the distance between the fire hose and the burning center increases, causing the water 
not to reach the fire. Therefore, mist spray is the best solution to overcome burning. Nonetheless, 
the development of mist spray technology for firefighting robots is still in its early stages, and further 
research is required to improve its efficiency and effectiveness in extinguishing fires. In this research, 
the firefighter robot is upgraded as a flying robot by using a non-linear dynamic controller to improve 
the stability of the robot. The robot can be used in the higher building as this robot is using the ‘drone 
concept’. 

Dynamic control is a vital component in the design and construction of firefighter robots. Dynamic 
control involves the use of mathematical models and algorithms to control the movement and 
behavior of robots. In the case of firefighter robots, dynamic control is used to control the robot's 
movement, the orientation of the water nozzle, the amount and pressure of the water, and other 
important parameters. 
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In the journal of fire-fighter robot applications and controls, several articles discuss the problems 
faced by firefighters and the development of robots that could help them in extinguishing fires. In a 
study by Ando et al., [20], the author discusses the difficulties faced by firefighters in directly 
accessing the fire source and the limited effectiveness of current large and heavy robots. They 
propose a new type of robot hose that can fly through a water jet into the fire source, allowing access 
to the interior of the burning building. Results showed that a 2 m long robot could fly stably in the air 
and its head direction could be controlled. 

Addressing the challenge of locating the flame source and limited access to extinguish it, Gao et 
al., [21] proposes a modular firefighting robot design that integrates proximity, vision, and IR sensors. 
The robot sprays water from a manipulator, and the software includes tracking, obstacle avoidance, 
flame detection, and motion algorithms. An experimental modular intelligent fire extinguishing robot 
was built and tested in simulation, with successful results. Various control algorithms, such as 
machine learning and neural networks, could improve efficiency and stability. 

Article by Ando et al., [22] emphasizes the impact of firefighting operations on firefighters, 
proposing a flexible tube at the outlet of a nozzle to control the trajectory of the water jet and 
conducting a mist spray from a close distance to validate the cooling effect of water. Results suggest 
that direct firefighting and analysis of the potential to suppress fire from a near distance to the fire 
source is practical, and mist spray from a close distance was effective for fire suppression. 

Meanwhile, Baum et al., [23] highlights the danger a structure on fire poses to firefighters and 
trapped individuals, proposing an audio recognition algorithm to classify firefighting sounds such as 
distress signals and structural collapse. The network layout requires minimal hardware functionality 
and achieves an average accuracy of 85.7%. 

However, the weaknesses of using flame sensors were solved using deep learning to detect fire 
in real-time, with detailed outcomes relative to machine learning [24]. 

The literature review by Quillen et al., [25] compares various deep reinforcement learning (DRL) 
algorithms for robotic grasping skills, evaluating each algorithm based on four parameters. Double 
Q-learning (DQL) improves the performance of the algorithm, and Deep RL can learn grasping diverse 
objects from raw pixels with a 90% success rate in a simulator. 

Deep reinforcement learning algorithms for robotic manipulation with asynchronous off-policy 
updates, with the study showing that the algorithm can scale to complex 3D manipulation tasks [26]. 
The algorithm can learn deep bionetwork policies effectively, and RL can learn a range of 3D 
manipulation skills in simulation and a complex door opening skill on real robots. 

Article by Tai et al., [27] deals with virtual-to-real deep reinforcement learning for mapless 
navigation of mobile robots, proposing a learning-based mapless motion planner that takes sparse 
10-dimensional range observations and goal locations to the mobile robot coordinate frame as inputs 
and outputs continuous steering commands. The trained planner can be directly applied to unseen 
virtual and real environments. 

An end-to-end approach using deep reinforcement learning for mobile robot navigation in an 
unknown environment was proposed, using a dueling architecture based double deep Q network 
(D3QN) for navigation [28]. The study concludes that mobile robots can learn the environment 
knowledge gradually and navigate to the target destination autonomously with an RGB-D camera 
only. 

The implementation of wireless sensor networks (WSNs) with mobile robotic sensor nodes for 
spatiotemporal control, proposes deep reinforcement learning tree (DRLT) that uses DRL to increase 
the efficiency of identifying the most insightful sampling sites [29]. The study concludes that DRLT 
achieved the best performance on both average estimation error and the estimation error variance, 
and the proposed method can instruct the robotic sensors to avoid unnecessary sampling positions. 
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In this study, we will be using a DRL-based control system to construct a firefighter robot. This 
system will allow the robot to learn from its experiences and make decisions based on the rewards it 
receives. We believe that this approach will result in a more effective and efficient firefighter robot. 
 
3. Methodology 
3.1 Project Planning 
 

Developing a calculation and simulation of the hardware is the main part of this project. The next 
step is to combine the calculation of the Lagrange Equation and simulation for implementation. Also, 
MATLAB coding was uploaded into the designed flying firefighter robot which later was controlled 
using DRL in ROS software. This process was carried out to observe flying firefighter robot’s motion, 
stability, and other results. 
 
3.2 Hardware Design 
 

The constructed design of flying firefighter robot model is depicted in Figure 2 where the legs 
were controlled by DC motors through linear motion in three axis while its root is fixed and cannot 
move. These consisted of four nozzles as high-impact force makers on a solid surface to ensure 
floating stability. These nozzles were supported by a hose reel. It was supported by using an 
automatic ladder by a fireman truck which is controlled by a remote controller as shown in Figure 2. 
This will lower the lifetime risk to firemen by keeping working up to 15 high levels of buildings. 
 

 
Fig. 2. Application of developed flying fire fighter robot in burning building 

 
The proposed configuration of this flying fire fighter robot system is different from prior studies 

with a similar concept as this concept focuses primarily on a water-based propulsion system with a 
control valve that can provide sufficient actuation force for both translational and rotational motion 
without considering the forces and moments that cause it [22,30]. The exact structure of the 
additional propulsion actuator with a wire-based guiding mechanism will be described in a 
subsequent study. 

The reference coordinate of the 6-DoF firefighting system is illustrated in Figure 3. The location 
of the body-fixed frame (b-frame, 𝑜𝑏𝑥𝑏𝑦𝑏𝑧𝑏)) in the earth fixed frame (e-frame, oxyz) is defined by 
its position (x, y, z). The model is based on three assumptions: (A1) The hose type robot is 
approximated as having multiple links, which are connected by elastic joints and dampers. Each link 
is modelled as a rigid body and each joint can bend along three axes [22]. (A2) The edge of the robot 
model is fixed on the origin, and there is no ground. (A3) The reaction force, W induced by the nozzle 
is modelled as an external force applied on the centre of mass (COM) of link. We ignored the force 
caused by the fluid structure. 
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Fig. 3. Reference-coordinated description of flying firefighting system with 
water jet actuator 

 
To ensure stable flying of the robot, we utilized the Deep Reinforcement Learning (DRL) control 

method. The net force 𝑓𝑖  from the robot i(i = 1, 2, …) is controlled as follows: 
 
𝑓𝑖 = 𝐹𝑖 − 𝐷𝑑𝑖�̇�𝑖  
 

The first term 𝐹𝑖  is a constant force vector in the inertial coordinate system and determines the 
robot’s shape (equilibrium point). The second term is a damping term for the velocity of the nozzle, 
which suppresses vibrations and contributes to the convergence speed. In this experiment, we aim 
to achieve the net force as zero (𝑓𝑖 = 0) with constant water flow. 
 
3.3 Deep Reinforcement Learning (DRL) 
 

The process of controlling flying firefighter robot is shown in Figure 4 where DRL model containing 
policy, and the value network was jointly represented by a Network system. This technique was used 
for teaching the robot to learn emphasizing rewarding good conduct and/or forbids undesirable. It 
typically sensed and comprehended its surroundings, acted, and learned by mistakes [31]. This was 
chosen due to its ability to perform in complex conditions. 

In this case, the experiments in the virtual world demonstrated the effectiveness of autonomous 
learning from the environment without any supervision signal. Particularly, Model Free Based type 
of Reinforcement Learning was used because the agent uses experience to learn Soft Actor Critic 
(SAC) policy or value function directly without using a model. 
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Fig. 4. An overall Deep Reinforcement Learning representation 

 
3.3.1 Soft Actor Critic (SAC) 
 

SAC is an off policy-critical based on the maximum entropy reinforcement learning paradigm. The 
actor's objective in this framework was to maximize the expected reward while also increasing 
entropy. Q-learning methods have been used to develop previous DRL methods based on this 
framework. Off-policy updates were combined with a stable stochastic actor-critic formulation in SAC 
as it is one of the most effective DRL algorithms in real-world robots [32]. 

DRL was applied to train an agent in how to perform a task in an unfamiliar environment. The 
agent delivered actions to the environment and receives observations and rewards from it as seen in 
Figure 5. The reward measured the success of an action with respect to completing the task goal. The 
agent contained two components: a policy and a learning algorithm. The policy mapped the chosen 
actions based on environmental observations. Meanwhile, the policy parameters were continually 
updated based on actions, observations, and reward [33]. 

In addition to using a policy gradient, SAC agents also use two neural networks to approximate 
the next action: the actor and the critic. The actor network takes the current state as input and 
outputs a probability distribution over the possible actions. The critic network takes the current state 
and action as input and outputs an estimate of the expected return. To create the agent and train 
the system to execute based on the actor and critic functions, the ‘rlSACAgent’ function was used 
[34]. This function learns a policy that maximizes the expected return. The policy is updated using a 
policy gradient method, and the value functions are updated using Q-learning. The rlSACAgent 
function has several options that can be used to control the learning process. These options include 
the learning rate, the discount factor, and the number of steps to take between policy updates. The 
SAC algorithm uses two loss functions, a policy loss and a value loss. The policy loss is used to update 
the actor network, while the value loss is used to update the critic network. The policy loss is 
calculated as shown in Eq. (1). 
 
𝑙𝑜𝑠𝑠𝑝𝑜𝑙𝑖𝑐𝑦 =  −𝐸[𝑄(𝑠, 𝑎) × log(𝜋(𝑎|𝑠)]          (1) 

 
where 𝜋(𝑎|𝑠) is the probability of taking action a in state s, 𝑄(𝑠, 𝑎) is the value of state-action pair 
(s, a), and E[] is the expectation operator. 
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The value loss is calculated as shown in Eq. (2). 
 
𝑙𝑜𝑠𝑠𝑣𝑎𝑙𝑢𝑒 =  (𝑄(𝑠, 𝑎) − 𝑉(𝑠))2           (2) 
 
where 𝑄(𝑠, 𝑎) is the value of state-action pair (s, a), and V(s) is the predicted value of state s. 

Figure 5 shows a RL Agent simulated using a Simulink model as a training and simulation for 
environment. 
 

 
Fig. 5. A high-level view of the agent-
environment interaction during training 

 
3.3.2 Network systems 
 

According to Figure 6, the output of the network is generated by a Gaussian distribution, which 
means that the data is generated randomly. To construct the Gaussian distribution layer, a 
combination of the mean and the standard deviation is used to determine the value of the output. 

The actor network is made up of three layers, with 400, 300, and 8 neurons in each layer, 
respectively. The first layer takes in the current state of the environment as input, and the third layer 
outputs a vector of 8 values that represent the mean and standard deviation of a Gaussian 
distribution. The actor then selects an action by sampling from this distribution. 
 

 
Fig. 6. Flow chart of actor network by using Deep 
network designer 

 
The full connector layer is used in neural networks instead of the convolution layer because it can 

use all the features from the previous layer, rather than just a subset of them. This makes it more 
powerful and flexible, but also more computationally expensive. The ReLU activation function is used 
in almost the entire network because it helps prevent all the neurons from activating simultaneously, 
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which can lead to overfitting. It also takes less time to train the network with ReLU activation than 
with other activation functions. 

The critic network has a similar structure for both the critic 1 and critic 2 networks as shown in 
Figure 7. It is made up of two layers, with 400 and 300 neurons in each layer, respectively. The first 
layer takes in the current state of the environment as input, and the second layer outputs a value 
that represents the critic's estimate of the expected return from taking the current action in the 
current state. The critic network receives input from the observation and action, and the output of 
the critic network is used to update the Q-value for the actor network. The critic network only uses 
the feature input layer as the input part, the full connected layer as a connecting layer, and the ReLU 
activation function layer as the hidden layer for the network. 
 

 
Fig. 7. Flowchart of 1st or 2nd critic network by using 
Deep network designer 

 
In policy gradient reinforcement learning, the actor network is updated to increase the 

probability of taking actions that lead to high-quality state-action pairs. The critic network is updated 
to improve its estimate of the expected return from taking actions in different states. 
 
3.3.3 Observation 
 

The agent uses observations to improve its navigation control instructions for the robot as 
depicted in Figure 8. The robot uses three observation signals: position x-axis, y-axis, and z-axis. These 
signals are used to create an observation feature vector. The observation feature vector is then used 
to train the agent. The outputs of the agent were rotation of four motors in flying firefighter robot 
where SAC controller’s simulation was generated in Simulink. 
 

 
Fig. 8. Block diagram of DRL agent input for 
observation and output 

 
The agent determined the rotation of the motor by considering the robot's current position and 

target position. The value was updated as an observation parameter based on the linear velocity. 
In this development, the action used to control the linear velocity of the movement is denoted 

by 𝑎𝑡. This study uses continuous actions to control the linear velocity of the movement. The action 
value in this project ranges between -1 and 1, as shown in Eq. (3). 
 
𝑎𝑡 = { 𝑙𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 − 1 ≤ 𝑎𝑡 ≤ 1          (3) 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 34, Issue 2 (2024) 271-286 

281 
 

The reward function uses the x, y, and z axis position to update the reward function based on the 
equation below: 
 
Reward = (X = x*1) + (Y = y*1) + [(Z = z*1) [if(u1 < 1)]]+[(Z = z*1)/ elseif(u1 > 1)]     (4) 
 

The isDone function determines if the robot has reached its maximum boundary in all three axes. 
If the robot has reached its maximum boundary in any axis, the training process is terminated. The 
isDone function uses a logic gate to determine if the robot has reached its maximum boundary as 
shown in Table 1. 
 

Table 1 
Type of isDone using in this development 
Type of IsDone Condition 

Position (X = x*1) < -1 = False NOR (X = x*1) > -1 = False NOR -1<(X = x*1) >1 = True 

 
where x and X is the current axis-x, axis-y, and axis-z and NOR is the NOR logic gate. 
 
3.3.4 Training and simulation setup 
 

For the simulation, each movement of the agent was recorded to validate the reward function's 
stability, acceleration, locomotion point, and others. To perform the experiment, the Gazebo was 
used to select all the 8 joints of the flying firefighter robot. 

Furthermore, we analysed the collected data and evaluated the result based on the agent's ability 
to maintain stability from the initial to the target position. 
 
4. Result and Discussion 
 

The simulation results were used to evaluate whether the system developed meets the study's 
objectives or targets. 
 
4.1 Training 
 

In this study, the training of the agent was determined by two factors: the reward it received and 
the number of steps it took to complete a task. The results of the study, shown in Figure 9, indicate 
that the agent's performance improved over time for 5000 Episode reward. Early in the learning 
process, the agent was more likely to explore the environment, which resulted in fluctuating rewards 
and lower performance. This is likely because the agent was not yet familiar with the environment 
and did not know how to navigate it efficiently. As the agent learned more about the environment, 
it was able to take more efficient paths and achieve higher rewards. After 3.5 seconds, the agent had 
learned to navigate the environment effectively and was able to achieve consistently high rewards. 
However, it is important to note that the agent's performance was not perfect. The x, y, and z position 
functions were not as mature as the other functions, which suggests that the agent could still improve 
its performance in these areas. Overall, the results of the study indicate that the agent was able to 
learn to interact with the environment effectively and achieve high rewards. 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 34, Issue 2 (2024) 271-286 

282 
 

 
Fig. 9. Position X, Y and Z axis of robot for 5000 Episode reward 

 
The trend of graph in Figure 10 shows the position of X, Y and Z axis of robot for 10000 Episode 

reward. Although trend of graph keeps fluctuating, it resulted in stability because the robot was able 
to manage its stability at a constant position. 
 

 
Fig. 10. Position X, Y and Z axis of robot for 10000 Episode reward 

 
4.2 Simulation 
 

Based on the data shown in Figure 11 and Table 2, the results showed the pattern of Time 
sampling versus Reward. The agent's movement to the goal location affects the simulation's 
outcome. From the graph, time sampling from 0 s to 2.2 s showed the increment of reward. This is 
because robot was in reinforcement learning process. From 2.2 s until 8.6 s, there was constant 
increasing until the peak reward, 6.5. In this state, robot is already adapted to new reinforcement 
learning environment. After 8.6 s until 10.0 s, there has been a decrement in graph due to robot 
already achieving maximum reward. 

Legend: X = Yellow line Y = Red line Z = Blue line 
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Fig. 11. Graph of Time sampling versus Reward for 10000 Episode Training 

 
Table 2 
Comparison time sampling between peak Reward for 
increment and decrement Time sampling 
Time sampling (s) Reward 

2.2s 4.8 
8.6s 6.5 

 
The robot learned to navigate from an initial to a target location through reinforcement learning. 

As shown in Figure 12, the robot was able to achieve a stable state, which indicates that it had learned 
to navigate the environment effectively. The robot's accuracy in reaching the target position suggests 
that the reward system was effective in guiding the robot's learning. This experiment demonstrates 
that SAC training and simulation systems that uses continuous reward strategy can help flying robot 
learn more efficiently and reach stability. 
 

 
Fig. 12. Robot is in stable mode 

 
The robot was able to learn how to reach a target position through reinforcement learning. The 

reward system was based on a continuous-state dynamic system, where the robot received a reward 
of more than 1 for reaching the target position and a reward of less than 1 for not reaching the target 
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position. The results of the experiment showed that DRL is beneficial in the stability process, 
especially when using SAC. 
 
5. Conclusion 
 

In conclusion, this thesis has investigated the use of SAC Deep Reinforcement Learning for 
navigation with an optimal reward function. The results of the simulation showed that the robot was 
able to achieve stability after 10000 Episode rewards. The dynamic controller was developed using 
MATLAB software, and the SAC algorithm was able to compute an ideal strategy that optimized the 
entropy of the strategy while maximizing the long-term expected reward. The simulation results also 
showed that the robot was able to maintain stability from any pressure. 

The research discussed in this thesis focuses on developing a dependable and consistent system 
that can be utilized as a robot controller using the SAC Reinforcement Learning concept with the 
reward function as the primary aspect that will affect the robot's performance. 

For future work, it is advised to design for real-world use and to take the environment—
particularly environmental impediments and weather—into consideration because these elements 
will have an impact on performance. It is also advised to liaise with fireman’s tools to make the robot 
more convenient with fireman’s needs. Additionally, it is advised to add more sensors to make it 
more effective for robots. Finally, it is advised to add a support stand to the robot while using in fire 
extinguishing operation. 

Overall, the results of this research are promising and suggest that SAC Deep Reinforcement 
Learning is a viable approach for developing robots that can stable itself in complex environments. 
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