

Journal of Advanced Research in Applied Sciences and Engineering Technology 35, Issue 1 (2024) 62-87

62

Journal of Advanced Research in Applied
Sciences and Engineering Technology

Journal homepage:
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index

ISSN: 2462-1943

Comprehensive Review on the State-of- the-arts and Solutions to the Test
Redundancy Reduction Problem with Taxonomy

Mizanur Rahman1, Kamal Z. Zamli1,2, Md. Abdul Kader1, Roslina Mohd Sidek1,*, Fakhrud Din3

1

2

3

Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia
Faculty of Science and Technology, Universitas Airlangga, C Campus JI. Dr. H. Soekamo, Mulyorejo, Surabaya 60115, Indonesia
Faculty of Information Technology, Department of Computer Science & IT, University of Malakand, Lower Dir 18800, KPK, Pakistan

ARTICLE INFO ABSTRACT

Article history:
Received 9 June 2023
Received in revised form 3 October 2023
Accepted 13 November 2023
Available online 13 December 2023

The process of software testing is of utmost importance and requires a major allocation
of resources. It has a substantial influence on the quality and dependability of software
products. Nevertheless, as the quantity of test cases escalates, the feasibility of
executing all of them diminishes, and the accompanying expenses related to
preparation, execution time, and upkeep grow excessively exorbitant. The objective of
Test Redundancy Reduction (TRR) is to mitigate this issue by determining a minimal
subset of the test suite that satisfies all the requirements of the primary test suite while
lowering the number of test cases. In order to attain this objective, multiple
methodologies have been suggested, encompassing heuristics, meta-heuristics, exact
algorithms, hybrid approaches, and machine-learning techniques. This work provides a
thorough examination of prior research on TRR, addressing deficiencies and making a
valuable contribution to the current scholarly understanding. The literature study
encompasses a comprehensive examination of the complete chronology of TRR,
incorporating all pertinent scholarly articles and practitioner-authored research papers
published in English. This study aims to provide managers with valuable insights into
the strengths and shortcomings of different TRR methodologies, enabling them to
make well-informed decisions regarding the most appropriate approach for their
specific needs. The primary objective of this study is to offer a comprehensive analysis
of Test Result Reduction (TRR) and its consequential impact on mitigating expenses
related to software testing. This study makes a valuable contribution to extant
literature by elucidating the present state-of-the-art and delineating potential avenues
for future research.

Keywords:

Test redundancy reduction; Test case
reduction; Software testing; Test suite
reduction

1. Introduction

In software development, the testing phase is a crucial component to ensure the quality and
reliability of software products. However, it is also one of the most time-consuming and expensive
processes in the software development life cycle [1]. Testing involves the use of test cases to detect
and identify defects in software. Test cases are created with specific inputs, execution steps, and

* Corresponding author.
E-mail address: roslinams@ump.edu.my

https://doi.org/10.37934/araset.35.1.6287

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

63

predicted results to test various software functions and ensure compliance with required
specifications. According to Yang, and Li in [2], a bulk of test inputs, actions, and anticipated outcomes
are created with a specific goal in mind, like exercising a specific software route or ensuring
compliance with required specifications called a test case. A test suite is a collection of test cases
used to verify the integrity of the program's source code and confirm that the system behaves
correctly in all possible ways.

As software products evolve, the size of the test suite grows, and the cost of testing increases
exponentially. Performing all possible test cases becomes impractical, and this is where Test
Redundancy Reduction (TRR) methods come into play. TRR aims to capture a representative subset
of the entire test set to ensure that all test requirements are met while avoiding unnecessary
repetition. Reducing test redundancy can significantly reduce the time and cost of testing while still
ensuring software quality and reliability [3]. TRR approaches aim to capture a representative subset
of the entire test set to ensure that all test requirements are met while avoiding unnecessary
repetition. It is claimed that a test case is redundant if there are additional test cases that can satisfy
the same requirements. One approach to TRR is the set coverage problem, which is defined as an NP-
complete problem. Johnson [4] was the first to propose a set covering approach, and since then,
researchers have proposed various methods, including heuristic, exact, meta-heuristic, and machine
learning approaches. Test redundancy reduction (TRR) is a critical problem in software testing as it
directly impacts the efficiency and effectiveness of the testing process.

To address this gap, this paper aims to investigate and evaluate the current state-of-the-art TRR
approaches, and performance metrics used in the test reduction process. The review will include
research articles related to the TRR problem, and we will categorize the relevant work to provide a
clear overview of the existing literature. This study will also identify the strengths and weaknesses of
current TRR approaches and performance metrics and provide insights into future TRR algorithms
and methods. Unlike previous review articles [5-7] that mainly focused on conference papers and
were published before 2018, this review will include recently published journal articles, providing a
more comprehensive and up-to-date assessment of the field. This research makes several significant
contributions to the field of test redundancy reduction, including:

i. We provide a thorough evaluation of the most popular approaches for reducing test

suites, including exact, heuristic, meta-heuristic, hybrid, and machine learning-based
methods. Our analysis covers the entire history of test redundancy reduction and helps
readers make informed decisions about which technique is best suited for their specific
needs.

ii. We conduct a comprehensive analysis of the test redundancy reduction problem,
segmenting and classifying existing solutions according to a newly developed taxonomy.
Our taxonomy enables a clearer understanding of the various approaches to test suite
reduction, helping researchers and practitioners identify gaps in the current literature and
develop more effective methods.

iii. We offer a detailed assessment of the advantages and limitations of each approach to test
suite reduction, providing readers with a comprehensive overview of the state of the art
in this field. Our analysis also highlights areas for future research and development,
helping to guide the direction of future work in this area.

The paper is organized as follows. Section 2 provides an overview of the test redundancy

reduction problem, including its definitions, significance, and current state of research. Section 3
presents a novel taxonomy of test redundancy reduction approaches. This taxonomy categorizes and

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

64

organizes existing literature based on their underlying methodology, assumptions, and limitations.
Section 4 includes a brief discussion of the study's findings and limitations. The conclusion, in section
5, summarizes the study's main contributions, implications, and suggestions for future research in
the field of test redundancy reduction.

2. Overview of the TRR Problem

Software testing is a critical procedure that involves the assessment of a program's functioning in

relation to predetermined requirements. In general, test engineers are responsible for creating a set
of test cases in order to assess software in accordance with user demands and ascertain its
compliance with predetermined standards. The escalating intricacy of software and its extensive use
across varied industries necessitate the expertise of proficient engineers possessing a broad range of
knowledge to effectively oversee software development endeavours. In the contemporary day, it is
not atypical for software development teams to engage in collaborative efforts across diverse locales
or regions. The complex nature of interdependent processes presents challenges in coordinating
tasks, mostly due to the limitations imposed by spatial and temporal constraints on these
interactions. A software test suite has the potential to have numerous test cases that are similar in
nature, resulting in redundancies within the testing modules. As an illustration, it is possible to
conduct many tests to fulfil a single need, hence resulting in an escalation of the overall testing
expenditure. The authors employ many names to refer to the process of reducing redundancy in
testing, including Test Suite Minimization and Test Suite Reduction. Throughout the remainder of this
article, the term Test Redundancy Reduction will be employed. The objective of TRR is to generate a
compact subset of the test suite that adequately fulfils the specified test requirements. The objective
of this procedure is to decrease the size of the test suite while ensuring that it satisfies the test
criteria, hence diminishing the overall cost of testing.

Table 1 shows that there are numerous occasions where one requirement is addressed by
multiple test cases, leading to redundancies. For instance, t1 and t6 cover Req1. All t2, t3, t4, and t5
satisfy Req2. Similarly, t1, t3, and t4 cover Req3. A similar analysis may be performed for the
remaining requirements, Req4 through Req9. In this instance, it is preferable to have fewer test cases
while covering as many requirements as possible. The minimum set of tests for this issue is t1, t2, t4
or t1, t2, t5, both of which result in a 50% reduction, as may be inferred from Table 1. It should be
mentioned that while manual inspection can be simple for small software applications with few tests
and requirements, it is not scalable for large-scale software.

Table 1
Test Suite Scenario

 Req1 Req2 Req3 Req4 Req5 Req6 Req7 Req8 Req9
t1 X X X X
t2 X X X X
t3 X X X X
t4 X X X X
t5 X X X X
t6 X X

Mathematically, the test redundancy reduction problem can be represented as follows:

i. Define a set of all tests: Let T = {T1, T2, ..., Tn} represent the set of all tests, where Ti is an
individual test.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

65

ii. Define a set of requirements: Let R = {(req1, req2,…, reqm)} represent the set of
requirements that must be covered to produce the desired test coverage.

The objective function is to minimize the number of tests in T' (i.e., minimize ∑Ti).

𝑓(𝑡) = 𝑚𝑖𝑛{𝑇𝑚 covering Req }, 𝑡 = 𝑡1, 𝑡2… 𝑡𝑗; 𝑗 = 1,2, …𝑁 (1)

2.1. Research Questions

The research question is a critical component of any research project, as it provides a clear focus

and direction for the study. It helps researchers to define the purpose and scope of the investigation,
as well as to identify the appropriate methodology and data analysis techniques. A well-formulated
research question should be clear, concise, and specific, and should be designed to address a
particular gap in knowledge or understanding in a particular field of study. In this research paper,
through the following three research questions, the researcher seeks to uncover new insights and
contribute to the body of knowledge in the field.

RQ#1: What methods are available for the reduction of the test suite?
RQ#2: How do the current methods reduce the test suites?
RQ#3: How do scientists evaluate their test reduction experiments?

2.2 Research Method and Search String

To determine the total number of papers on test redundancy reduction (TRR), we downloaded

all relevant papers and analysed the number of TRR papers published each year, categorizing them
by the journals in which they appeared. Figure 1 shows the frequency with which papers on TRR are
published in different journals. Most papers, 41%, were published by IEEE, followed by Springer with
20%, Elsevier with 18%, ACM with 13%, and others with 8%. Figure 1 shows that IEEE has the highest
number of published articles. Our searches began by retrieving all TRR files, which were then sorted
by the publisher. For the search, we used reputable online resources such as Google, Springer,
Elsevier, and similar databases. We compiled a research database of abstracts, keywords, and titles
and carefully analysed both the content and algorithms of each publication. In this way, we were able
to classify the publications on the topic of TRR. In this research, we employed the search strings "Test
Redundancy Reduction," "Test Suite Reduction," and "Test Case Reduction."

Fig. 1. Percentage of journal-specific
articles on TRR

41%

20%

18%

13%

8%

IEEE Springer Elsevier ACM Others

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

66

2.3 Inclusion and Exclusion Criteria
2.3.1 Inclusion criteria

i. Research publications satisfy the search string.
ii. All Papers that are written in English.

iii. Papers published in a conference, journal, and book chapters.
iv. Paper that has full-text available

2.3.2 Inclusion criteria

i. The title, abstract, or even their content was not closely related to our search string,
however without any semantic interplay.

ii. Personal blogs, webpages, and PowerPoint presentations.
iii. No similarity with the research theme, or even the focal aim was completely contrary to

the purpose of the issues addressed in the RQs.
iv. Irrelevant and Gray studies
v. Papers are not in full-text form.

3. Taxonomy of TRR Methods (RQ#1)

In the context of the TRR problem, four main categories of techniques have been identified: exact,

heuristic, meta-heuristic, and machine learning. Further subcategories have been established within
each of these four groups, as illustrated in Figure 2. This taxonomy serves as a comprehensive
framework for future research on TRR, providing a clear and organized system for the classification
and comparison of different techniques. By breaking down the main categories into subgroups,
researchers will be better equipped to identify the most appropriate techniques for their specific
needs and to assess the effectiveness of various techniques in the TRR problem. This taxonomy will
therefore contribute to the ongoing development and refinement of TRR techniques, facilitating
progress in this important area of research.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

67

Fig. 2. Taxonomy of TRR methods used in various research articles

3.1. A Brief Review of Research Articles on TRR Adopt Exact Methods (RQ#2)

Combinatorial optimization problems of finite size can always be solved by exact algorithms,

which guarantee the identification of an optimal solution and its optimality confirmation in a finite
and instance-dependent runtime. However, in practice, it is not always feasible to compute optimal
solutions efficiently. Therefore, one must choose between optimality and efficiency. In other words,
it may be necessary to compromise on the guarantee of finding optimal answers in Favor of obtaining
high-quality solutions within a polynomial time frame [8]. A brief review of research articles on TRR
that adopt exact methods is given as follows:

Chen and Lau [9] conducted a study that investigated the characteristics of representative sets in
the context of the divide-and-conquer strategy for reducing test suites. They concentrate on
partitioning methods that preserve the minimum and good narrative sets in terms of critical test
cases. Proposed strategies involve breaking down the main issue into smaller sub-issues, determining
the best solutions to each sub-problem, and then using these outcomes to build a solution to the
original problem. They took the necessary cases for testing and discarded the unnecessary ones,
yielding an important and redundant set of tests. An essential test case is a member of the essential
subset, while a subset that can satisfy its met requirements through additional test cases is deemed
redundant. The essential subset can be utilized to create a representative set, while the redundant
subset can be eliminated.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

68

Khan and Nadeem et al., [10] proposed a Test Filter that employed the statement-coverage
criterion to reduce test cases. The approach appoints weights to each test case that correspond to
the number of instances in which the test case addresses various statements. Based on these
weights, the method selected non-redundant test cases that achieved complete statement coverage.
The test cases were then arranged in a weighted set, and those with higher weights were selected
first. Once all the requirements were satisfied, the Test Filter chose test cases with lower weights. If
there was a tie among the test scenarios, a random choice was selected. A reduced set of test cases
was obtained by applying the Test Filter, and a few test scenarios were added to expand the reduced
set. To test the effectiveness of the Test Filter, they conducted an experiment on the triangle
problem. The results indicated that the represented method efficiently minimized the test suite's size
by almost 90%, while also lowering the associated costs, such as those associated with execution,
storage, and management. Moreover, the approach required less storage space and CPU time for the
selection of test instances.

Smith et al., [11] proposed a novel approach for prioritization and reduction of test cases using
call trees. Their approach involved creating a model of program behaviour based on trees and
reordering the test cases by priority to meet all the deadlines. The dynamic call tree was utilized to
identify the set of tests that replicate certain paths across the tree, and the prioritization was based
on coverage efficacy. They created a call tree function Object () {[native code]} using the Java 1.5 and
AspectJ 1.5 programming languages, which initializes the call tree before running the first test case.
Each time a test case is invoked, a node is added to the tool's call tree, and a distinct test requirement
is created as each path represents a sequence of method calls that occurred during testing. They
produced a minimal test suite that met all specifications but had fewer test cases than the original
test suite using a reduction algorithm. Their research was conducted on a GradeBook program that
has 147 methods, 10 classes, and 1455 non-commented source statements (NCSS). The investigation
revealed that call tree construction probes increased the test set fulfilment time by 12.3%. By
reducing the testing time by 82% while utilizing the overlap-aware greedy method, they were able to
produce a smaller set with better coverage. The main test set's coverage effectiveness was 38, while
the prioritized test set was 96. Although the construction of call trees took longer, they found that
prioritized suites could attain coverage more quickly. Their condensed set had 45% fewer test cases
than the original suite, providing better coverage effectiveness while reducing testing time and costs
associated with test execution, storage, and management.

Fraser and Wotawa [12] proposed a model checker-based technique for reducing the size of a
test set in terms of both the amount of test cases and the overall length of all test cases. The primary
goal of the method is to find and remove redundant test cases from the suite. The proposed
technique has an advantage over older methods as Under certain conditions, it has no detrimental
impact on the quality of the resulting test suites in terms of test coverage or fault detection ability.
To exhibit the effectiveness of the presented technique, the empirical results were guided, and the
results showed a minor improvement in the quality of the resultant test suites. Although the
reduction achieved by the technique is not as high as the methods that heuristically exclude test
cases, its significance is confirmed by the trials. The technique can be used in conjunction with other
approaches to achieve better results.

Chen, Zhang, and Xu [13] presented an improved ILP strategy for TSR that aimed to bridge the
gap between heuristic and ILP strategies. The authors introduced a lower bound for the reduced test
suite and aimed to find solutions close to the lower bound. If the representative set size equals the
lower bound, the result is the best; if it is closer to the lower bound, the result is also acceptable; if
it is farther from the lower bound, ILP or other valuable techniques must be utilized to improve the
representative set. To define that there are no 1-1 extra test cases or requirements, the authors first

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

69

applied a 1-1 reduction to test cases and requirements. Their approach was based on the single-
branch concept, where the most viable subproblem for each variable is chosen. The authors
competed for their approach with other alternatives and discovered that their method consistently
outperformed them and occasionally guaranteed a minimal size-reduced set. DILP was able to
produce a minimal test set for the rest of the Boolean criteria. nevertheless, the authors noted that
their approach was more sophisticated than heuristic techniques.

Miao et al., [14] present a novel method for eliminating repetition in test sequences using string
matching. The authors also define reduction rules for the four distinct types of redundancy found in
test sequences. To ensure the efficiency of redundancy reduction, a transformation rule that converts
ineffective test segments into effective test sequences is suggested. Based on these rules, a
revolutionary algorithm is proposed and implemented using Java. Case studies have shown that their
method is beneficial. Compared to previous studies on redundancy reduction, this method has a
superior ability to remove redundant test sequences while encouraging the use of finite state
machine (FSM) based test coverage requirements in real-world testing scenarios. This method has
great potential for enhancing the efficiency of testing while minimizing the cost and time required
for testing.

Galeebathullah and Indumathi [15] presented a TSR technique based on set theory (ST). They
utilized ST and the greedy approach to create minimized sets of test cases. To identify specific
requirements that have not been covered, the intersection function was employed. The intersection
of the one-branch coverage criterion requirement and other branch coverage criterion requirements
for the collection of test cases was determined using set theory. The intersection of requirements
was established first, and the test case was included in the smaller set of cases if any intersectional
elements appeared. This process was repeated until all conditions were met. To evaluate their
method, they tested it on a little software application based on branch coverage requirements. Their
method produced test suites that were the same size as those created by conventional methods and
covered all the requirements. The proposed set theory technique is promising as it lowers the
number of tests without sacrificing coverage. as the conventional methods. However, it needs to be
tested on increased programmed size and complexity to validate its efficiency and effectiveness.

Chen et al., [16] propose an approach for the automatic creation of test cases using Input/Output
Symbolic Transition Systems (IOSTS). These systems are commonly used to model reactive systems
with data. However, selecting test cases for a produced test suite based on test goals given by IOSTS
or historical logic can lead to redundancy. In order to reduce the cost of testing implementation,
various techniques for removing redundancy are presented. IOSTS are the test cases where these
methods are used. This approach has the advantage of reducing the cost of developing test cases and
the size of the test suite. By demonstrating the effectiveness of the proposed technique in a case
study, the authors show that the approach is practical and feasible. In addition, the use of IOSTS
ensures that the generated test cases are effective and reliable in meeting the required test goals.

Nasir et al., [17] proposed the use of entropy for detecting and eliminating duplicated test cases
generated from the Control Flow Graph (CFG). They demonstrated that their strategy was able to
eliminate 61% of test cases compared to the initial test suite. Entropy was used as a novel approach
for detecting and removing duplicate test cases, offering a new strategy for test case minimization.
The proposed method computes the entropy values for each unique path in the CFG and removes
test cases with duplicate entropy values. The use of entropy as a metric allows for a more granular
and effective approach to test case reduction. The study includes an in-depth analysis of the
suggested procedure and the outcomes of their experiments, demonstrating the efficacy of the
approach.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

70

Marijan and Sen [18] present a novel approach to detecting and reducing redundancy in test
suites for highly configurable software. The authors utilize equivalence partitioning to identify test
cases that cover the same sets of feature interactions. Following this, they identify partitions that
contain multiple test cases and exclude those that do not have distinct partitions. The methodology
is evaluated through an industry case study and several test suites that were created as a result of
the case study. The results of the study indicate that their approach has the potential to reduce test
execution time by an average of 35% compared to standard industry practice, with no discernible
impact on fault detection efficiency. The paper presents a step-by-step guide on how to apply their
methodology to detect and reduce redundant test cases. The authors suggest that their approach
could be used to identify redundant test cases in other highly configurable software, thereby
improving efficiency and reducing the time and cost associated with testing.

Özener and Sözer [19] proposed a new approach to multi-criteria TSR by formulating the problem
as an ILP model. They discovered shortcomings in the previous ILP models that could produce
suboptimal results. To overcome these issues, the authors introduced opposing instances to illustrate
how their formulation can address the limitations. The effectiveness of their approach was
empirically evaluated using a publicly available dataset from various open-source projects. The
results demonstrated that the proposed linear formulation outperformed state-of-the-art models in
terms of the identical objective function and sets of criteria such as statement coverage, fault-
revealing capabilities, and test execution time. Furthermore, the linear model had better time
performance than non-linear models, allowing it to be used in more complicated situations. Overall,
this approach offers an improved method for multi-criteria TSR.

A method called Schema Test Integrity Constraints Combination for Efficient Reduction (STICCER)
has been proposed by Alsharif and Kapfhammer [20] to systematically merge and discard redundant
tests to create a smaller test suite. STICCER is different from traditional methods like Greedy and
HGS, as it minimizes both the overrun in test criteria coverage and the database state produced by
the tests. Authors assert that STICCER represents a significant step forward in TSR. To validate their
claims, the study compared the effectiveness of STICCER with Greedy, HGS, and a Random
methodology, using 34 relational database schemas and test data generated by two test-generating
methods. The results suggest that STICCER is more effective than the other methods, as it provides
the same coverage as the original test suite while creating a smaller test suite with reduced overlap
and database state.

Wang and Du [21] presented a novel approach for reducing the number of test cases, referred to
as the information entropy-based test case reduction (IETCR) approach, which aims to localize
mutation-based faults. The IETCR approach employs information theory to compute the entropy
change of the test cases. The test cases are sorted in ascending order based on their entropy values,
which are then used to produce a rank list of the test cases. The IETCR approach considers both
successful and unsuccessful test cases and retains all unsuccessful test cases while choosing a few
successful test cases according to the original mutation-based fault localization (MBFL). To evaluate
the IETCR approach, the authors conducted experiments on 112 faulty versions from six real-world
programs. The evaluation results demonstrate that the IETCR technique performs better than two
state-of-the-art baseline procedures in respect of fault localization accuracy.

Table 2 presents a summary of research articles on TRR that have utilized exact methods. The
table provides information on the methodology used in each study, along with the contribution
identified by the authors. The remarks column in the table includes a brief description of their
limitations and gaps, which can be used to guide future research in the field of TRR. For both
academics and professionals, the table is a valuable resource for those who are interested in

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

71

implementing exact methods for TRR and want to stay up to date with the latest developments in
the field.

Table 2
Summary of Research Articles on TRR that Adopt Exact Methods

Author(s)
[Reference] Year Technique

Adopted Contribution Remarks

Chen and M. F.
Lau. [9] 2002

Divide and
conquer
method

TSR dividing
techniques
connected to this
approach

The concepts of redundant test cases and
redundant subsets may provide further insights
for creating new, comprehensive splitting
techniques for test suite reduction. More
investigation in this area is worthwhile.

Khan, A. Nadeem
et al., [10] 2006 Statement

Coverage

The ability to
identify and
eliminate
unnecessary test
cases

we provide our findings in the hopes of providing
the test manager with a practical and
economical method for cutting down on the
amount of test cases. The effectiveness of the
tests is ultimately increased.

Smith, J. Geiger.
et al., [11] 2007 Dynamic

trees

Constructing call
trees increases
13% testing time

To limit the size and runtime of the test suite,
the reduction method chooses a subset of the
original tests while still ensuring coverage of all
the possible paths through the call tree.

Fraser and F.
Wotawa. [12] 2007

Model-
checker
based
approach

the total size of to
test set is
minimized

The algorithm's run-time complexity is one
disadvantage of this method. Nonetheless, even
without additional improvements, the method
works flawlessly with actual test suites.

Chen, X. Zhang, et
al., [13] 2008 Liner

Programming

The issue is
complicated yet
can be resolved in
polynomial time.

To fill the gap between ILP and more
conventional heuristic approaches, the degraded
ILP (DILP) strategy was presented. In order to
find a workable solution, DILP can generate a
lower bound of minimum size.

Miao, P. Liu. et
al., [14] 2009 Finite state

machine
Finite state
machines

The study addresses test sequence redundancy
from multiple classic test coverage requirements
using a basic FSM. A transformation rule
converts inefficient test segments into effective
test sequences.

Galeebathullah.
[15] 2010 Set theory

All conditions are
met, and the
reduced set is the
same as greedy
and HGS.

Set theory is a key idea in mathematics and
computer technology. Every mathematical
concept begins with sets. For instance,
associations between two items are represented
as a collection of ordered object pairs.

Chen, X. Li. et al.,
[16] 2010

Model-based
testing
method

It has the potential
to lower not just
the size of the test
suite, but also the
cost of developing
test cases.

To keep things straightforward, we're only
looking at deterministic models; however, more
complicated IOSTS elements like as recursion
and concurrency should be addressed.

Nasir, N. Ibrahim
et al., [17] 2017 Entropy

When compared to
the original test
suite, the approach
reduced 61% of
the test cases.

This method has been validated using a
straightforward sizing program and examined by
hand.

D. Marijan and S.
Sen. [18] 2017 Own

approach

On average, our
technique can
reduce test
execution time by
35%.

Our findings could indicate that the industrial
data sets we used were not adequately
represented. All implementations utilized in the
experiment were properly evaluated and tested.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

72

Özener and H.
Sözer. [19] 2020 Liner

Programming

Our method
produces either
superior or
identical
outcomes.

These compositions do not promise a rapid
solution. As the problem expands in magnitude,
this solution may fall short.

Alsharif, G. M.
Kapfhammer et
al., [20]

2020 STICCER

The most
successful method
for minimizing the
amount of test
cases is STICCER.

It is impossible to assert that they are
representative of all schemas, and it is also
challenging to find a set that is appropriately
representative. However, our collection of
schemas comes from various sources and ranges
widely in size and complexity.

Wang, B. Du et
al., [21] 2020 IETCR

The technique can
decrease costs by
56.3% to 88.3%
while maintaining
about the same
fault localization
accuracy.

The technologies employed in our experiments
to cause mutation present the most hazards.
While utilizing various mutation methods may
have an impact on our empirical findings

3.2. A Brief Review of Research Articles on TRR Adopt Heuristic Methods (RQ#2)

Heuristic algorithms are effective in solving certain problems but may not perform well in other

domains due to being specialized in specific problems. The set covering problem was initially
proposed by Chvatal [22] as a problem for which a heuristic algorithm could be used to solve.
Although heuristic algorithms may be quick to solve issues in a limited area, they may not be
equipped to handle highly complex optimization problems. The literature has many discussions on
heuristic algorithms, which we have classified based on the focus keyword of the articles. A brief
review of research articles on TRR that adopt heuristic methods is given as follows:

Harrold et al., [23] introduced a heuristic algorithm for minimizing test cases, which involves
selecting a narrative group of test cases that cover the identical ground as the total test set. The
algorithm achieves this by recognizing and removing extra and old test cases. The delegate set can
potentially result in a reduced test suite, which helps to identify the test cases that need to be rerun
after modifying the software. In terms of testing methodology, the proposed approach is quite
flexible, necessitating only a link between a testing specification and the test cases that satisfy the
requirement. The information stream testing approach is employed to demonstrate the usefulness
of the technique. Empirical evaluations demonstrate that significant reductions can be achieved
using this approach. However, the technique may not be suitable for optimization problems with high
complexity. Further research is needed to extend this technique for such problems.

Chen and Lau [24] proposed a GRE strategy for test case minimization that is based on three
strategies: the Essential strategy, the 1-to-1 redundant strategy, and the Greedy strategy. The
Essential strategy involves selecting the most important test cases and adding them to the illustrative
group. The 1-to-1 redundant technique eliminates test cases that do not contribute to the coverage
of additional requirements. To ensure that every requirement is met, the Greedy approach is then
used for the other test cases. The GRE strategy is expected to produce the best narrative groups since
it combines the strengths of the essential and greedy approaches. The approach has been evaluated
on various software programs and has shown promising results. The authors also discuss the
limitations and gaps of the GRE strategy, along with future research directions.

Jones and Harrold [25] introduce novel techniques for test-suite prioritization and reduction that
can effectively utilize MC/DC principles. Far from previous approaches, their algorithms consider the
intricacies of MC/DC when deciding whether to order or reduce a test suite. In the paper, we present

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

73

a case study that analyses how one program and several test suites fared after being subjected to
the TSR technique. ReduceSuite is their proposed technique that selects the necessary test cases first
and then removes the remaining extra test cases in the test sets using a series of steps. Firstly, the
algorithm removes the test case that was not designated as essential and repeatedly identifies the
weakest test case among those that have not been designated as essential. A weak test case is one
that has a negligible impact on meeting the test case requirements. The reduced test suite is returned
as a set of essential test cases, and the procedure terminates when those cases satisfy all of the
original test suite's requirements. The proposed technique improves test efficiency and reduces the
time and cost involved in testing while maintaining the same level of test coverage.

Tallam and Gupta's [26] introduced a Formal Concept Analysis-based approach for reducing the
test suite size using a greedy-inspired technique. Formal Concept Analysis is a technique used for
objects with discrete attributes. In this approach, test cases are recognized as objects, while their
specifications are considered as attributes. The relationship between the object and its attributes is
linked to the test case's coverage information. The Formal Concept Analysis framework enables the
study of context, where the most comprehensive collection of objects and attributes, or contexts,
can be identified object reduction rules, and attribute reduction rules are used to achieve this goal.
Traditional greedy heuristics only employ object implications, whereas attribute implications are not
considered. Therefore, Tallam and Gupta's approach proposes the use of attribute implications in the
reduction process to improve the efficiency of the reduced test suite. The presented approach was
tested on various software systems to evaluate its effectiveness in reducing the size of the test suite.
The results demonstrate the efficacy of the approach in reducing the size of the test suite while
maintaining the coverage of the original test suite.

Jeffrey and Gupta [27] proposed a method for reducing test suite size while minimizing the loss
of fault detection ability. The primary and secondary factors for coverage were employed to
accomplish this. Test cases covering the vast majority of missing needs were chosen based on the
primary criteria, while redundant test cases were chosen based on the amount of def-use coverage
they provided, in addition to meeting primary requirements. After each test case was added, the
newly covered needs were noted and dropped from consideration, and the coverage information
was updated. All possible test cases were picked in this way until either none remained, or it became
clear that they did not fulfil any additional requirements. The proposed method was tested using
Siemens programs, and it produced representative sets with improved defect detection efficiency.

Lin and Huang [28] explored test suite minimization by developing an improved tie-breaking
algorithm. In contrast to conventional methods, where a random decision is made, they employed
extra coverage criteria to break a tie between two test cases. Coverage information and def-use pairs
were used as the first and second criteria, respectively, to break the tie between test cases. They
used HGS and GRE methods and updated the 1-to-1 redundancy technique in the modified GRE (M-
GRE) approach. In the modified HGS (M-HGS) technique, the test case that covers the most secondary
needs is selected when two test cases are tied. To compare their results, they used Siemens suite
data and Space data. They discovered that M-HGS and M-GRE generate minimized sets with higher
defect capture capabilities when compared to the main HGS and main GRE. Their approach implies
the effectiveness of defect discovery in the minimized test suites. Overall, their findings suggest that
the improved tie-breaking algorithm can produce test suites with higher fault capture capabilities,
leading to better defect identification efficiency.

Khalilian et al., [29] represented a bi-criteria TSR method based on the clustering experiment of
perfection patterns. Distribution-based and coverage-based methodologies were used to build all
feasible coverage-reduced test suites with minimal crossover between implementation profiles. The
coverage-based approach utilizes the def-use pair criterion to choose test cases, covering possible

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

74

fault-containing execution routes. On the other hand, the distribution-based techniques use two
strategies, cluster filtering and failure pursuit, which group test cases based on how they execute. In
cluster filtering, test cases are divided into clusters where items with related features are placed in
the same group. Then, test cases are randomly selected from each group to form a full coverage
reduction set with minimal overlap. The suggested techniques were assessed on the Siemens suite.
The empirical evaluation showed that their method can generate smaller test suites with lower
effective defect identification, making it a promising approach to test suite reduction.

Parsa et al., [30] presented a novel cluster analysis-based approach for TSR that integrates
coverage-based and distribution-based methods. The proposed method first determines the
execution profile of each test case and then groups them based on their similarity. Test cases with
similar execution patterns are assigned to the same cluster to ensure that the same program parts
are covered by test cases from the same group. A heuristic approach is taken to select test cases from
each cluster, ensuring that the coverage of the minimized test suite is equal to that of the main suite.
They conducted an experiment on the Siemens suite, seeding a single fault into each program. The
results showed that their approach produced a smaller test suite with acceptable coverage but was
less effective in detecting faults compared to the H method. They used Weka 3.5.8 and the CLOPE
clustering algorithm, which can handle large and high-dimensional data, and Repulsion, a variable
that controls the degree of inter-cluster similarity. Adjusting Repulsion can change the number of
clusters.

Xu et al., [31] proposed a weighted greedy algorithm known as Weighted Set Covering Techniques
to reduce the size of test suites. Initially, the algorithm checks if there is already a test case that fulfils
the overall specifications. If there is, the algorithm selects that test case. If not, it removes one-to-
one duplicate test cases, improves the test suite, and adds any unmet criteria. The algorithm
prioritizes the most important test cases and arranges them in descending order to fulfil the
undiscovered requirements that are still present. The prioritized test cases are added to the smaller
collection. The optimized test suite obtained using this method is more effective. To conduct an
efficiency analysis of the suggested method, the authors conducted experiments using the real
Navigation Model test set. The results demonstrated that the proposed method produced test suites
with the smallest sizes and costs. The weighted greedy algorithm presents a promising solution for
reducing the size and cost of test suites, which can improve the efficiency and effectiveness of
software testing.

Xu et al., [32] proposed two heuristic algorithms based on the Harrold-Gupta-Soffa (HGS)
algorithm: Non-Redundant HGS and Enhanced HGS. These algorithms are designed to generate
smaller and non-redundant test suites. Non-redundant HGS selects a test case for larger values based
on the total coverage of unmarked related testing suites. On the other hand, Enhanced HGS selects
a test scenario for larger cardinalities based on the completeness of linked testing sets that have not
been tagged. Experimental studies show that these algorithms can invariably choose reduced-size
test suites in comparison to the current HGS heuristics. Moreover, these algorithms also enhance the
efficiency of the testing process by reducing the number of redundant test cases while ensuring that
the testing coverage is maintained. These algorithms have been successfully applied to various
software systems, demonstrating their practical usefulness in reducing the cost and effort of software
testing.

Cruciani et al., [33] proposed a unique class of methods for test suite reduction based on similarity
by combining algorithms from the big data domain with heuristics to select a balanced sample of test
cases. The techniques take the test cases themselves as input, making them widely applicable to test
source code or command line input. Four strategies are compared in two versions: one that holds a
budget B of test cases and another that reduces the test suite while ensuring some defined coverage.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

75

The experiment demonstrates that the proposed methods produce a defect identification loss similar
to current methods when giving significant efficiency advantages. The more effective of the four
algorithms could pick B test cases in less than 10 seconds when used on a set of over 500K actual test
cases. These methods give an outstanding outcome to the scalability challenge combated by many
testing teams.

Mohapatra et al., [34] have proposed an algorithm called intelligent local search (STAGE) for
minimizing the size of the test suite. Test case minimization has been carried out in the past using
various strategies, but the pursuit of an efficient strategy is still ongoing due to the problem's intrinsic
complexity. The proposed method uses hill climbing for local search, which has been restarted
several times. However, the restart points for local searches are not chosen randomly. Instead,
careful choices are made to select the new starting point. After using this strategy, encouraging
results were observed for the selected programs. The approach taken in this paper is unique and
innovative and adds to the existing body of knowledge about test suite minimization.

Table 3 presents a summary of research articles on TRR that have utilized heuristic methods. The
table provides information on the methodology used in each study, along with the contribution
identified by the authors. The remarks column in the table includes a brief description of their
limitations and gaps, which can be used to guide future research in the field of TRR. For both
academics and professionals, the table is a valuable resource for those who are interested in
implementing heuristic methods for TRR and want to stay up to date with the latest developments
in the field.

Table 3
Summary of Research Articles on TRR that Adopt Heuristic Methods

Author(s)
[Reference] Year Technique

Adopted Contribution Remarks

Harrold, R.
Gupta. et al.,
[23]

1990 Heuristic H Created a set of lesser
size

As long as the relationship between
requirements and test cases can be
established, the process is independent of the
testing methodology employed.

Chen and M. F.
Lau. [24] 1998 Heuristic GRE

An optimum
representative subset
was created

One unique aspect of GRE is that even if the
greedy strategy has never been used, we may
still determine that the representative set is
optimal.

Jones and M. J.
Harrold. [25] 2003

Break-down
and build-up
TSR approach

The reduced test suites
produced by the break-
down technique are
consistently less than
those generated by the
build-up approach.

Our method is flexible enough to be used for
either single- or multiple-entity criteria.
AllTests are the test cases in the test suite
annotated with the conditions they cover;
allConditions are the conditions in the program
under test that are used as inputs to
ReduceSuite.

Tallam
Sriraman and
Gupta Neelam.
[26]

2005
Inspired
Greedy
Algorithm

All reduced sets were
smaller than or equal
to those generated by
the greedy method.

it uses the connections between test cases and
the connections between coverage
requirements, which were only used
separately in the previous work.

Jeffrey and N.
Gupta. [27] 2005 Selective

redundancy

An increase in the size
of the test suites
without a
corresponding
decrease in their ability
to identify errors

The key distinction is that while minimization
techniques aim to minimize redundancy, our
novel algorithm explicitly aims to include
redundancy in the reduced suites.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

76

Lin and C. Y.
Huang. [28] 2009

Enhanced tie-
breaking
techniques

Increased efficacy of
defect detection

In the course of the reduction procedure, ties
were broken using an extra coverage criterion.
The outcomes might imply that the suggested
strategy can improve the test case selection.

Khalilian and S.
Parsa. [29] 2009

cluster
analysis-based
bi-criteria
technique

Fewer test suites with
improved problem-
detection

For software testing research, Siemens's
programs are standard fare. However, these
tools have their limitations and flaws are well-
known.

Parsa, A.
Khalilian, et al.,
[30]

2009

A new
algorithm
based on
Cluster
Analysis

The smaller suite
provides appropriate
coverage

The percentage of fault loss is calculated based
on a simple cost model that considers all faults
to be of equal significance. But, in reality, flaws
might vary greatly in severity.

Xu, H. Miao, et
al., [31] 2012

Weighted Set
Covering
Techniques

Reduced test suite size
and reduced cost

The optimization of large-scale test suites is an
area where our method still needs additional
research.

Gladston, HK
Nehemiah. [32] 2015 HGS algorithm

Choose a shorter test
suite size than the
previous HGS
heuristics.

In order to eliminate redundant test cases
from the reduced test suite, they merged the
technique of GRE into HGS, known as Non-
Redundant HGS.

Cruciani, B.
Miranda, R. et
al., [33]

2019 Scalable
approach

Enhanced heuristic
approach and a
proposed new
approach

The proposed methodologies are more
efficient in terms of reduction time than all of
the compared approaches except GA applied
to function coverage, even for relatively small-
scale benchmarks.

Mohapatra, A.
K. Mishra, et
al., [34]

2020 Local search
Can provide very good
representative sets in a
short period of time

they frequently encounter issues with severely
confined situations where potential solution
spaces are not connected.

3.3. A Brief Review of Research Articles on TRR Adopt Meta-Heuristic Methods (RQ#2)

Meta-heuristic algorithms have become increasingly popular due to their capability to handle

complex and large-scale computing tasks. These algorithms are universal, they can be used to solve
a variety of issues and provide satisfactory solutions [54]. One of the most common applications of
meta-heuristic methods is for solving NP-hard optimization problems, including TRR. TRR is an NP-
complete problem due to a large number of potential solutions, and it requires extensive
computational effort for evaluation. Therefore, meta-heuristic approaches have been widely used to
efficiently solve TRR problems. A brief review of research articles on TRR that adopt meta-heuristic
methods is given as follows:

Nachiyappan et al., [35] presented a GA approach for TSR, which employed a mathematical model
to minimize the number of tests. They began with a mathematical model that was used to generate
the initial population determined by the test data. The technique then calculated the fitness value of
the test cases using the block-based coverage and implementation time. The test cases with the
highest fitness value were then selected while filtering out those that violated fitness constraints.
Through this strategy, the test suite size was reduced while maintaining the same level of coverage.
The proposed GA approach provides a systematic way to determine an optimized set of test cases
and is an efficient method to resolve the NP-complete issue of test suite reduction. The effectiveness
of the presented algorithm is validated by empirical results, which illustrate that it can reduce the
test suite size by up to 45% while retaining the same level of coverage. This approach is promising in
its ability to provide cost-effective and time-saving solutions for software testing.

Zhang et al., [36] proposed an Improved Quantum Genetic Algorithm (IQGA) for TSR. The
algorithm employs quantum bits (qubits) as information bits to encode chromosomes, and the vector

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

77

description of the quantum serves as the basis for IQGA. The chromosome, represented by qubits, is
updated through a quantum rotating gate, which can be dynamically adjusted according to the fitness
value of each individual. This method significantly reduces the complexity of the query computation
and simplifies it. The authors have compared their approach with conventional methods and
demonstrated that it dramatically lowers testing expenses while increasing test efficiency. The
compressed test set generated by IQGA is much smaller than that generated by conventional
methods, resulting in greater efficiency.

You and Lu [37] proposed a GA for the Reduction of the Time-Aware Regression Testing issue.
The study proposed a new genetic method for the reduction problem in time-aware regression
testing. It delves into the parent selection, crossover, and mutation operators of the genetic
algorithm, as well as the representation and fitness function of the GA. The proposed algorithm
reduces the overall execution duration of the remaining test cases and eliminates extra test cases
from the regression testing sets. The experiment was conducted on eight example programs to test
the effectiveness of the GA. The results demonstrate the efficiency of the suggested GA in mitigating
the difficulty of time-aware regression testing.

Bakar and Zamli [38] proposed a novel approach to minimize test redundancy and prioritize tests
based on the Late Acceptance Hill Climbing (LAHCS) algorithm. The authors utilized LAHCS as a
research tool to assess the efficiency of LAHCS in reducing test redundancy and prioritizing test cases.
One of the notable strengths of LAHCS is its simplicity, as it has only one parameter for modification
and is not susceptible to poor parameterization and tuning. The strategy employed by LAHCS is to
prioritize test cases before beginning the search process. The authors compared the performance of
LAHCS with three benchmark techniques, namely GRE, GE, and HGS, and observed comparable scores
for LAHCS. The experimental outcomes validated the efficacy of the suggested method in minimizing
test redundancy and prioritizing tests.

Zamli et al., [39] developed tReductSA, a novel approach for reducing test cases in a systematic
manner. The proposed approach utilized a Simulated Annealing-based optimization algorithm and a
methodical merging strategy to optimize the selection of test cases for removal. The approach was
benchmarked against other works, such as GE, GRE, and HGS, and showed a comparable level of
optimality while providing a wider range of solutions. The proposed approach has the potential to
minimize the cost and effort of testing while ensuring the efficiency and effectiveness of the testing
process. The results of the benchmark tests highlight the efficiency of tReductSA and its ability to
scale well with other related works. Overall, this approach can be a valuable addition to the field of
software testing, allowing for more efficient and effective testing while maintaining the quality and
accuracy of results.

Mohanty et al., [40] introduced an ant colony optimization-based approach for test set reduction.
Their approach shows the total test number in a complete graph as nodes, with a matrix holding the
execution time for each test case and its associated test requirement. The ants start at nodes of the
complete graph, and they choose neighbouring nodes based on maximizing coverage requirements
and minimizing execution time using the matrix. The approach discovers a narrative set of test cases
that fulfil whole criteria and require minimal processing time. In their evaluation, Mohanty and
Mohapatra demonstrated the effectiveness of their algorithm by comparing the size of the RS
produced by their approach with the size produced by other test suite minimization techniques. They
showed that their approach generates a much smaller RS while providing adequate coverage.

Coviello and Romano [41] proposed GASSER (Genetic Algorithm for Test Suite Reduction), a new
approach for Test Suite Reduction (TSR) that takes into account statement coverage, test-case
variety, and TS size. They proposed seven different GASSER cases, each using several metrics to
measure test-case diversity. In order to evaluate the effectiveness of GASSER, an experiment was

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

78

driven comparing it to nine baseline methods in terms of the reduction in TS size and the elimination
of the fault-detection ability of the reduced TS. The experiment demonstrated that some instances
of GASSER significantly reduced the amount of the TSs with only a minor impact on fault-finding
efficiency compared to the baseline methods. These findings suggest that GASSER is a promising
approach for TS reduction that can effectively balance the trade-off between test coverage and size
reduction.

Xia and Zhang [42] present a novel evolutionary multi-objective optimization approach for
reducing the cluster test suite. Specifically, the authors use the K-means technique to aggregate
related test cases into a cluster. The clustering results are then used by a multi-objective evolutionary
approach to eliminate extra test cases based on coverage-related criteria, fault-related criteria, and
cost-related criteria. The proposed technique was tested on eight subject programs, and the result
findings show that it performs well in three state-of-the-art methods in terms of fault detection
(4.61% to 9.44%) and reduction ratio (4.10% to 10.64%). Furthermore, the expenses associated with
the proposed method are comparable to those of the other methods. The results of this study suggest
that the proposed multi-objective optimization approach is an effective method for reducing the
cluster test suite while maintaining fault detection rates and cost efficiency.

A discrete combinatorial gravitational search algorithm (DCGSA) was presented by Bajaj and
Sangwan [43] for test case prioritization and minimization problems. The DCGSA algorithm includes
a fix-up mechanism that perturbs the population of each iteration. This approach is applied to several
subject programs of varying sizes, and the outcomes indicate the efficiency of the suggested
approach for all programs. Further, the updated GSA has the most compressed dispensations,
demonstrating the algorithm's robustness in boxplots. The interval charts display that the presented
approach needs the fewest test cases to guarantee complete coverage. The proposed algorithm's
performance is also compared to state-of-the-art methods, and the results show that the DCGSA
algorithm is an effective approach to test case prioritization and minimization.

Deneke et al., [44] have introduced a new approach to reducing the number of test cases in a
suite using a PSO algorithm. Using metrics like reduced set size and runtime, the suggested method
was compared to four other benchmark reduction strategies. The experimental findings on the
identical input dataset show that the test suite's reduction percentage by PSO is 55.55%, by G WSC
is 22.22%, and by G, HGS & GRE is 44.45%. In terms of fulfilment cost, G WSC, G& GRE, HGS, and PSO
have values of 63, 72, 67, and 43, respectively. The results show that the PSO approach demonstrated
a promising and superior result compared to previous techniques. Therefore, the proposed method
can be a reliable alternative for reducing the number of test cases in a suite.

Table 4 presents a summary of research articles on TRR that have utilized meta-heuristic
methods. The table provides information on the methodology used in each study, along with the
contribution identified by the authors. The remarks column in the table includes a brief description
of their limitations and gaps, which can be used to guide future research in the field of TRR. For both
academics and professionals, the table is a valuable resource for those who are interested in
implementing meta-heuristic methods for TRR and want to stay up to date with the latest
developments in the field.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

79

Table 4
Summary of Research Articles on TRR that Adopt Meta-heuristic Methods

Author(s)
[Reference] Year Technique

Adopted Contribution Remarks

Nachiyappan; A.
Vimaladevi. [35] 2010 Genetic

algorithm

Developed the smallest
practicable test suite taking
into consideration runtime
and code coverage.

We propose an adaptive mutation
strategy in which n-point mutation is
performed on rejected individuals. This
operation mutates the supplied bit
only if it meets the mutation
requirement.

Zhang, J. C. Liu
et al., [36] 2010

Improved
Quantum
Genetic
Algorithm

Possibility of significantly
lowering testing expenses
while simultaneously
increasing test throughput

It can lower the complexity of the
query computation and dynamically
alter the quantum rotating gates in
accordance with each individual fitness
value.

You and Y. Lu.
[37] 2012 Genetic

algorithm
Minimal test suite and
execution time

It rectifies the problem that the
heuristic methods had. It is able to
eliminate all test cases in the
regression testing suite that are
redundant.

Bakar, K. Zamli,
et al., [38] 2014

Late Acceptance
Hill Climbing
algorithm

When it comes to the
percentage of decrease,
LAHCS offers outcomes that
are sufficiently competitive.

LAHCS has proven that introducing an
acceptance feature balances
intensification and diversification to
improve Hill Climbing's performance,
which has been criticized for getting
trapped in local minima/maxima.

Zamli, M. H.
Mohd Hassin, et
al., [39]

2015 Simulated
annealing

In comparison to previous
work, tReductSA also
provides a wider range of
solutions.

It requires very slow cooling in order to
impose layout regularities.

Mohanty, S. K.
Mohapatra, et
al., [40]

2020 Ant Colony
Optimization

The test case size is
significantly reduced by the
proposed approach.

When dealing with big amounts of
data, it has several issues in terms of
convergence speed and solution
correctness.

Coviello, S.
Romano, et al.,
[41]

2020 Genetic
Algorithm

When compared to
conventional techniques, it
reduces the TS size
considerably while having a
minimal impact on fault-
detection capacity.

We anticipate that a TSR strategy aims
to significantly reduce the size of the
TS while maintaining the original TS's
capacity to detect faults.

Test Suite
Reduction via
Evolutionary
Clustering. [42]

2021 Evolutionary
Algorithm

The costs of the suggested
method are found to be
comparable to those of the
other methods.

The experiments demonstrate, in
addition, that our solution has the
maximum percentage of code
coverage and the lowest missing fault
rate of the test case.

Xia, Y. Zhang,
and Z. Hui. [43] 2021

Gravitational
Search
Algorithms

The proposed algorithms
outperform the GA in terms
of perfectness and
effectiveness.

Its disadvantages include a slow
convergence speed and a tendency to
stall in local minima in the final few
rounds.

Deneke, B.
Gizachew
Assefa, et al.,
[44]

2022 Particle Swarm
Optimization

When compared to
previous strategies, our
approach yielded a more
promising and superior
result.

It has a poor convergence rate during
the iterative process, and it is prone to
reaching a local optimum in high-
dimensional spaces.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

80

In order to solve the test case reduction (TRR) problem, hybrid meta-heuristic methods can be
used, employing a variety of strategies. A brief review of research articles that have used hybrid
methods to address the TRR problem is provided as follows:

Yoo and Harman [45] introduced a multi-objective approach for reducing test suites. A hybrid
algorithm was proposed, which combines a genetic algorithm with an effective approximation of the
greedy approach to achieve superior Pareto fronts. The main focus was on accomplishing a wide
range of goals. The test criteria were mathematically described using objective functions. Both
computational cost and statement coverage were taken into account as optimization criteria in a
two-objective setting. They used a cost-cognizant variant of the extra greedy method. Three-
objective optimizations used the traditional weighted-sum method, where the weighted total of code
coverage per unit of time and fault coverage per unit of time were used to integrate code coverage,
error recovery, and time complexity. Their proposed approach produced more effective testing
decisions. The effectiveness of their approach was evaluated based on the comparison of their
proposed method with other new techniques. The evaluations show that their method significantly
outperformed other multi-objective approaches in terms of the amount of test cases chosen, code
coverage, and fault coverage.

Zamli et al., [46] introduced a hybrid meta-heuristic technique by integrating a GNA with SA to fix
the test redundancy reduction issue. Their study, GNA_SA was utilized as a case study. The
experimental findings demonstrate that the GNA_SA approach provides a superior reduction as
compared to the original GNA and several other related works. This approach uses a combination of
GNA and SA for optimization. The GNA is employed to explore the search space, while SA is used to
enhance the algorithm's ability to escape from local optima. The authors evaluated the GNA_SA
algorithm using various testing criteria, including the number of redundant test cases, fault detection
rate, statement coverage, and time complexity The empirical results suggest that the suggested
hybrid approach effectively reduces redundancy in the test suite while maintaining the same level of
fault detection rate and statement coverage as the original suite.

Table 5 presents a summary of research articles on TRR that have utilized hybrid methods. The
table provides information on the methodology used in each study, along with the contribution
identified by the authors. The remarks column in the table includes a brief description of their
limitations and gaps, which can be used to guide future research in the field of TRR. For both
academics and professionals, the table is a valuable resource for those who are interested.

Table 5
Summary of Research Articles on TRR that Adopt Hybrid Methods

Author(s)
[Reference] Year Technique

Adopted Contribution Remarks

Yoo and M.
Harman. [45] 2009

Genetic algorithm
with a greedy
approach

Decision-making for
testing that is more
efficient

The representativeness of the topics
covered in this study is the main issue. Only
more studies utilizing a larger variety of
software artifacts and optimization
strategies will be able to counter this issue.

Zamli, N.
Safieny, and F.
Din. [46]

2018 GNA and SA
Superior reduction
to the main GNA
and other activities.

Their hybrid approach has a problem with
population diversity.

3.4. A Brief Review of Research Articles on TRR Adopt Machine Learning Approach (RQ#2)

In recent years, learning-based algorithms have gained widespread popularity due to their ability

to make decisions similar to humans. Various types of learning-based algorithms, such as Deep

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

81

Learning and Machine Learning algorithms, are being developed to address different problems. This
section, a brief review of research articles on TRR that adopt machine learning methods are given as
follows:

Hooda [47] proposed a new approach for generating test cases that incorporates a UML state
chart diagram and tables, as well as an artificial neural network (ANN) as an optimization tool for
minimizing duplicates in test cases generated using the GA. The UML state chart diagram and tables
are used for visualizing the test case development process. The backpropagation approach is
employed to train an ANN by applying a series of test cases to the system's main version. The use of
ANN helps in reducing redundancy in test case development. The proposed approach deals with the
redundancy of generated test cases while also delivering optimal efficiency and code coverage. The
findings indicate that the algorithm is effective in achieving its objectives.

Chetouane et al., [48] proposed a machine learning-based approach for TSR, which integrates
binary search and k-means clustering. The goal of the algorithm is to group together similar test cases
and select one representative test case from each cluster to add to a more compact test suite. In
order to minimize the test suite, the algorithm needs to determine the appropriate number of
clusters that do not significantly deviate from the coverage or mutation score obtained from the
original test suite. The proposed approach is presented alongside empirical outcomes obtained from
a range of Java programs with varying input and output formats, ranging from small to large. The
findings demonstrate an enormous drop in the sample sizes required for each test case when
contrasted to other TSR strategies. The approach's effectiveness in minimizing the amount of the test
set while retaining its efficiency is demonstrated by the experimental results.

Table 6 presents a summary of research articles on TRR that have utilized machine learning
methods. The table provides information on the methodology used in each study, along with the
contribution identified by the authors. The remarks column in the table includes a brief description
of their limitations and gaps, which can be used to guide future research in the field of TRR. For both
academics and professionals, the table is a valuable resource for those who are interested in
implementing machine learning methods for TRR and want to stay up to date with the latest
developments in the field.

Table 6
Summary of Research Articles on TRR that Adopt Machine-learning based Approach
Author(s)
[Reference] Year Technique

Adopted Contribution Remarks

Hooda. [47] 2018
Genetic algorithm
and
 neural network

Maintaining maximum productivity
and code coverage while minimizing
unnecessary repetition in test cases

Complexity tends to overwhelm
genetic algorithms. One major
drawback of neural networks is
their opaqueness.

Chetouane,
F. Wotawa,
et al., [48]

2020 k-means
clustering

Capable of significantly reducing the
amount of test instances while
needing a minimum reduction time

It is challenging for k-means to
cluster data with heterogeneous
cluster sizes and densities.

3.5. TRR Used in Different Comparative Studies

There has been some comparative research on numerous techniques in the literature of test

redundancy reduction. These methods are as follows:
This study [49] compares four particular TSR techniques which are heuristic H, heuristic GRE GA,

and ILP. The purpose of the study is to give suggestions for selecting the optimal test suite reduction
approaches. Using the same platform, we developed four typical TSR methodologies and compared
them experimentally using small and large subject applications. In their work, we discuss the findings

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

82

of our experiment and offer some analysis-based recommendations for choosing among test suite
reduction approaches.

Zhong et al., [50], a new experimental study of the four standard test set reduction approach is
conducted. These techniques are the heuristic developed by Harrold et al., the GRE heuristic by Chen
and Lau, the genetic algorithm-based approach by Mansour and El-Fakin, and the ILP-based
technique by Black et al., Based on the outcomes of their empirical study, they give guidance for
picking the most suitable test set minimization strategy and discuss some of the reasons behind the
strategies varying degrees of success and efficiency.

Zhang et al., [51] assessed an empirical investigation of Junit TSR. For Java applications with valid
JUnit test suites, they applied TSR approaches. The usefulness of typical test-suite reduction
strategies was investigated for larger applications. They suggested a course of action to the tester.
They ran four real-world Java programmers through 19 iterations, each with its own set of manually
seeded errors and JUnit test suites. They discovered that method H consistently provides nearly no
decrease in the capacity to detect faults on both seeded and modified problems while obtaining the
greatest reduction in test suite sizes. In real-world scenarios, Heuristic H should be employed to
efficiently minimize costs. Techniques that significantly reduce the test suite likewise significantly
reduce the capacity to detect mistakes.

Noemmer and Haas [52] apply four test suite minimization methodologies to distinct open-source
software projects to analyse and access them. The fundamental greedy algorithm and the HGS
algorithm were the two-statement coverage-based algorithms we employed. We examined the
outcomes of full-suite mutation tests with the simplified test suites to determine how successfully a
test suite's fault detection skills are preserved following test suite simplification. We discovered that
there is a significant trade-off between decreasing the test suite and lowering fault detection
capabilities using the methodologies we utilized. For each study subject, the amount of test cases
was decreased by at least 50%; on average, our good algorithms eliminated 69% of the tests. Overall,
test suite simplification has the potential to significantly reduce test execution time.

Rahman et al., [53] focus on a comparative analysis of four metaheuristic algorithms (Teaching-
Learning-Based Optimization, Jaya Algorithm, Sine-Cosine Algorithm, and Sparrow-Search Algorithm)
applied to solve the test redundancy reduction problem. The study conducted multiple runs of each
algorithm to ensure statistical significance. The results indicate that the Sparrow-Search Algorithm
(SSA) is the most efficient metaheuristic algorithm for test redundancy reduction, considering both
the average reduction rate and runtime effectiveness, compared to the other algorithms tested.

4. Discussion (RQ#3)

Many approaches to reducing test suites are presented in the literature, but there is confusion

about which are most effective. For small projects, the exact algorithm provides optimal solutions,
but it requires complex assumptions and a significant amount of time to run the program. It also
requires a lot of memory and is not suitable for large problems. On the other hand, the heuristic
algorithm provides a fast and simple solution for the design. However, it is not guaranteed to be
optimal, it is problem-specific and cannot be used universally. Meta-heuristic algorithms can
effectively overcome the drawbacks of exact and heuristic algorithms, and the solution time can be
controlled. However, choosing an encoding and a fitness function can be difficult, and the
convergence rate is slow. Although the Greedy algorithm-based technique can significantly reduce
the number of test suites, it still requires optimization for large test suites. Hybrid approaches can
reduce the size of test suites and simplify multi-objective optimization but at the cost of complexity.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

83

Existing hybrid methods can be extended to include other methods. The ability to detect errors is
reduced, but representative samples are obtained.

Nowadays, machine learning approaches are increasingly used to solve the TRR problem. This
review provides an overview of the literature on TRR that uses machine learning approaches. Overall,
it is found that machine learning techniques offer great potential for improving the efficiency and
effectiveness of TRR. However, further studies and the development of more accurate and reliable
TRR models are needed to improve the effectiveness of these methods. Figure 3 illustrates the
percentage of methods used in the literature on TRR. Exact methods are the most commonly
proposed by researchers which account for 33 percent. The heuristic and meta-heuristic methods
both account for 32% each. Six percent of the total is accounted for by machine learning.

Fig. 3. Percentage of journal-specific articles on TRR

5. Future Research Direction

Many approaches to reducing test suites are presented in the literature, but there is confusion

about which are most effective. For small projects, the exact algorithm provides optimal solutions,
but it requires complex assumptions and a significant amount of time to run the program. It also
requires a lot of memory and is not suitable for large problems. On the other hand, the heuristic
algorithm provides a fast and simple solution for the design. However, it is not guaranteed to be
optimal, it is problem specific and cannot be used universally. Meta-heuristic algorithms can
effectively overcome the drawbacks of exact and heuristic algorithms, and the solution time can be
controlled. However, choosing an encoding and a fitness function can be difficult, and the
convergence rate is slow. Although the Greedy algorithm-based technique can significantly reduce
the number of test suites, it still requires optimization for large test suites. Hybrid approaches can
reduce the size of test suites and simplify multi-objective optimization, but at the cost of complexity.
Existing hybrid methods can be extended to include other methods. The ability to detect errors is
reduced, but representative samples are obtained.

i. Developing new machine learning algorithms for TRR problem solutions.

ii. Integrating multiple methods to achieve better results for TRR.
iii. Investigating the impact of using different evaluation metrics for TRR.
iv. Conducting empirical studies to compare the effectiveness of different TRR methods.

Exact
33%

Heuris3c
31%

Meta-heuris3c
31%

Machine
Learning

5%

Exact Heuris8c Meta-heuris8c Machine Learning

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

84

v. Develop domain-specific TRR methods to improve the efficiency of testing in specific
domains.

vi. Exploring the potential of using TRR in conjunction with other software testing techniques
such as fuzzing and model-based testing to improve the overall testing process.

vii. A High-level hybrid approach is absent for the TRR problem. So, it will be a good initiative
for the TRR problem.

6. Threat to Validity

The validity of a literature mapping study can be compromised by many hazards. This study

mitigated various potential limitations by incorporating established suggestions and standards for
conducting literature mapping investigations.

i. One potential concern is that the research questions of this study may not encompass all

facets of the current advancements in test redundancy research. In order to mitigate this
potential risk, the researchers in this study employed the technique of brainstorming to
establish a comprehensive set of research inquiries that encompassed the current body
of knowledge in the field.

ii. There is no guarantee that all pertinent research on test redundancy reduction has been
found. In order to find the pertinent research publications, several literature databases
have been consulted, and a search string containing a variety of term synonyms (each
paper's author proposed a different phrase that leads to the intended TRR concepts) has
been employed. There might still be some unidentifiable papers, though. The snowballing
technique was heavily used to address this problem and lessen the likelihood of
overlooking significant linked studies.

iii. Application of the criterion may be hampered by personal prejudice and single-author
decisions. To solve this problem, the authors came to a consensus before including or
excluding any publication from the research.

iv. Data extraction may be negatively impacted by a single author occurrence. As a result, the
data extraction procedure was carried out independently by each author, and the results
were compared in an online meeting. All of the writers debated the discrepancies
between the results during the discussion until a final, mutually acceptable compromise
was established. Microsoft Excel's automatic filtering feature was also utilized to
guarantee the precision of the data extraction procedure.

7. Conclusions

The current investigation has thoroughly examined the existing body of literature pertaining to

various methodologies put forth with the aim of diminishing the quantity of test cases within the test
suite. The methodologies under consideration encompass a range of sophisticated techniques,
namely heuristic, meta-heuristic, exact, hybrid, and machine-learning methods. The findings of this
comprehensive analysis suggest that every methodology possesses its own distinct array of merits
and demerits, thereby rendering the task of ascertaining the most efficacious approach a formidable
endeavour. Henceforth, this manuscript serves as a commendable compendium for scholars in
pursuit of selecting a proficient methodology that harmonizes with the TRR framework. Nevertheless,
it is imperative to acknowledge that a truly efficacious approach ought to encompass not solely the
diminution of the test suite's magnitude, but also the astute identification and rectification of errors.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

85

Hence, it is imperative to acknowledge that a methodology that demonstrates exceptional prowess
in a singular domain may not prove to be satisfactory in its entirety. In its entirety, this review
elucidates the present condition of the TRR quandary and serves as a catalyst for forthcoming
scholarly investigations in this domain.

Acknowledgment
This research is supported by Fundamental Research Grant: A Multi-Factorial Agent Heroes and
Cowards Algorithm based Strategy for Test Redundancy Reduction Problem
(Ref:FRGS/1/2023/ICT02/UMP/01/1).

References
[1] Shin, Donghwan, and Doo-Hwan Bae. "A theoretical framework for understanding mutation-based testing

methods." In 2016 IEEE International Conference on Software Testing, Verification and Validation (ICST), pp. 299-
308. IEEE, 2016. https://doi.org/10.1109/ICST.2016.22

[2] Liu, Yang, Yafen Li, and Pu Wang. "Design and implementation of automatic generation of test cases based on
model driven architecture." In 2010 Second International Conference on Information Technology and Computer
Science, pp. 344-347. IEEE, 2010. https://doi.org/10.1109/ITCS.2010.90

[3] Kumar, Gaurav, and Pradeep Kumar Bhatia. "Software testing optimization through test suite reduction using fuzzy
clustering." CSI transactions on ICT 1 (2013): 253-260. https://doi.org/10.1007/s40012-013-0023-3

[4] Johnson, David S. "Approximation algorithms for combinatorial problems." In Proceedings of the fifth annual ACM
symposium on Theory of computing, pp. 38-49. 1973. https://doi.org/10.1145/800125.804034

[5] Singh, Rajvir, and Mamta Santosh. "Test case minimization techniques: a review." International Journal of
Engineering Research & Technology (IJERT) 2, no. 12 (2013).

[6] Dalmia, Ritwik, Soumili Chandra, Sudhir Kumar Mohapatra, Srinivas Prasad, and Mesfin Abebe Haile. "A Systematic
Literature Review on Test Case Minimization."

[7] Khan, Saif Ur Rehman, Sai Peck Lee, Nadeem Javaid, and Wadood Abdul. "A systematic review on test suite
reduction: Approaches, experiment’s quality evaluation, and guidelines." IEEE Access 6 (2018): 11816-11841.
https://doi.org/10.1109/ACCESS.2018.2809600

[8] Dumitrescu, Irina, and Thomas Stützle. "Combinations of local search and exact algorithms." In Workshops on
Applications of Evolutionary Computation, pp. 211-223. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
https://doi.org/10.1007/3-540-36605-9_20

[9] Chen, Tsong Yueh, and Man Fai Lau. "On the divide-and-conquer approach towards test suite
reduction." Information sciences 152 (2003): 89-119. https://doi.org/10.1016/S0020-0255(03)00060-4

[10] Nadeem, Aamer, and Ali Awais. "TestFilter: a statement-coverage based test case reduction technique." In 2006
IEEE International Multitopic Conference, pp. 275-280. IEEE, 2006.

[11] Smith, Adam M., Joshua Geiger, Gregory M. Kapfhammer, and Mary Lou Soffa. "Test suite reduction and
prioritization with call trees." In Proceedings of the 22nd IEEE/ACM International Conference on Automated
Software Engineering, pp. 539-540. 2007. https://doi.org/10.1145/1321631.1321733

[12] Fraser, Gordon, and Franz Wotawa. "Redundancy based test-suite reduction." In International Conference on
Fundamental Approaches to Software Engineering, pp. 291-305. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007. https://doi.org/10.1007/978-3-540-71289-3_23

[13] Chen, Zhenyu, Xiaofang Zhang, and Baowen Xu. "A Degraded ILP Approach for Test Suite Reduction." In SEKE, pp.
494-499. 2008.

[14] Miao, Huaikou, Pan Liu, Jia Mei, and Hongwei Zeng. "A new approach to automated redundancy reduction for test
sequences." In 2009 15th IEEE Pacific Rim International Symposium on Dependable Computing, pp. 93-98. IEEE,
2009. https://doi.org/10.1109/PRDC.2009.23

[15] Galeebathullah, B., and C. P. Indumathi. "A novel approach for controlling a size of a test suite with simple
technique." Int. J. Comput. Sci. Eng 2, no. 3 (2010): 614-618.

[16] Chen, Donghuo, Xuandong Li, and Shizhong Zhao. "Auto-generation and redundancy reduction of test cases for
reactive systems." In 2010 2nd International Conference on Software Technology and Engineering, vol. 1, pp. V1-
125. IEEE, 2010.

[17] Nasir, Noor Fardzilawati Md, Noraini Ibrahim, and Tutut Herawan. "Detection of Redundancy in CFG-Based Test
Cases Using Entropy." In Recent Advances on Soft Computing and Data Mining: The Second International

https://doi.org/10.1109/ICST.2016.22
https://doi.org/10.1109/ITCS.2010.90
https://doi.org/10.1007/s40012-013-0023-3
https://doi.org/10.1145/800125.804034
https://doi.org/10.1109/ACCESS.2018.2809600
https://doi.org/10.1007/3-540-36605-9_20
https://doi.org/10.1016/S0020-0255(03)00060-4
https://doi.org/10.1145/1321631.1321733
https://doi.org/10.1007/978-3-540-71289-3_23
https://doi.org/10.1109/PRDC.2009.23

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

86

Conference on Soft Computing and Data Mining (SCDM-2016), Bandung, Indonesia, August 18-20, 2016 Proceedings
Second, pp. 244-252. Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-51281-5_25

[18] Marijan, Dusica, and Sagar Sen. "Detecting and Reducing Redundancy in Software Testing for Highly Configurable
Systems." In 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE), pp. 96-99.
IEEE, 2017. https://doi.org/10.1109/HASE.2017.31

[19] Özener, O. Örsan, and Hasan Sözer. "An effective formulation of the multi-criteria test suite minimization
problem." Journal of Systems and Software 168 (2020): 110632. https://doi.org/10.1016/j.jss.2020.110632

[20] Alsharif, Abdullah, Gregory M. Kapfhammer, and Phil McMinn. "STICCER: Fast and effective database test suite
reduction through merging of similar test cases." In 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST), pp. 220-230. IEEE, 2020. https://doi.org/10.1109/ICST46399.2020.00031

[21] Wang, Haifeng, Bin Du, Jie He, Yong Liu, and Xiang Chen. "Ietcr: An information entropy based test case reduction
strategy for mutation-based fault localization." IEEE Access 8 (2020): 124297-124310.
https://doi.org/10.1109/ACCESS.2020.3004145

[22] Chvatal, Vasek. "A greedy heuristic for the set-covering problem." Mathematics of operations research 4, no. 3
(1979): 233-235. https://doi.org/10.1287/moor.4.3.233

[23] Harrold, M. Jean, Rajiv Gupta, and Mary Lou Soffa. "A methodology for controlling the size of a test suite." ACM
Transactions on Software Engineering and Methodology (TOSEM) 2, no. 3 (1993): 270-285.
https://doi.org/10.1145/152388.152391

[24] Chen, Tsong Yueh, and Man Fai Lau. "A new heuristic for test suite reduction." Information and Software
Technology 40, no. 5-6 (1998): 347-354. https://doi.org/10.1016/S0950-5849(98)00050-0

[25] Jones, James A., and Mary Jean Harrold. "Test-suite reduction and prioritization for modified condition/decision
coverage." IEEE Transactions on software Engineering 29, no. 3 (2003): 195-209.
https://doi.org/10.1109/TSE.2003.1183927

[26] Tallam, Sriraman, and Neelam Gupta. "A concept analysis inspired greedy algorithm for test suite
minimization." ACM SIGSOFT Software Engineering Notes 31, no. 1 (2005): 35-42.
https://doi.org/10.1145/1108768.1108802

[27] Jeffrey, Dennis, and Neelam Gupta. "Test suite reduction with selective redundancy." In 21st IEEE International
Conference on Software Maintenance (ICSM'05), pp. 549-558. IEEE, 2005. https://doi.org/10.1109/ICSM.2005.88

[28] Lin, Jun-Wei, and Chin-Yu Huang. "Analysis of test suite reduction with enhanced tie-breaking
techniques." Information and Software Technology 51, no. 4 (2009): 679-690.
https://doi.org/10.1016/j.infsof.2008.11.004

[29] Khalilian, Alireza, and Saeed Parsa. "Bi-criteria test suite reduction by cluster analysis of execution profiles."
In Advances in Software Engineering Techniques: 4th IFIP TC 2 Central and East European Conference on Software
Engineering Techniques, CEE-SET 2009, Krakow, Poland, October 12-14, 2009. Revised Selected Papers 4, pp. 243-
256. Springer Berlin Heidelberg, 2012. https://doi.org/10.1007/978-3-642-28038-2_19

[30] Parsa, Saeed, Alireza Khalilian, and Yalda Fazlalizadeh. "A new algorithm to Test Suite Reduction based on cluster
analysis." In 2009 2nd IEEE International Conference on Computer Science and Information Technology, pp. 189-
193. IEEE, 2009. https://doi.org/10.1109/ICCSIT.2009.5234742

[31] Xu, Shengwei, Huaikou Miao, and Honghao Gao. "Test suite reduction using weighted set covering techniques."
In 2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, pp. 307-312. IEEE, 2012. https://doi.org/10.1109/SNPD.2012.87

[32] Gladston, Angelin, H. Khanna Nehemiah, Palanisamy Narayanasamy, and Arputharaj Kannan. "Test suite reduction
using HGS based heuristic approach." Computing and Informatics 34, no. 5 (2015): 1113-1132.

[33] Cruciani, Emilio, Breno Miranda, Roberto Verdecchia, and Antonia Bertolino. "Scalable approaches for test suite
reduction." In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pp. 419-429. IEEE,
2019. https://doi.org/10.1109/ICSE.2019.00055

[34] Mohapatra, Sudhir Kumar, Arnab Kumar Mishra, and Srinivas Prasad. "Intelligent local search for test case
minimization." Journal of The Institution of Engineers (India): Series B 101 (2020): 585-595.
https://doi.org/10.1007/s40031-020-00480-7

[35] Nachiyappan, S., A. Vimaladevi, and C. B. SelvaLakshmi. "An evolutionary algorithm for regression test suite
reduction." In 2010 International Conference on Communication and Computational Intelligence (INCOCCI), pp.
503-508. IEEE, 2010.

[36] Zhang, Yi-kun, Ji-ceng Liu, Ying-an Cui, Xin-hong Hei, and Ming-hui Zhang. "An improved quantum genetic algorithm
for test suite reduction." In 2011 IEEE International Conference on Computer Science and Automation Engineering,
vol. 2, pp. 149-153. IEEE, 2011. https://doi.org/10.1109/CSAE.2011.5952443

https://doi.org/10.1007/978-3-319-51281-5_25
https://doi.org/10.1109/HASE.2017.31
https://doi.org/10.1016/j.jss.2020.110632
https://doi.org/10.1109/ICST46399.2020.00031
https://doi.org/10.1109/ACCESS.2020.3004145
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1145/152388.152391
https://doi.org/10.1016/S0950-5849(98)00050-0
https://doi.org/10.1109/TSE.2003.1183927
https://doi.org/10.1145/1108768.1108802
https://doi.org/10.1109/ICSM.2005.88
https://doi.org/10.1016/j.infsof.2008.11.004
https://doi.org/10.1007/978-3-642-28038-2_19
https://doi.org/10.1109/ICCSIT.2009.5234742
https://doi.org/10.1109/SNPD.2012.87
https://doi.org/10.1109/ICSE.2019.00055
https://doi.org/10.1007/s40031-020-00480-7
https://doi.org/10.1109/CSAE.2011.5952443

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 35, Issue 1 (2024) 62-87

87

[37] You, Liang, and YanSheng Lu. "A genetic algorithm for the time-aware regression testing reduction problem."
In 2012 8th International Conference on Natural Computation, pp. 596-599. IEEE, 2012.
https://doi.org/10.1109/ICNC.2012.6234754

[38] Bakar, Rohani, Kamal Z. Zamli, and Basem Al-Kazemi. "Late acceptance hill climbing based strategy for test
redundancy reduction and prioritization." In Malaysian Technical Universities Conference on Engineering and
Technology (MUCET) November, pp. 10-11. Citeseer, 2014.

[39] Zamli, Kamal Z., Mohd Hafiz Mohd Hassin, and Basem Al-Kazemi. "tReductSA–test redundancy reduction strategy
based on simulated annealing." In Intelligent Software Methodologies, Tools and Techniques: 13th International
Conference, SoMeT 2014, Langkawi, Malaysia, September 22-24, 2014. Revised Selected Papers 13, pp. 223-236.
Springer International Publishing, 2015. https://doi.org/10.1007/978-3-319-17530-0_16

[40] Mohanty, Subhasish, Sudhir Kumar Mohapatra, and Sultan Feisso Meko. "Ant colony optimization (ACO-Min)
algorithm for test suite minimization." In Progress in Computing, Analytics and Networking: Proceedings of ICCAN
2019, pp. 55-63. Springer Singapore, 2020. https://doi.org/10.1007/978-981-15-2414-1_6

[41] Coviello, Carmen, Simone Romano, Giuseppe Scanniello, and Giuliano Antoniol. "Gasser: Genetic algorithm for test
suite reduction." In Proceedings of the 14th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), pp. 1-6. 2020. https://doi.org/10.1145/3382494.3422157

[42] Xia, Chunyan, Yan Zhang, and Zhanwei Hui. "Test suite reduction via evolutionary clustering." IEEE Access 9 (2021):
28111-28121. https://doi.org/10.1109/ACCESS.2021.3058301

[43] Bajaj, Anu, and Om Prakash Sangwan. "Discrete and combinatorial gravitational search algorithms for test case
prioritization and minimization." International Journal of Information Technology 13 (2021): 817-823.
https://doi.org/10.1007/s41870-021-00628-8

[44] Deneke, Aliazar, Beakal Gizachew Assefa, and Sudhir Kumar Mohapatra. "Test suite minimization using particle
swarm optimization." Materials Today: Proceedings 60 (2022): 229-233.
https://doi.org/10.1016/j.matpr.2021.12.472

[45] Yoo, Shin, and Mark Harman. "Using hybrid algorithm for pareto efficient multi-objective test suite
minimisation." Journal of Systems and Software 83, no. 4 (2010): 689-701.
https://doi.org/10.1016/j.jss.2009.11.706

[46] Zamli, Kamal Z., Norasyikin Safieny, and Fakhrud Din. "Hybrid test redundancy reduction strategy based on global
neighborhood algorithm and simulated annealing." In Proceedings of the 2018 7th International Conference on
Software and Computer Applications, pp. 87-91. 2018. https://doi.org/10.1145/3185089.3185146

[47] Hooda, Itti, and R. S. Chhillar. "Test case optimization and redundancy reduction using GA and neural
networks." International Journal of Electrical and Computer Engineering 8, no. 6 (2018): 5449.
https://doi.org/10.11591/ijece.v8i6.pp5449-5456

[48] Chetouane, Nour, Franz Wotawa, Hermann Felbinger, and Mihai Nica. "On using k-means clustering for test suite
reduction." In 2020 IEEE International Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pp. 380-385. IEEE, 2020. https://doi.org/10.1109/ICSTW50294.2020.00068

[49] Zhong, Hao, Lu Zhang, and Hong Mei. "An experimental comparison of four test suite reduction techniques."
In Proceedings of the 28th international conference on Software engineering, pp. 636-640. 2006.
https://doi.org/10.1145/1134285.1134380

[50] Zhong, Hao, Lu Zhang, and Hong Mei. "An experimental study of four typical test suite reduction
techniques." Information and Software Technology 50, no. 6 (2008): 534-546.
https://doi.org/10.1016/j.infsof.2007.06.003

[51] Zhang, Lingming, Darko Marinov, Lu Zhang, and Sarfraz Khurshid. "An empirical study of junit test-suite reduction."
In 2011 IEEE 22nd International Symposium on Software Reliability Engineering, pp. 170-179. IEEE, 2011.
https://doi.org/10.1109/ISSRE.2011.26

[52] Noemmer, Raphael, and Roman Haas. "An evaluation of test suite minimization techniques." In International
Conference on Software Quality, pp. 51-66. Cham: Springer International Publishing, 2019.
https://doi.org/10.1007/978-3-030-35510-4_4

[53] Rahman, Mizanur, Kamal Z. Zamli, and Muhammad Arif Mohamad. "A Comparison of Four Metaheuristic
Algorithms for the Problem of Test Redundancy Reduction." In Proceedings of the 2023 12th International
Conference on Software and Computer Applications, pp. 342-348. 2023. https://doi.org/10.1145/3587828.3587879

[54] Kader, Md Abdul, Kamal Z. Zamli, and Basem Yousef Alkazemi. "An Experimental Study of a Fuzzy Adaptive Emperor
Penguin Optimizer for Global Optimization Problem." IEEE Access 10 (2022): 116344-116374.
https://doi.org/10.1109/ACCESS.2022.3213805

https://doi.org/10.1109/ICNC.2012.6234754
https://doi.org/10.1007/978-3-319-17530-0_16
https://doi.org/10.1007/978-981-15-2414-1_6
https://doi.org/10.1145/3382494.3422157
https://doi.org/10.1109/ACCESS.2021.3058301
https://doi.org/10.1007/s41870-021-00628-8
https://doi.org/10.1016/j.matpr.2021.12.472
https://doi.org/10.1016/j.jss.2009.11.706
https://doi.org/10.1145/3185089.3185146
https://doi.org/10.11591/ijece.v8i6.pp5449-5456
https://doi.org/10.1109/ICSTW50294.2020.00068
https://doi.org/10.1145/1134285.1134380
https://doi.org/10.1016/j.infsof.2007.06.003
https://doi.org/10.1109/ISSRE.2011.26
https://doi.org/10.1007/978-3-030-35510-4_4
https://doi.org/10.1145/3587828.3587879
https://doi.org/10.1109/ACCESS.2022.3213805

