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MAX phases and MXene have been introduced in passively pulsed-laser generation for 
their viability as substitutes to unadventurous saturable absorbers such as saturable 
absorber mirror, multi-wall and single-wall carbon nanotube, graphene, and transition 
metal dichalcogenides, contributing to both Q-switching and mode-locking tactics. 
Fundamental saturable-absorber features such as nonlinear saturable absorption, 
astonishing depth of modulation, flexibly tuneable bandgap, and high electron density 
around the Fermi level, establish MAX phases and MXene as formidable contenders 
with decent performance in the saturable absorber regime. Recent research works 
contributing to MAX Phases and MXene—particularly in nonlinear ultrafast optics—
have shown an exponential increase, since MAX Phases and MXene are of the prime 
regime of 2D nanomaterials that offer vast combination options by the formation of 
metal nitride, metal carbide, or carbonitride clusters with a 2D layered structure, with 
special emphasis on fabrication and incorporation of saturable absorbers into laser 
cavities. This review critically summarises the advancement on the synthesis, 
fabrication, and incorporation of the MAX phases and MXene saturable absorbers, as 
well as the incorporation methodologies and techniques into all-fibre laser cavities 
configured either in linear or ring configuration, summing up the identified issues and 
challenges and discussing future perspectives of this novel material.  
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1. Introduction 
 

Pulsed all-fibre lasers have been employed in sensors [1], optical communications, digital 
services, spectroscopy, micromachining [2], medical systems and biomedicine [3], quantum 
information processing and material processing [4], and various other industries due to its unique 
qualities, including the ability to resist disturbance, upright the quality of beams, and high efficiency 
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of energy conversion. Especially with pulse durations faster than a picosecond, these types of lasers 
have since shown further promise in a variety of other fields, including ophthalmology [5], bio-
imaging [6], molecular spectroscopy and nonlinear microscopy [7]. There are a number of 
wavelengths in the near-infrared (NIR) area that are essentially practical; this includes the high-power 
ultrafast laser at 1064 nm and long-distance telephony at 1550 nm [8]. There are several approaches 
of producing optical pulsed lasers, mode-locking, and Q-switching, which can be characterised into 
two major categories: active modulation, which involves using an active modulator to control the 
cavity loss on a periodic basis, and passive modulation, which involves placing a saturable absorber 
(SA) within the laser cavity. For the creation of passive laser pulses, there are also two types of SAs 
in concern, one is the Kerr lens, which relies on nonlinear and/or birefringent phenomena, while the 
second is SA materials.  

The interaction of light with SA matter is described by using nonlinear optics property. 
Nonlinearity, in particular, provides insight onto how materials respond to changes in the applied 
electromagnetic field's amplitude [9]. Saturable absorption, which has the potential to produce 
ultrashort pulsed lasers in the picosecond or femtosecond regimes, is one of the intriguing optical 
phenomena that are rapidly emerging as a result of nonlinearity effects. Intensity-dependent 
transmission is seen in SAs, but optical loss decreases with increasing light intensity [10]. Being a 
passive component, SA creates pulsed laser light through an all-fibre laser cavity's passive switching 
mechanism. Anticipation of the benefits regarding system size and portability, cost effectiveness, 
superior quality of beam, and superior heat intemperance of the fibre, the development of fibre 
lasers with ultrafast characteristics has attracted significant interest [11].  

Out of a variety of ways reported subsequent to the initial demonstration of pulsed-lasers with 
femtosecond pulse-width through an intra-cavity SA dye cell—e.g., a dye laser with flashlamp-
pump—in 1974 [12], there have been a large number of SAs for the development of giant and 
ultrashort pulsed lasers. There were reports on some man-made devices such as semiconductor 
saturable absorber mirrors (SESAM) or few materials that have great optical and electrical properties. 
SESAM is made up of multiple semiconductor material layers that were produced via atomic layer 
deposition or other microfabrication technologies, and these layers often contain a reflective mirror 
for the free-space alignment of a fibre laser cavity [12]. As a result, SESAM's two main weaknesses 
are the difficulty in manufacturing and the integration of an all-fibre laser cavity. Additionally, its 
broad applications are limited by inadequate beam quality, a minimal threshold of damage, and a 
limited operating bandwidth contained within 10 nm [13]. These devices use the nonlinear 
polarisation rotation [14] approach and nonlinear optical loop mirrors (NOLM) [15]. Two-dimensional 
(2D) materials have gained a lot of attention later in the realm of passive giant and ultrashort laser 
pulse production as excellent possibilities for SAs. The passively Q-switched and mode-locked fibre 
lasers established on 2D materials exhibit the nonlinear ultrafast photoelectric reaction of those 2D 
materials.  

Retrospectively, Set et al., [16] made the initial proposal for carbon nanotube (CNT) SAs for a 
passively mode-locked laser back in 2004. With many benefits such as superior nonlinear optics (NLO) 
exposures, low diffusion intensity, quick recovery time as well as sub-picosecond relaxation time, 
CNT overcomes the shortcomings of SESAM. However, the CNT's integration in longer working 
wavelengths, for example 2 µm, is constrained by the challenges in chirality and tube diameter 
management [17]. Afterwards, Hasan et al., [18] and Bao et al., [19] made the first demonstration of 
graphene SA in 2009. Despite having an intrinsic zero bandgap for operating in the visible, near, and 
mid-infrared ranges, graphene's smaller on/off ratio of switching and low absorption of 2.3 % for 
each layer limit its laser output capability and useful optoelectronics applications [20]. Through 
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adaptable defect engineering, transition metal dichalcogenides (TMD) were shown to have scalable 
bandgap properties after graphene [21].  

TMD has both semiconductor and superconducting properties, the ability to switch from an 
indirect bandgap to a direct bandgap, nonlinear absorption properties, and increasing modulation 
depth with decreasing thickness [22]. Yet only monolayer TMD commonly exhibits the direct bandgap 
feature, which necessitates a challenging synthesis and defect engineering technique [23]. By 
switching from an indirect to a direct bandgap, these mono-elemental materials can adjust their 
bandgap and other features [24]. However, they still face the problem of oxidative instability [25]. 

Gogotsi et al., [26] originally found the MAX phase in 2011 in order to demonstrate 2D Ti3C2 
nanosheets, multi-layer structures, and conical scrolls in addition to the aforementioned SA 
materials, thus increasing research interest in this material in a variety of fields, including actuators 
[27], sensors [28], clean water generation [29], photothermal treatment [30], and lithium-sulphur 
batteries [31]. Due to their exceptional features, 2D transition metal carbides, carbonitrides and 
nitrides have recently received a lot of interest [32, 33]. These MAX phases or MXene was proven to 
display higher nonlinear saturable absorption due to strong electrical conductivity as well as 
extremely adaptable electro-optical characteristics [34-37]. Based on MXene Ti3C2Tx-PVA film SA, 
stable mode-locked pulsations are effectively produced in a fibre laser [33, 35]. 

MAX phases, the antecedent of MXene, sparked intense curiosity in response to MXene. The 
broad formula for MAX phases is Mn+1AXn, where M is a transition metal (Sc, Ti, Hf, Zr, Nb, V, Ta, Cr, 
Mo, etc.), X is carbon or nitrogen or a combination with n = 1, 2, and 3, and A represents group III, IV, 
V, or VI element (Al, Ga, P, As, S, In, Si, Ge, Sn, , etc.), giving it a unique atomic arrangement structure 
[38, 39 ]. These sorts of substances give MAX phase materials the dual qualities of metal and ceramic, 
such as good oxidation resistance, elevated temperature resistance, and elevated temperature 
flexibility like ceramic and metal, respectively [40, 41]. The latter two characteristics are 
advantageous for producing ultra-short laser pulses. Furthermore, delamination makes it possible to 
create mono-layer MXene of a thickness of less than 1 nm and lateral diameters on the order of m 
[52]. Recently, passively Q-switched, and mode-locked fibre lasers have successfully used MAX phase 
Ti3AlC2 as SA [42, 43]. Following careful examination of the MAX phase materials in the system of Ti-
Al-C, Ti2AlC was identified due to its distinctive characteristics. 

By incorporating MAX phase Ti3AlC2 as the SA in any erbium-doped fibre laser (EDFL), Ahmad et 
al., [44] accomplished the Q-switched pulse train in 2020. This was made possible by exceptional 
optical and electrical assets of Ti3AlC2  Following that, MAX phase materials such as V2AlC, Ti3CNTx, 
Nb2CTx, Ta4C3Al have been widely synthesised and fabricated as SAs using various methods and 
techniques for showing pulsed laser operations, by employing passive Q-switching as well as passive 
mode-locking [45-49]. 

This review studies the synthesising, fabricating, and incorporating techniques of MAX phase 
materials due to their distinctive features, with special attention given to Ti-Al-C combinations as a 
successful example. Hitherto, the utmost stable material in the Ti-Al-C regime is Ti2AlC [50]. Since 
Ti2AlC has a lower Fermi level than Ti3AlC2, it is simpler to achieve an electrical transition between 
bands. Additionally, MAX phase materials have a higher optical conductivity than anticipated for 
optimum photoelectric response [51]. Al particles react together with oxygen in the air to form a 
strange oxide coating that stops the material from further oxidising, giving the Ti2AlC a higher 
amount of Al atoms than Ti3AlC2 and a higher antioxygenic characteristic [52]. Due to these benefits, 
MAX phase materials are more environmentally stable and facilitate the generation of Q-switched 
laser pulses. While MXene may seem to be a more recent material than graphene, TMD, black 
phosphorus, and other materials, it has already begun to get scientific attention as a strong SA 
contender.  
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The recent innovation by MAX phases and MXene SA to produce Q-switched fibre lasers in the 
near- and mid-infrared frequency band will be the main focus of this study. The studies are 
anticipated to provide readers with more information about the investigation of MXene-based SAs 
in passively Q-switched fibre lasers. These studies may also inspire further research in light of 
numerous demonstrations, problems, and challenges, as well as the broader implications that these 
studies have brought about. 

Much effort has been made on MAX phases and MXene synthesis and production in order to 
enhance pulse laser properties, notably with the all-fibre laser configuration and the influence of SA 
integration techniques into the laser cavity. The present state-of-the-art synthesis, fabrication, and 
inclusion of MAX phase or MXene SAs in all-fibre laser cavity architecture is the topic of this review 
study. 
 
2. MXene and Max-Phase Synthesisation and Fabrication 

 
MXene molecule, which takes on several chemical forms based on the periodic table's M, X, and 

T elements, is created when the surface terminal group element in a MAX phase compound is 
exfoliated. The majority of MXene synthesis to date has been done top-down, particularly with regard 
to the selective etching of their MAX phases [53]. The synthesis and fabrication of MAX phases and 
MXene as listed in Error! Reference source not found. including Ta4C3Al, Ti3C2Tx, Ti3CNTx, Ti2CTx and 
Nb2CTx as SAs are reviewed in this section. 

 
Table 1 
Synthesisation techniques of MAX phases and 
MXene 
Synthesisation and fabrication 
Aqueous acid etching method (AAE) 
Electrochemical exfoliation (ECE) 
Two-step exfoliation scheme  
Dispersion via AAE method (D-AAE) 
Stirring and ultrasonic vibration (USV) 
Liquid phase exfoliation method  
Solution-casting method (SCM) 
Fusion of polyvinyl alcohol with MAX phase 
Aqueous acid etching method (AAE) 

 
2.1 Aqueous Acid Etching Method  
 

MXene molecule, the Ti3AlC2 powder was combined for 48 hours at room temperature with 40 
wt.% hydrofluoric acid (HF), washed many times with DI water, and the resultant deposition was let 
to dry in a vacuum-oven for 48 hours at 60 °C [54]. Ti3C2Tx MXene can also be replaced by MAX phase 
Ti3AlC2 in the final product. However, aqueous acid etching methods can be used as references to 
develop Ti3C2Tx. In Naguib's study [43], Ti2AlC was employed as raw materials, and then ball-milled 
and heated up to 1350 °C for two hours under argon gas conditions. The powder was then exposed 
to 40 wt.% HF at a volume ratio of 1:10 at room temperature for two hours. The obtained deposit 
was centrifuged to separate the particles and cleansed with DI water.  

Using a volume ratio of 1:15, Ti3AlC2 solution and 40 wt.% HF were combined to perform an 
aqueous acid etching procedure [55]. The deposit was cleansed with DI water to achieve a pH of more 
than 6, and then dried in a vacuum oven. After diffusing the powder-formed Ti3C2Tx in IPA below 20 
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°C temperature for 10 hours, the Ti3C2Tx was subjected to water bath sonication to exfoliate the 
material. The liquid suspension was then centrifuged for 30 minutes at 3000 rpm, followed by 
another 30 minutes at 18000 rpm for the supernatant. To create a suspension of Ti3C2Tx, the 
precipitate was mixed with DI water after the supernatant was removed. 

Additionally, Ti2AlC MXene has recently been shown to perform better than Ti3AlC2 in a number 
of areas, including stability [56], electronic band transition [57], optical conductivity [58], and 
oxidation resistance [59]. However, this Ti2AlC was produced directly from the commercially available 
product without the need for synthesis [57]. Polyvinyl alcohol (PVA) was used to create a composite 
out of Ti2AlC in a 1:1 ratio. The characterisation of this Ti2AlC was carefully studied using several 
techniques, including the XRD, EDS, and Raman spectra, SEM images, and absorption spectra. 

Another work presented further aqueous acid etching method for the synthesis of Ti3C2Tx solution 
of nanosheets. The deposit was firstly dried up using a vacuum oven before the Ti3C2Tx powder was 
dispersed in N-methyl-2-pyrrolidone at a dilution of 1 mg/ml. (NMP) [60]. To get the Ti3C2Tx 
nanosheet solution, the supernatant was then centrifugated at 4000 rpm at 10 °C for 20 minutes. In 
another research work [61], a similar synthesis technique was also reported. 

On the other hand, the energy of formation of V2C from the fresh material, V2AlC, at 2.981 eV, is 
regarded low compared to other MXene in the M2X system, which may make it challenging to 
synthesise extremely pure V2CTx [62]. As a result, obtaining delaminated flakes is difficult since V2CTx 
does not have a precise crystalline structure [63]. The original V2AlC phase was etched in HF and 
intercalated with tetrabutylammonium hydroxide (TBAOH) to create the V2CTx using aqueous acid 
etching technique [64]. The mixture was sonicated in DI water after the excess TBAOH had been 
removed, creating the colloidal suspension. The suspension was then spin cast to create a 400 nm 
thick V2CTx film. The flakes exhibit exceptional quality, softness, foldable and overlapped in several 
places. Based on the UV-VIS-NIR transmittance curve, the V2CTx exhibits a wide absorption spectrum, 
especially for thinner V2CTx films like those with a thickness dimension of 10 nm, spanning the 
wavelength range of 500 to 2700 nm without any discernible transition. 
 

 
Fig. 1. Monolayer Ti3CNTx - schematic structures with 
(a) fluorine and hydrogen groups and (b) fluorine and 
oxygen groups, (c)-(d) the corresponding structures 
of electronic band, J. Li et al., [66] 

 
Ti3CNTx's physical characteristics are comparable to those of Ti3C2Tx [65]. Different surface 

terminations were shown in the monolayer Ti3CNTx schematic structure as given in [66]. Ti3CNTx was 
created by substituting a nitrogen atom for one of the four carbon atoms to create a mix arrangement 
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of C and N. In comparison to other semiconducting 2D materials, monolayer Ti3CNTx exhibits more 
prominent metallic properties as a result. In contrast to Van der Waal's attraction, the hydrogen bond 
is principally responsible for the stacking of monolayer Ti3CNTx. Indirect hydrogen connections are 
formed by intercalated water molecules or surface functional groups to form these hydrogen bonds 
[67]. As with monolayer Ti3CNTx, the electrical band structures of layered Ti3CNTx are retained. This 
indicates that a successful SA is possible without a demanding technique to produce a monolayer 
solution. 

By employing 30% HF solution to etch the Al layers from the Ti3AlC2 raw material, an alternative 
MXene, Ti3CNTx was created [66]. First, 20 ml of 30% aqueous HF solution was combined with 2 g of 
Ti3CNTx powder at ambient temperature. The mixture then was agitated for 18 hours employing a 
magnetic bar. The mixture was then centrifuged at a speed of 3500 rpm for 3 minutes after being 
washed with DI water, mixed for 1 minute, and dried. This procedure was done five times, and then 
the supernatant was decanted until its pH level was more than 6. The multi-layered Ti3CNTx was then 
delaminated by combining the Ti3CNTx sediment with an aqueous mixture of 55% TBA-OH at a ratio 
of 100:1. After that, the mixture was stirred at ambient temperature for 4 hours. The mix was then 
centrifuged for 2 minutes at 3500 rpm, and the supernatant was then decanted. To further 
disseminate the particles, DI water was added after which the sediment was centrifuged and the 
remaining TBAOH was removed by transferring the supernatant three times. Then the residue was 
given 100 ml of DI water. After being sonicated for nearly one hour, the mixture was centrifuged at 
the revolution of 3500 rpm for an additional hour. Finally, the mono- to few-layer Ti3CNTx 
supernatant was created. Both the monolayer Ti3CNTx and their stacked systems' optical absorption 
coefficients, which range in wavelength from 1000 to 3500 nm, were computed. 

Another illustration of how to make V2CTx powder is as given in [67] by using the standard 
aqueous acid etching procedure [68]. First, for 48 hours at 35 °C, the V2C powder was constantly 
mixed in a solution of 2 g of 200 mesh V2AlC and 40 ml HF acid. The mixture was then diluted with DI 
water, and centrifugation was performed numerous times at 5000 rpm for 10 minutes per cycle, till 
the pH value of the supernatant surpasses 6. The carved V2AlC was accrued using a PVDF membrane 
(mesh of 0.450) for filtering, and it was then cleansed with 2 litres of DI water. Then, using a 400 W 
built-in water-cooling system and a constant temperature of 10 °C for 30 minutes, bath sonication 
was used to separate the layers (delaminate) the V2AlC. The dispersion was then centrifuged for 30 
minutes at 5000 rpm to extract the V2CTx nanosheet supernatant. To get the precipitate, the 
supernatant was centrifuged once more at 18,000 rpm for 30 minutes. This precipitate was 
maintained under vacuum for 24 hours at 80 °C. 

 

 
 

Fig. 2. Schematic diagram to prepare V2CTx to spin-cast the V2CTx film [106] 
 

Nb2C research began in 2013, when Naguib et al., [69] synthesised the Nb2AlC successfully. The 
acquired linear absorption spectra have been used to compute the optical bandgap of Nb2C, which is 
determined as 0.81 eV [70]. The approximate intensities of anomalous phonon-phonon scattering 
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and scattering of electron-phonon cause a substantial decrease in the thermal conductivity of the 
lattice in Nb2C [71]. In the near-IR region, Nb2C has been shown to have a high photothermal 
conversion efficiency and substantial absorption [72]. 

By treating Nb2AlC with a 50% HF mixture at ambient temperature, the Nb2C was produced using 
an acid etching technique [73]. After the etching, the surplus HF was periodically washed together 
with DI water and centrifuged until the pH was more than 6 at a speed of 3000 rpm. The Nb2C 
suspension was then collected using a cellulose membrane following filtering. The as-produced 
multilayer Nb2C was then thoroughly mixed for 3 days at room temperature in 30 ml of 25% tetra-
propylammonium hydroxide (TPAOH) solution. The TPAOH was then eliminated by centrifuging the 
mixture at 15,000 rpm for 10 minutes after rinsing it with DI water. Following a redispersion in 
ethanol and dimethylformamide (DMF), the precipitate was centrifuged at 3000 rpm for 10 minutes 
to split colloidal from un-delaminated Nb2C flakes. Finally, a few-layered Nb2C nanosheet was 
created, and must be stored at 5 °C to increase its longevity. 
 
2.2 Electrochemical exfoliation 
 

It is anticipated that the MAX phases would have improved stability and superior qualities due to 
termination of the functional groups on its surface [74]. However, the addition of HF to the AAE 
procedure results in the synthesis of MAX phases or MXene that has oxygenic as well as hydrophilic 
termination groups, mainly, -O and -OH, on its surface, reducing its material characteristics and 
environmental stability [75]. 

Aqueous HF etching is commonly used to exfoliate stacked MAX phases; however, HF is a very 
acidic solvent that can seriously contaminate surfaces and leave them with flaws [76]. This safety 
concern may be resolved by using a much safer and simpler electrochemical exfoliation-based 
synthesis method, for example, one that uses a highly fluorinated nonaqueous ionic liquid as the 
electrolyte to create Ti3C2Tx quantum dots (QDs) with improved constancy [112]. As shown in FIGURE 
3 below, a three-electrode electrometrical system is used to build the synthesis tool. This system 
consists of a working electrode (bulk Ti3AlC2), an electrode of quasi-reference (Ag), and a counter-
electrode (Pt). 
 
 

 
 

Fig. 3. Synthesis setup of Ti3C2Tx, F. Yang et al., [111]. 
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In order to make the nonaqueous electrolyte, 20 g of [EMIM][PF6] was combined with 100 ml of 
MeCN. Then, a 150 ml container made up of three electrodes and a glass tubing, was filled with the 
combined solution. The combined solution was then used after being bubbled with argon gas for 5 
minutes. The Ag wire would receive a continuous potential of 3 – 7 V in a procedure lasting for 5 
hours. The PF6- was then electrolytically decomposed into F- while the Al layer was being removed 
from the Ti3AlC2 by selective etching. Then, the electrolyte was observed to turn brown in colour and 
contain shards of Ti3C2Tx and powder. Following that, two centrifugation operations were performed 
in fast succession; the first at 3500 rpm for 30 minutes to remove big elements from the electrolyte 
and the second for 30 minutes at 7000 rpm to collect the sediment. Afterwards, silts were added to 
the MeCN and ultrasonically treated for 10 hours at atmospheric N2 gas pressure. The Ti3C2Tx QD was 
then produced by centrifuging the supernatant for 30 minutes at 7000 rpm to eliminate the 
contaminants of certain large particles. 
 
2.3 Two-step exfoliation scheme (Ta4C3) 
 

A two-step exfoliation approach as illustrated in figure 4 was used to produce nanostructured 
Ta4C3 nanosheets, resulting in nanosized 2D Ta4C3 MXene ultrathin nanosheets. Due to the increased 
manufacturing complexity for outstanding 2D topology, there were less investigations on 2D Ta4C3 
nanosheets compared to other MXenes. First, the bulk MAX-phase Ta4AlC3 ceramics were sintered 
for 2 hours at 1500 °C using a solid-phase sintering process. The sandwiched aluminium layer 
between Ta4C3 MXene layers was etched for four days at room temperature in 40% hydrofluoric acid 
(HF) aqueous solution. The delaminated Ta4C3 MXene was then ultrasonically shaken in deionized 
water (DI) for 15 hours. The solution was then centrifuged at 10,000 rpm for 10 minutes to obtain 
the supernatant liquid [49]. 

 

 
Fig. 4. Preparation route of few-layer Ta4C3 MXene using two-step exfoliation [66] 
 

2.4 Dispersion via the aqueous acid etching method. 
 

Aqueous acid etching has been used in various research papers to explain how to create Ti3C2Tx 
dispersion. The MAX phase Ti3AlC2 was immersed in 40% HF and agitated at 500 rpm for 20 hours at 
room temperature to create the Ti3C2Tx flakes [77]. Once the pH was more than 6, the bulk Ti3C2Tx 
solution was collected and cleansed with DI water. After 24 hours of probe-ultrasonication using a 
cell grinder, the Ti3C2Tx flakes were obtained. Ti3C2Tx suspension preparation likewise utilised HF 
etching with isopropanol as the solvent, and liquid phase exfoliation (LPE) was used to create the thin 
film [78]. 

 
2.5 Stirring and ultrasonic vibration. 

 
Stirring and ultrasonic vibration (USV) could also be used for a straightforward synthesis method 

of Ti3C2Tx solution [79]. First, a beaker containing 40 ml of 0.008 g/ml PVA solution and 10 mg of 
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Ti3AlC2 powder was agitated for 24 hours. The agglomerated Ti3AlC2 was then broken apart by 
cavitation using ultrasonication for 2 hours. The last step in the synthesis of Ti3C2Tx solution was to 
separate the supernatant from the solid residue. 

 
2.6 Liquid Phase Exfoliation (LPE) method. 
 

The LPE approach could be used to create Ti3C2Tx nanosheets in addition to USV [80]. First, a 
water bath at a temperature below 20 °C was used to dissolve 20 mg powder of Ti3C2Tx into a solution 
of 20 ml of ethanol. After that, this dispersion was subjected to ultrasonic treatment utilising 200 W 
of power for 12 hours. After centrifuging the Ti3C2Tx solution for 30 minutes at 3000 rpm to remove 
big bulks, the Ti3C2Tx nanosheet supernatant was produced. Additionally, the LPE approach may also 
be used to create Nb2C nanosheets [81, 82]. First, 10 ml of IPA solution was used to dissolve 50 mg 
of Nb2C powder. The mixture was then sonicated for 4 hours at 40% power. The homogenous Nb2C 
nanosheet in IPA solution was then obtained by centrifuging the suspension for 10 minutes at 4000 
rpm to remove any undissolved flakes. 

In another study, a few-layer Ta4C3 MXene was produced using the LPE method. To remove the 
Al layers, the bulk Ta4AlC3 was immersed in 40% HF aqueous solution for two days at 30 °C. After 
etching, the mixture was repeatedly washed with DI to neutralise it. Then, the mixture was 
centrifuged at 5000 rpm for 30 minutes to recover the multi-layer Ta4C3. Then, using an ultrasonic 
probe with a power of 500 W, the created multi-layer Ta4C3 was re-dispersed in N-methyl pyrrolidone 
(NMP) solution and sonicated for 8 hours at 5 °C. To get the few-layer Ta4C3, the product was 
centrifuged between 5000 and 8000 rpm [111]. 

 
2.7 Solution-casting method 
 

The Ti3AlC2 powder was first etched with 50 wt.% HF at room temperature for 6 hours. Vacuum-
aided filtering was used to capture the Ti3C2Tx residue using a polyvinyl difluoride filter (PVDF) 
membrane. Ti3C2Tx's clay structure was dried up in a vacuum oven for 24 hours at 80 °C. The thin-film 
structure of the SA device was created using a solution-casting technique with PVA and Ti3C2Tx 
powder (PVA). First, a beaker containing 40 ml of deionized (DI) water, 40 mg of PVA powder, and 20 
mg of Ti3C2Tx powder was swirled for 24 hours at room temperature. The resultant solution was then 
subjected to a 2-hour ultrasonication to disperse the Ti3C2Tx particle agglomeration. Finally, the 
solution was applied to the D-shaped fibre as an SA device. A 5 ml portion of the prepared solution 
was set aside and allowed to dry for 48 hours in a clean petri dish. The thin dried layer was afterwards 
removed from the petri dish [92]. 

 
2.8 Polyvinyl alcohol fusion with MAX Phase 
 

Due to its good film-forming capabilities, superior tensile strength, ease of emulsification, and 
superior water solubility, PVA has been shown to be a reliable host polymer for thin film fabrication. 
PVA is a better host material because it can endure powerful laser light within the cavity; thanks to 
its high melting point of 200 °C, which is higher than that of polymethyl methacrylate (PMMA) with 
a melting point of 160 °C, and polyethylene oxide with a melting point of 67 °C. Deionized (DI) water 
was used to dissolve the PVA solution's powder. An electronic balance was used to weigh 1 g of PVA 
powder, which was then combined with 120 ml of DI water in a beaker. The mixture was put on a hot 
plate and agitated for 45 minutes at 200 °C and 300 rpm. The next step was to combine the produced 
PVA solution with Ti3AlC2 powder to create a free-standing thin film SA. A few Ti3AlC2 powders were 
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first placed on an electronic scale so they could be weighed. Then, 40 ml of PVA solution were 
combined with 10 mg of Ti3AlC2 powder. The mixture was magnetically swirled for 24 hours at room 
temperature on a hot plate. The combination was further subjected to ultrasonication for 2 hours at 
the same temperature. The Ti3AlC2 solution residue visible on the surface of the supernatant 
indicated that the sonication procedure was effective. A tidy petri dish was filled with 5 ml solution 
of Ti3AlC2-PVA and was left out in the open for 48 hours. Peeled off the petri dish was the dried 3-cm 
diameter MAX-PVA thin film with a thickness of 30 m [38]. 

 
3. MXene and Max-Phase Synthesisation and Fabrication 

 
The initial but most crucial step in this laboratory circuit level experiment—in setting up the laser 

cavity—is the inclusion of the manufactured MXene or MAX phase SA made from bulk MAX phase 
powder. There are several methods for creating the SA thin films that can go within the all-fibre cavity 
laser such as tapered fibres, D-shaped fibres, etched fibres, and flat-faced fibre ferrules. 

 
Table 2 
SA incorporation techniques applied with MAX phases and MXene 

Fibre preparation SA incorporation 

Tapered fibre 
 

Optical deposition 
Spraying  
Magnetron sputtering deposition 

D-shaped fibre  
 

Drop-casting 
Dripping 
Monolayer film 
Evanescent coupling 
Inkjet printing 

Etched fibre 
 

Syringe  injection 
Immersion and optical deposition 

Fibre ferrules PVA composite film 
 

3.1 Tapered fibre 
 
By progressively stretching an optical fibre while it is heated, for example, over a flame, until the 

glass softens, one can create a tapered optical fibre. With this technique, the fibre is thinned over a 
small area, perhaps a few centimetres or millimetres. The core of the fibre thins out by the same 
percentage as the entire fibre. A common process for creating tapered fibres is flame-brushing [81]. 
By melting the optical fibre using an oxy-LPG flame and drawing it through a translational step to 
lower its waist diameter, the flame brushing process is typically used to create tapered fibres [83]. 
For the interaction of absorbing materials with high heat dissipation mechanisms, the tapered fibre 
creates an evanescent field around its waist area [84]. 

 
3.1.1 Optical deposition to tapered fibre 
 

On the tapered fibre platform, the SA can be created using a variety of techniques. The most 
frequent technology used to fabricate SAs is optical deposition. For instance, a Hi-1060 fibre has a 
5.2-µm waist diameter and a 3-mm waist length [25]. The V2CTx nanosheets were deposited utilising 
the optical deposition approach employing a 980-nm pump on the waist section of the tapered fibre, 
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where material adsorption becomes apparent because of evanescent contact. The entire procedure 
was detected using a power meter. An oxy-hydrogen flame was used in the second tapering 
configuration for SMF-28, and the tapering resulted in a 13-µm waist diameter [86]. 

A comparable optical deposition was used with droplet volumes of 5 – 10 l and a 60 mW light 
source [86]. When the optical loss reached 3 dB, the deposition was terminated. A further tapered 
fibre with 9.21 m waist diameter and an insertion loss of 0.69 dB was used for optical deposition of 
a Ti3C2Tx solution using a 980 nm laser pump and a power meter [86]. The deposition was along the 
200 µm length and the insertion loss is 1.39 dB. Under real-time monitoring, a tapered fibre with a 
waist diameter of 12 µm and a waist length of 5 mm was also optically deposited with Nb2C SA [22]. 

It took around 3 minutes to conclude the deposition. Another illustration is a tapered fibre using 
a Ti3C2Tx SA optical deposition process that has a 15 µm waist diameter [77]. To ensure that the 
proper amount of Ti3C2Tx sample was injected on the tapered fibre, the optical deposition of Ti3C2Tx 
SA was conducted with a needle tube [87]. 

 
 

 
 

Fig. 5. Incorporation of SA. a) D-shaped fibre b) tapered fibre c) etched fibre d) fibre ferrule [47] 
 

3.1.2 Spraying and magnetron sputtering deposition to tapered fibre 
 

The Nb2C suspension was sprayed over a 3.56 µm diameter tapered fibre platform's waist region, 
which was placed on a 60 °C hot plate, evaporating the solvent as soon as it made contact with the 
hot plate, creating the SA [88]. The optical loss is calculated as 1.55 dB. Additionally, employing 
magnetron sputtering deposition (MSD), a few-layer Nb2C N Nb2C nanosheet was deposited on the 
tapered fibre [89, 90]. In order to increase film adhesion on the surface of fluorine mica (FM), FM 
was first hydrophilically treated with concentrated HF and H2SO4. After that, alcohol and DI water 
were used several times to clean the FM sheet. After treatment, an oven was used to dry the FM 
sheet. Then, a 40 °C oven was used to dry the treated FM sheet. The targets for FM and MXene were 
then installed within a magnetron sputtering chamber setup. A vacuum of 6.8x10-4 pa was created 
within the chamber using mechanical and atomic pumps. Finally, a consistent MXene film was 
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created by spinning the FM at 30 rpm. The MXene film was then sputtered on a microfibre substrate 
with a waist diameter of 18.03 µm using the same pressure and rotation speed. 
 
3.2 D-shaped fibre 
 

D-shaped fibre, also known as a D-type optical fibre has its cladding side polished, giving it a D-
shaped appearance. There are several applications for D-shaped optical fibres, particularly in sensing. 
A metal and dielectric system have established a surface plasmon wave dispersion relationship. 
Another form of microfiber that causes evanescent contact with absorbent materials on its polished 
surface is also the D-shaped fibre [90]. Compared to the tapered fibre structure, the side-polished 
fibre structure is extra robust [91]. 

A higher nonlinear interaction length, a higher value of optical damage threshold, and a 
significantly increased interaction of light-matter are only a few further benefits of the D-shaped fibre 
[92, 93].  

 
3.2.1 Drop-casting to D-shaped fibre 
 

Another work provides a detailed mechanically based fabrication process for D-shaped fibres, 
which was used to drop-cast a Ti3C2Tx solution to generate the SA, with a 71.69-µm fibre diameter, 
4.69-µm core-cladding space, and 1400-µm polishing length [94]. 

 
3.2.2 Dripping and monolayer film to D-shaped fibre  

For the ultrasonic dripping of Ti3C2 nanosheet dispersed with 0.1 mg NMP, an additional D-
shaped fibre with 6-µm polishing depth from the centre was used [95]. Insertion loss and polarisation 
determined loss (PDL) of a stacked Ti3CNTx monolayer film connected to a D-shaped fibre at 1557 nm 
were 4.5 dB and 1.8 dB, respectively [96]. The transverse magnetic (TM) and  transverse electric (TE) 
modes' optical signal-to-noise ratios alter according to the PDL, which is a measurement of 
distribution of peak-to-peak optical power by all polarisation states [97]. As a result, the TE and TM 
modes significantly affect how the laser beam's saturation level is modulated, changing the depth of 
a SA's modulation evanescent coupling to the D-shaped fibre.  
 
3.2.3 Inkjet printing to D-shaped fibre   
 

Additionally, a D-shaped fibre with 6 µm side-to-core depth was used to conduct the evanescent-
coupling of Ti3C2Tx solution containing 6.67 mg/ml [98]. At 1900 nm, the insertion loss was 2.0 dB 
and the PDL was 5.2 dB. Inkjet printing is used to make use of the benefits of 2D materials for printed 
optoelectronic devices, including their tiny footprint, simplicity of integration, geometric 
compatibility, scalability as well as cost factor [99]. A D-shaped SA was created by imprinting a 
homogeneous, continuous Ti3C2Tx nanosheet film with a 35-m inter-droplet spacing on the D-shaped 
fibre. 

 
3.3 Etched fibre 
 

The optical fibre was submerged in a 30% HF acid solution for 2 hours to produce an etched fibre 
in addition to polishing the D-shaped fibre using the aforementioned mechanical method [100]. The 
coating on the silica glass component was removed by HF. 
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3.3.1 Syringe injected to etched fibre 
 

The residual HF solution was rinsed from the surface of the etched fibre using clean water and 
ethanol. The etched fibre was placed in a protective jacket, and Ti3C2Tx solution was injected with a 
syringe. The liquid Ti3C2Tx within the protective sleeve was sealed by melting the ends of the sleeve 
with a hot iron and bonding them together with glue. Due to its geometrical symmetry, which is more 
robust than that of the D-shaped fibre, this SA structure helps to increase the thermal damage 
threshold brought on by physical contact [101]. However, compared to its application in a range of 
sensors such biosensors [102], refractometric sensors [103], and humidity sensors [104], the 
employment of an etched fibre platform as an SA is less frequent. This is because its nanometer-sized 
fibre ends—the primary end product of etched optical fibre—are difficult to produce using either 
tapering or mechanical polishing methods [105]. Etched fibre manufacturing is more dangerous than 
D-fibre production due to the integration of HF and should not be handled continuously, even while 
wearing appropriate protection gear. 
 
3.3.2 Immersion and optical deposition of etched fibre 
 

Another study involved dipping the etched fibre in Ti3C2 solution to create SA [106]. By using 
optical deposition using a laser light source, the Ti3C2 solution was drawn to the surface of the cut 
fibre. 

 
3.4 PVA composite film in fibre ferrules  

 
The simple and slightly easier method is to construct the SA by sandwiching an absorbent material 

such as Ti3C2Tx between two fibre ferrules while manufacturing either the MXene or the MAX phase 
into a thin film [107]. A Ti3C2Tx composite film was generated by combining 10 ml of Ti3C2Tx with PVA 
solution of 10 ml that had been exposed to a 24-hour ultrasonic treatment. A 1-mm2 piece of 
Ti3C2Tx/PVA composite film was inserted between two fibre ferrules to make the SA. The fibre ferrule 
structure is easier to manage and operate than microfibers due to material contact between the 
absorbent and the fibre ferrules. Nevertheless, it has a briefer length of interaction and lesser 
threshold of optical damage [108]. 
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Table 1    
 Summary of MAX phase and MXene saturable absorber synthesis, fabrication, and incorporation. 

Research Period  LASER Configuration Incorporation of Saturable Absorber   

Research 
No. 

YYYY-
MM 

 Pulse 
Regime  Cavity MAX Phase / 

MXene Synthesisation Fabrication or Deposition Incorporation Ref.  

1 2022-02  M-L EDFL-AF-Ring Ta4C3Al LPE Drop Casting Fibre ferrule  [111] 

2 2021-12 
 Q-S EDFL-AF-Ring Ta4C3Al Two-step exfoliation Laser deposition  Fibre patch cord  

[49]  M-L EDFL-AF-Ring Ta4C3Al Two-step exfoliation Spin Coating  Fibre patch cord 

3  2021-11 
 M-L TDFL-AF-Ring Nb2CTx LPE Microfiber Coat Tapered fibre 

[82] 
 M-L THDFL-AF-Ring Nb2CTx LPE Spin Coating Tapered fibre 

4 2021-08  M-L THDFL-AF-Ring Ti3C2Tx ACE Dripping D-shape fibre [95] 

5 2021-06 
 Q-S EDFL-AF-Ring Ti2CTx SCM Solution Casting Fibre ferrule  

[57]  M-L EDFL-AF-Ring Ti2CTx SCM Solution Casting Fibre ferrule  

6 2021-04  Q-S BDFL-AF-Ring Nb2CTx SCM Solution Casting Fibre ferrule  [47] 

7 2021-03  M-L THDFL-AF-Ring Ti3C2Tx ACE Drop Casting D-shape fibre [98] 

8 2021-02  Q-S HDFL-AF-Ring Nb2CTx SCM Solution Casting Fibre ferrule  [46] 

9 2021-01  M-L TDFL-AF-Ring Nb2CTx ACE Optical Deposition Tapered fibre [56] 

11 2021-01  M-L EDFL-AF-Ring Nb2CTx LPE Spray & Evaporate Tapered fibre [84] 

12 2020-11 
 M-L EDFL-AF-Ring Ti3C2Tx SCM Drop Casting Fibre ferrule  

[36] 
 M-L EDFL-AF-Ring Ti3C2Tx SCM Solution Casting Fibre ferrule  

13 2020-11  M-L EDFL-AF-Ring Nb2CTx  - Sputtering deposit Tapered fibre [92] 

14 2020-11  M-L YDFL-AF-Ring Ti3C2Tx EC Exfoliation Optical Deposition Tapered fibre [78] 

15 2020-10  M-L EDFL-AF-Ring Ti3C2Tx Stirring and USV Drop Casting Fibre ferrule  [42] 

16 2020-07  M-L EDFL-AF-Ring Ti3C2Tx PVA Fusion Solution Casting Fibre ferrule  [38] 

Research Period LASER Configuration Incorporation of Saturable Absorber 
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Research 
No. 

YYYY-
MM 

 Pulse 
Regime  Cavity MAX Phase / 

MXene Synthesisation Fabrication or Deposition Incorporation Ref.  

17 2020-04  Q-S EDFL-AF-Ring Ti3C2Tx SCM Solution Casting Fibre ferrule  [45] 

18 2020-12 
 M-L EDFL-AF-Ring Ti3C2Tx LPE Solution Casting Fibre ferrule  

[83]  M-L EDFL-AF-Ring Ti3C2Tx LPE Film Attached Fibre ferrule  

19 2020-07  M-L EDFL-AF-Ring Ti3C2Tx ACE Optical Deposition Tapered fibre [90] 

20 2020-07  Q-S TBFL-AF-Ring Ti3C2Tx LPE Microfiber Coat Tapered fibre [44] 

21 2020-03 

 M-L YDFL-AF-Ring NPE ACE Optical Deposition Tapered fibre 

[68]  M-L YDFL-AF-Ring V2AlC ACE Optical Deposition Tapered fibre 

 HM-L YDFL-AF-Ring NPE- V2AlC ACE Optical Deposition Tapered fibre 

22 2020-03  M-L  - Ti3C2Tx ACE Optical Deposition Tapered fibre [77] 

23 2020-01  M-L  - Ti3C2Tx ACE Optical Deposition Tapered fibre [78] 

24 2019-04  M-L EDFL-AF-Ring Ti3C2Tx ACE Optical Deposition Tapered fibre [55] 

25 2019-03  M-L EDFL-AF-Ring Ti3C2Tx ACE Spin Coating D-shape fibre [54] 

26 2018-06  M-L EDFL-AF-Ring Ti3C2Tx ACE Immersion Etched fibre [100] 

27 2018-01  M-L   Ti3CNTx Interfacial technique Solution Casting Fibre ferrule  [36] 

28 2017-11 
 M-L YDFL-AF-Ring Ti3C2Tx ACE Solution Deposition D-shape fibre 

[60] 
 M-L EDFL-AF-Ring Ti3C2Tx ACE  Solution Deposition D-shape fibre 

29 2017-10  M-L EDFL-AF-Ring Ti3CNTx ACE Film Attached D-shape fibre [66] 
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4. Conclusion 
 

Since conductors typically have poor SA properties, it is preferable to etch the terminating 
metallic element from the MAX phase material to create MXene. This is because nonlinear absorption 
is the most crucial factor in determining the effectiveness of pulse generation in both Q-switched and 
mode-locked passive-pulsed all-fibre lasers [98]. In particular, for all-fibre ring cavity lasers, the 
synthesis of MXene or MAX phases with exceptional nonlinear saturable absorption and adaptable 
grouping of Mn+1XnTx helps with the realisation of superior SA by employing a variety of 
manufacturing and integration techniques and methodologies. 

As a result, the creation of Q-switched and mode-locked pulsed all-fibre lasers is expected to 
move toward other untapped MXenes with many more well-studied material properties in the 
future. In order to corroborate the theoretical prediction, a highly relevant and accurate 
experimental bandgap measurement for the MXene is essential. This is because the importance of 
bandgap is often illustrated by matching the laser operating wavelength of the Q-switched and mode-
locked laser. 

Based on earlier studies, it was predicted that the bandgap of MXene would be smaller than 0.2 
eV, especially for Ti3C2Tx [26] and 0.81 eV for Nb2C utilising the Tauc approach [70]. The truth is that 
even with enough modulation depth, high non-saturable loss SAs could not be used to create a mode-
locked laser. In light of this, it is appropriate to discuss the significance of nonlinear saturable 
absorption and its effects on pulse performances in places where the factor of on-saturable loss was 
not addressed. It is also appropriate to emphasise the description of MXene SA’s non-saturable loss 
in the study of MXene SAs. This parameter is crucial for describing the MXene SA's characteristics. 
Taking the example of V2CTx SAs, modulation depth decreased from nearly 90% down to below 30% 
as thickness of the film was increased from 11 nm to 116 nm [109]. On the other hand, the 73% non-
saturable absorption loss in 116 nm thickness of V2CTx may not be enough to produce an effective 
fibre laser. 

In addition to the significance of bandgap value, the most popular approach for the synthesis of 
MXene is the aqueous acid etching process. However, because the HF solution is extremely acidic, 
cautious handling methods and extra protection throughout the synthesis process are required. Since 
poor handling of the HF solution during the aqueous acid etching process—in the form of residue—
may also cause serious contamination, electrochemical exfoliation is a more practical and secure 
alternative to AAE. To create MXene with improved stability, electrochemical exfoliation techniques 
use a highly fluorinated electrolyte which is a non-aqueous ionic liquid [75]. Another option to 
consider when working with materials whose bandgap value and stability during laser operation are 
unaffected by the removal of surface-terminating metallic elements is mechanical exfoliation of MAX 
phase materials. The most popular fibre platform for fabricating the SA is tapered fibre. However, 
most papers only discussed the tapered fibre’s dimension without detailing on its adiabaticity that 
affects the dimension. For instance, a research study on the optimisation of strong evanescent fields 
and minimal loss tapered fibre with a short length would be fascinating [110]. 
It is scientifically advised in majority of these research works that the lifetime of MXene is increased 
if it is stored in restricted conditions, such as low temperature conditions as low as 5 °C to extend the 
lifetime [53]. Further research is required to improve the environmental stability and durability of 
synthetic MXene with its initial performances. MXene has to have better longevity and dependability 
so that it may be stored at room temperature. 

The uniformity of the SA material particles across the host material will be influenced by the rate 
of flow and the potential fall distance during drop-casting and solution-casting, particularly in the 
PVA fusion method of fabrication, necessitating extra caution to ensure constant and consistent 
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dropping or casting of aqueous solutions. Particularly in the process of creating SA thin films, the 
vaporisation phase requires the same amount of care to be provided in terms of keeping it at 
complete rest and maintaining a constant temperature. 
Concisely, this review paper describes the most recent advances in MAX phase, MXene, and SA 
synthesis for near- and mid-infrared pulsed-wave all-fibre lasers. Despite the fact that MAX phase 
and MXene are more recent than SWCNT, MWCNT, SWCNT, TMD, graphene, and other materials for 
SAs, their good nonlinear saturable absorption characteristics are extremely encouraging to function 
as a sustainable SA option. Table 1 contains a summary of all the research publications combined. 
The obstacles and difficulties encountered in the MAX phase SA synthesis field were then examined, 
and a number of recommendations were made to overcome these issues, demonstrating its potential 
for further development regarding this research topic. This study is anticipated to provide readers a 
better understanding of the most recent progress made by MXene or MAX phase SAs with mode-
locked fibre lasers and its prospects for future use in both academic and commercial research. Few 
MXene and MAX phase materials were suggested as the SA up to this point, but Ti3C2Tx is the MXene 
SA that has received the most investigation and experimentation. It was utilised without the terminal-
metal Tx being removed. Its strong coefficient of nonlinear absorption, amazing depth of modulation 
of even up to 50%, and bigger efficient nonlinear absorption coefficient compared to other 2D 
materials are the causes of this tight bandgap. Then, a discussion follows on Ti3C2Tx and other MXene 
synthesis as well as material characterisation.  

The aqueous acid etching approach is often utilised for the synthesis of MXene, according to the 
study. Following that, these MXene or MAX phases were used as SAs on the fibre platform in all-fibre 
ring cavity configuration. Microfiber has been demonstrated in several shapes, including tapered 
fibre, D-shaped fibre, and etched fibre, which have superior heat dissipation mechanisms and a 
higher threshold of optical damage. These SA materials' nonlinear saturable absorption capabilities 
were then studied using either twin-detector or Z-scan measurement techniques. Based on these 
findings, the modulation depth and saturation intensity of each SA were determined. Finally, above 
mentioned SAs were inserted into the all-fibre laser cavity to give near-infrared passive mode-locking. 
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