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This paper considers the problem of task allocation where the goal is to find a coalition 
of UAVs (agents) to complete on-farm agricultural tasks. In this study, Ant Colony 
Optimization (ACO) algorithm is employed to find the best coalition of agents. The 
performance of the basic ACO algorithm for solving task allocation is improved by 
modifying the efficiency factor. In the proposed algorithm, the efficiency factor is 
defined as a function that relates not only to the capability of the agents and the 
distance between the agents, but also to the distance between the agents and the 
target. To solve the task allocation problem, the capability list of the agents was also 
adjusted using common UAV capabilities in agricultural application. Simulation results 
showed that the proposed ACO algorithm with the modified efficiency factor improved 
the performance of basic ACO algorithm for solving task allocation problem in terms of 
the average total travel cost for each agent. The optimum number of ants and agents in 
the proposed algorithm was also analysed for robust performance. Simulation results 
revealed that the addition of the numbers of agents and ants increases the average 
efficiency of the algorithm. In this study, we have also added a function to calculate the 
system capability utilization. By employing such a function, simulation results show that 
the total resource used by the agents and total communication cost can be optimized. 
In addition, a simple experiment using five ground robots with a centralized control was 
also carried out as a proof of concept for the proposed algorithm.  
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1. Introduction 
 

Task allocation can be considered a problem of allocating a group of agents to tasks [1-4]. One 
real-world scenario where task allocation arises is the allocation of UAVs to perform on-farm 
agricultural tasks. In this case, each UAV in the multi-UAV system possesses different capabilities, and 
tasks can only be completed using specific combinations of these capabilities. One of the algorithms 
that can be used to address the task allocation problem with a group of agents is Ant Colony 
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Optimization (ACO) [3]. ACO was initially proposed by Marco Dorigo for combinatorial optimization 
problems [5,6]. In the context of task allocation, ACO has been applied in various cases, such as path 
planning for autonomous vehicles [7], assignment of patterns for spray paint robots [8], job allocation 
to processors [9], and multi-robot task allocation [3]. Particularly in Wang et al., [3], the ACO 
algorithm demonstrated the ability to effectively handle task allocation problems in multi-robot 
systems due to its stability and efficiency. 

Another relevant study that considered the problem of task allocation in a multi-agent system 
can be found in Lu et al., [10]. The study's objective in Lu et al., [10] is to find the best agent coalition 
to tackle a complex task, taking into account the agents' capabilities and communication costs. The 
study in [10] modified the original ACO algorithm by adding an efficiency factor, which is a function 
that relates to the agent capabilities and the total distance between agents. By integrating the 
efficiency factor with the basic ACO algorithm, the modified algorithm could find the best agent 
coalition within a relatively short time [10]. Simulation results demonstrated that the algorithm in Lu 
et al., [10] outperforms the Forward Optimal Heuristic Algorithm. While the algorithm in [10] has 
demonstrated relatively good performance in several cases, it is originally designed to address a 
general task allocation problem. Furthermore, the original ACO algorithm for task allocation in [10], 
has also not considered some real-world factors such as the limited number of agents, the limited 
capability or function of the agents, the total power available on the system, and the system’s overall 
operational costs. Therefore, there is a high probability that the chosen agent coalition has excessive 
wasted resources, which might not be desirable in real-world implementation. 

To address the aforementioned problem, this study adopts and further modifies the ACO 
algorithm proposed in Lu et al., [10] to solve the task allocation problem in multi-UAV systems used 
in agriculture. This study considers a task allocation problem where the goal is to find the best 
coalition of agents to solve a task [3,10-13]. A group of agents in this study is associated with a UAV 
team and the task is associated with the agricultural tasks that need to be completed. However, 
different from Lu et al., [10], the capabilities of the agents are modified based on the possible UAV 
capabilities in solving some real agricultural-related tasks [14-17]. To improve the performance of 
the algorithm in Lu et al., [10] for solving task allocation problem in agriculture, the efficiency factor 
is also modified. This is the main contribution of the paper. While the efficiency factor in Lu et al., 
[10] only considers the distance between agents, the distance between the agent and the task needs 
to also be considered to allocate the task effectively. Thus, the efficiency factor in this study includes 
the distance between the agent and the task. 

Simulations were conducted to demonstrate that this modified ACO algorithm can improve the 
performance of the basic ACO algorithms for solving task allocation problems, particularly in terms 
of the average total travel cost for each agent. The impact of varying different numbers of agents for 
solving the problem was also analysed. Furthermore, to increase the capability utilization of each 
agent, an additional function to calculate the system capability utilization was added to the ACO. As 
a proof of concept for the proposed algorithm, a simple experiment using five ground robots with a 
centralized control was carried out. 

This paper is arranged in four sections. Section II describes an overview of Ant Colony 
Optimization algorithm and the modified ACO algorithm proposed in this study. Section III presents 
the results and discussions, starting from the simulation setup for task allocation problem in 
agriculture and followed by the simulation results. This section also describes the implementation of 
the modified ACO using real robots. Finally, section IV concludes the findings from this study and 
highlight the future research direction. 
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2. Methodology  
2.1 Ant Colony Optimization for Task Allocation Problem 

 
The idea of the ant colony algorithm is inspired by the behaviour of ants when searching for food 

[11]. The ants collaborate together to construct a solution by establishing an indirect communication 
mechanism called stigmergy. To guide other ants to the source of food, each ant deposits a chemical 
substance called pheromone along the travelled path (pheromone trails). Over time, these 
pheromone trails evaporate.  The path that is constantly travelled by the ants, will have higher 
pheromone concentration compared to the paths that are rarely travelled by the ants. The paths 
frequently travelled by the ants will have a higher pheromone concentration compared to less-
travelled paths. This mechanism is expected to lead most ants to eventually follow the shortest path 
to reach the food source. ACO adopts this behaviour to solve optimization problems.  In ACO, the 
ants travelled along the graph to find the optimum solution [3]. The first problem that was solved 
utilizing ACO was Traveling Salesman Problem (TSP) [11]. The goal of TSP is to find the shortest tour 
for the salesman to visit a set of cities. In ACO, each ant represents an individual salesman. Each ant 
travels from the starting city, visits all other cities once and only once, and then returns to the starting 
city.  

Another problem that can be solved using ACO algorithm is task allocation problem as described 
by Lu et al., [10]. The task allocation problem in Lu et al., [10] is defined as a problem of finding a 
coalition of agents to complete a given task, v. The task v needs a number of agent capabilities that 
should be fulfilled by the agent coalition. Let a population of agents be denoted as R = {r1, r2, ..., ri, ..., 
rI}, where each agent in the population can have one or more capabilities. Each agent has certain 
properties that are represented by the tuple {RK, RL} where RK represents its capabilities and RL 
represents its location in a two-dimensional space [x, y]. The agents’ capabilities are represented in 
a multi-agent capability matrix MRK where each row element RKi = [rkij] indicates whether agent ri 
has capability kj. The values of rkij reflects a particular agent capability, as well as the size of the 

capabilities, where rkij ∈ [0, 10]. For example, MRK = "
0 4
8 0
3 5

					
2 6 1
3 7 0
0 9 10

. indicates that there are 3 

agents and 5 capabilities where the first, second and third rows of MRK indicates the capabilities of 
agent 1, 2, and 3 with respect to capability 1, 2, 3, 4, and 5. 

Suppose a task v needs N number of capabilities, where n ∈ [1, J]. A collection of capabilities that 
are required to complete v is Kv = {k1, k2, ... kN}. A collection of agents with capability kj to complete 
v is denoted as 𝑅!

"! . A group of agents which has the capabilities that v requires is thus defined as Rv 
= {𝑟"", 𝑟"#, ..., 𝑟"$}, where 𝑟"" ∈ 𝑅!

"", 𝑟"# ∈ 𝑅!
"#, ...,  𝑟"$ ∈ 𝑅!

"$  as shown in Figure 1. 
 

 
Fig. 1. The process of task allocation in [10] 
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Using the mathematical notations mentioned above, the ACO algorithm can be applied for solving 
a task allocation problem in Lu et al., [10]. In TSP, a city is simulated as a node and a salesman is 
simulated as an ant, while in Lu et al., [10], a node is a group of agents that have the same capabilities 
and the ants are used to find the optimal agent coalition. Let a colony of ants in a system be denoted 
by S = {1, 2, 3, ... m, ..., M}, where M is a total number of ants. Each ant finds a coalition of agents by 
choosing the node to travel based on a transition probability. Here, the node is the agent to be chosen 
to solve task v from a group of agents with the same capability kj, 𝑅!

"! . The ants are initially placed in 
the agents that are listed in the first node group, that is, 𝑅!

"". The transition probability of ant m to 
travel from node a to node b at time t is defined as follows [10]:  

 

𝑝#$% (𝑡) = "
['%&())]'[,%&())](

∑ ['%)())]'[,%)())]()	⊂	%,,-./01
; 	𝑏 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑%,

0; 			otherwise,
   (1) 

 
where τab(t) is the amount of pheromone in path that connects node a to b; α is the relative 
importance of the pheromone trail which reflects the relative importance of τab(t); 𝜂#$(t) is the 
heuristic function representing the desirability of state transition from a to b; and β is the relative 
importance of the heuristic function  𝜂#$(t). In Eq. (1), allowed m is all nodes that can be visited by ant 
m, that is, the agents with the next capability required by the task. Given [kc, kd] denotes two 
neighbouring capabilities, the heuristic function, 𝜂#$(𝑡), was defined in Lu et al., [10] as follows: 

 

𝜂#$(𝑡) = 𝜂#$(𝑡) =
.",3/"%30.",0/"&0

.#1%&
= .",3/"%30.",0/"&0

.#|/3%4	/3&|
.    (2) 

 
In Eq. (2), 𝜔6,8, 𝜔6,1 ∈ [0,1] are the capability weighting factors that represent the importance of 

capability kc and kd respectively to complete the task. As mentioned earlier, 𝑟𝑘#8  indicates the size of 
capability kc for agent ra and 𝑟𝑘$1  indicates the size of capability kd for agent rb. In Eq. (2), the distance 
between the two agents is 𝑑#$ =	 |𝑟𝑙# −	𝑟𝑙$| = 	 |𝑥6 −	𝑥9| +	 |𝑦6 −	𝑦9|  [10]. Here, 𝑟𝑙# is the 
coordinate of agent a, (x1, y1) and 𝑟𝑙$ is the coordinate of agent b, (x2, y2). The notation 𝜔9 is the 
weighting factor for the distance. In summary, the numerator in Eq. (2) denotes the total capabilities 
of agents and the denominator is the total distance/communication cost between agents. 

A tour is finished when all ants have reached the last node group, 𝑅!
"$. The pheromone on each 

path is then updated after a tour by Eq. (3):  
 

𝜏#$(𝑡 + 1) = (1 − 𝜌)𝜏#$(𝑡) + ∑ ∆𝜏#$% (𝑡):
%;6 ,    (3) 

 
where ρ is the pheromone evaporation coefficient and ∆𝜏#$%  is the amount of pheromone deposited 
by the mth ant.  In this study, the equation for ∆𝜏#$%  is calculated based on [10] as follows: 

 

∆𝜏#$% (𝑡) = V𝑄𝜀%	; if	ant	𝑚	uses	agents	𝑎	and	𝑏	in	its	path,	0	; otherwise,																																																		     (4) 

 
where Q is a constant that indicates the pheromone strength and 𝜀% is the efficiency factor of the 
path travelled by the mth ant. The efficiency factor 𝜀 is defined as follows [10]:  

 

𝜀 =
∑ .",!
$
!4" /"5!
∑ .#$6"
!4" 1!

.     (5) 
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In Eq. (5), the numerator is the sum of the agent capabilities, rkij, that can complete the task; 
𝜔6,< ∈ [0,1] is the capability weighting factor that represents the importance of capability kj to 
complete the task; N is the number of capabilities required to complete the task. Note that each ant 
only chooses one agent (one node) to complete one capability for a task. The denominator represents 
the communication cost generated to complete the task; dj is the path length between two adjacent 
nodes and 𝜔9 is the weighting factor to approximate the communication cost. If the termination 
criteria have been met, a group of agents with the highest efficiency 𝜀 will be chosen as the best 
agent coalition to complete the task. 

 
2.2 First Modification: Consideration of the Distance between the Agent and the Task  

 
This section describes the improved Ant Colony Optimization for agricultural application. It is 

assumed that there is only one task and its location is known by the agents. In this case, a group of 
agents in ACO represents the UAVs, while the task represents the field. The aim of the system is to 
find a coalition of UAVs with certain capabilities to be allocated to the paddy field. It is also assumed 
that the system knows the capabilities that are needed by the paddy field.  

By considering the above scenario, the ACO algorithm can then be adopted for solving task 
allocation proposed by Lu et al., [10]. However, in order to solve the problem in agriculture, a 
modification to the algorithm is performed. In this study, the same ACO algorithm proposed in Lu et 
al., [10] is used to calculate the transition probability in Eq. (1) and update the pheromone intensity 
as defined in Eq. (3) and Eq. (4).  

Compared to Lu et al., [10], the proposed algorithm, however, differs on the heuristic function 
(Eq. (2)) and the efficiency factor (Eq. (5)). Thus, these are the contributions of the paper. In 
agricultural application, the distance between the agent (UAV) and the task (field) is a critical factor. 
This is because the distance between the agent and the task may relate to the cost and power needed 
by the UAV to reach the field. Because of this reason, the heuristic function in Eq. (2), 𝜂#$(𝑡), is 
defined in this study as in the following equation:  

 

𝜂#$(𝑡) =
.",3/"%30.",0/"&0
.#1%&0.7(1%801&8)

,    (6) 

 
where 𝑑#$ denotes the distance between agent a and agent b; 𝑑#! denotes the distance between 
agent a and task v; and 𝑑$! denotes the distance between agent b and task v. As mentioned earlier,  
𝜔6,8, 𝜔6,1 ∈ [0,1] are the capability weighting factors that represent the importance of capability kc 
and kd respectively to complete the task; whereas 𝜔9 and 𝜔= are the weighting factors for the 
distance between agents and the distance between agent and task, respectively. Furthermore, the 
efficiency factor in Eq. (5) is modified as follows: 

 

𝜀 =
∑ .",!
$
!4" /"5!

∑ .#$6"
!4" 1!0∑ .7$

!4" 19!8
.    (7) 

 
Note that different from Equation 5, we add the component ∑ 𝜔=>

<;6 𝑑/!! is added where 𝜔= is 
the weighting factor for the distance between agent and task and 𝑑/!! is the distance between agent 
𝑟<  and task v. This modification implies that efficiency increases with the decrease of total distance, 
which indicates that a shorter distance between the agents and the task is preferred. 
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In this study, the agent capabilities are also modified using common UAV capabilities in solving 
agricultural-related tasks as mentioned in Grammatikis et al., [14] and Kim et al., [15]. Table 1 shows 
the capabilities of the agents represented as binary numbers, i.e., 0 or 1, where 0 denotes incapability 
and 1 denotes capability. 

 
Table 1 
Agent capabilities in agricultural application 

Capabilities of Agent  
Soil monitoring k1 
Crop health monitoring (RGB camera) k2 
Crop Nutrient Monitoring (multispectral camera) k3 
Pest monitoring k4 
Weeding surveillance k5 
Yield and Biomass Analysis k6 
Irrigation system monitoring k7 
Fertilizing k8 
Seeding k9 
Pesticide spraying k10 

 
A step-by-step process of the first proposed modification of ACO algorithm is shown in Figure 2. 

The dotted lines in Figure 2 shows the new contributions that are made for solving task allocation 
problem in agricultural application. When the termination criteria are met, a group of agents with 
maximum efficiency 𝜀 is chosen as the best agent coalition to complete the task. 

 
2.3 Second Modification: Consideration of the Actual Capability Utilization to Perform the Task 

 
In the original ACO algorithm for task allocation proposed by Lu et al., [10], some real-world 

factors are not yet considered, e.g., the limited number of agents, the limited capability or function 
of the agents, the total power available on the system, and the system’s overall operational costs. 
Therefore, there is a high probability that the chosen agent coalition has too many wasted resources, 
which is not desirable in any real-world implementation. 

In order to reduce the wasted/unused agents’ capabilities and maximizing the system’s overall 
performance, an additional function to calculate the system capability utilization is added. The 
function is adopted from the capacity utilization equation [18] as in Eq. (8). The equation shows that 
the total system utilization is a ratio between the actual resources that are utilized by the system and 
the total resources that are available in the system. 

 
Utilization =	 actual resource used

total resource available
× 100%    (8) 

 
In the proposed algorithm, the resource utilization is translated as the ratio between number of 

agent capabilities that are utilized to complete a certain task and the total agent capabilities. The 
greater the capability utilization, the more efficient the implementation in a multi-robot system. In 
this study, a formula based on Eq. (8) is added to calculate the percentage of capability utilization by 
one individual agent, 𝜑?, as follows: 
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Fig. 2. Flowchart of ACO for task allocation in agricultural 
application 

 
where 𝜑?  is the capability utilization by agent i, 𝐶?! is the number of capabilities agent i used to 
execute the task v, and 𝐶?  is the total number of capabilities of agent i.  
 
𝜑?	 =

	@58
@5

 ,                  (9) 

 
The total capability utilization for a coalition of agents to execute task v can be calculated by 

combining each capability values of the agents in the coalition, as in the following equation: 
 

𝜑ABCD	 =
6
>:
	 ∑ 𝜑??EF  ,  (10) 

 
where 𝜑task is the total resource utilization to execute a task, 𝑁F  is the number of chosen agents in 
the coalition, and K is the set of chosen agents in the coalition. 

The capability utilization in Eq. (10) is then multiplied to the efficiency formulation in Eq. (7) as 
follows: 

 

𝜀 =
∑ .",!
$
!4" /"5!

∑ .#$6"
!4" 1!0∑ .7$

!4" 19!8
	× φtask .       (11) 
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3. Results and Discussion 
3.1. Evaluation for the First Modification of Ant Colony Optimization 

 
The proposed ACO algorithm in this study is implemented using Matlab version 9.4.0 (R2018a). 

To evaluate the performance of the proposed algorithm, the proposed algorithm is compared with 
the ACO algorithm proposed by Lu et al., [10]. The task allocation problem in this paper is simulated 
in a two-dimensional area. Following Lu et al., [10], the size of the area is in the range of 0 < x ≤ 30 
and 0 < y ≤ 30. In this study, only one task/field is considered. The parameters used in this paper is 
shown in Table 2. In this first modification, we perform two simulations as described in the following 
subsections. 

 
Table 2  
ACO Parameters 
Parameters Symbol ACO in Lu et al., [10] Proposed ACO 
Importance of the pheromone trail  α 0.9 0.9 
Importance of the heuristic function   β 2.2 2.2 
Pheromone evaporation coefficient ρ 0.5 0.5 
Number of ants M 80 80 
Pheromone strength Q 1 1 
Maximum ACO iteration Ncmax 60 60 
Capability weighting factor 𝜔; [0, 1] [0, 1] 
Weighting factor for the communication cost 𝜔< 0.1 0.1 
Weighting factor for the distance between agent and task 𝜔= 0.1 0.1 

 
3.1.1 Simulation 1 

 
This simulation is designed to evaluate the performance of the three algorithms in terms of the 

total travel cost. This performance metric is calculated after the stopping criteria for the algorithm 
have been reached. The total travel cost is defined as:  

 
𝐷 =	∑ 𝑑?!

>:
?;6  ,  (12) 

 
where NK is the number of agents in an agent coalition, and div is the distance between the agent i 
and the task v. The average travel cost of each agent is also calculated, defined as: 
 
𝐷G =	

H
>:

.  (13) 

 
The simulation was repeated 50 times with different capabilities required by the task. The 

position of the agents and the tasks are initialized randomly for each simulation. We compared the 
performance of the proposed algorithm with the ACO in [10] in terms of the average total travel cost 
and average travel cost of each agent. The performance comparisons of the algorithms in Simulation 
1 are shown in Table 3. Table 3 shows that the performance of the ACO in Lu et al., [10] and the 
modified ACO is relatively similar in terms of the total travel cost. It can be observed in Table 3 that 
the average total travel costs for ACO in Lu et al., [10] and the modified ACO are 37.28±5.714 and 
32.6±5.642 respectively. There is also no significant difference in the average percentage of resources 
used for both the algorithms. However, significant different results are obtained for the average total 
travel cost for each agent.  
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The average total travel cost for each agent for the ACO in Lu et al., [10] is 15.8 ± 1.782, while 
the total travel cost for each agent in the modified ACO is only 11.444±1.373. This result shows that, 
on average, each agent in the coalition for the modified ACO algorithm has lower travel cost. This 
result is preferable in the considered problem, as it is expected that the agent should share the load 
of the task more evenly. Also, by assuming that each agent has the same travel speed, it is expected 
that the agent can reach the task faster by having lower travel cost compared to the benchmark 
algorithm. 
 

Table 3 
Performance comparison of basic ACO, ACO in Lu et al., [10], and modified ACO 
 Average Total Travel Cost Average Travel Cost of Each Agent 
ACO in Lu et al., [10] 37.28 ±	5.714 15.8 	± 1.782 
Modified ACO 32.6	±	5.642 2.444 ±	1.373 

 
3.1.2 Simulation 2 

 
The second simulation is conducted to observe the effect of varying the number of ants and the 

number of agents. The performance of the algorithm is evaluated based on the efficiency factor 
defined in Eq. (7). In this simulation, other variables that are not investigated are set to be constant. 
The simulation is repeated 50 times with different random seeds to have sufficient statistical results. 
For both simulations, ten agents are employed with binary MRK shown in Table 4. 

 
Table 4 
Multi-agent capabilities matrix (MRK) 
 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 
r1 0 1 1 0 1 0 0 1 0 0 
r2 0 0 0 0 1 1 0 0 1 0 
r3 1 0 1 0 0 0 0 1 1 0 
r4 0 1 1 1 0 0 0 1 0 1 
r5 0 0 1 0 0 1 1 1 0 1 
r6 0 0 1 0 1 0 0 1 1 1 
r7 0 0 0 0 1 0 1 0 1 0 
r8 1 0 1 0 1 0 0 0 1 0 
r9 0 1 1 1 1 0 0 1 1 0 
r10 0 1 0 0 1 0 1 0 1 1 

 
We also investigated the effect of varying the number of ants and agents in the modified ACO 

algorithm. Figure 3(a) shows the effect of varying the number of ants in the modified ACO algorithm 
at the 95% confidence interval.  It can be seen from Figure 3(a) that by increasing the number of ants, 
the average efficiency of the modified ACO algorithm gradually increases. If the number of ants is too 
small, the modified ACO may not be able to reach the optimal solution.  Otherwise, if the number of 
ants is too large, it will also increase the computational time. Nevertheless, increasing the number of 
ants means that more ants explore the candidate solutions, so the algorithm has a higher chance of 
finding the best solution. Furthermore, Figure 3(a) shows that when the number of ants is increased 
from 80 to 100, there is no significant difference in the average efficiency. This implies that at a 
certain point there is no significant impact on increasing the number of ants to the efficiency factor. 
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(a) 

 

 
(b) 

Fig. 3. The effect of varying the number of ants and the 
number of agents in terms of average efficiency 

 
Figure 3(b) shows the effect of varying the number of agents in the modified ACO. In general, 

there is a trend that the average efficiency factor increases with the increase of the number of agents 
at the 95% confidence interval. This means that the increase of the number of agents will positively 
affect the system performance. If the number of agents is large enough there is a higher chance that 
the capabilities needed by the task can be fulfilled by the agent coalition. However, note that this 
may also come to the problem of having a high computational cost. It can be seen in Figure 3(b) that 
when the number of agents is 40 there is no significant improvement in the efficiency factor. Thus, 
choosing a moderate number of agents is preferable in this case as at certain point there is no 
significant impact on increasing the number of agents to the efficiency factor. 

 
3.2 Second Modification of Ant Colony Optimization  

 
In this study, two scenarios are simulated to evaluate the performance of the second modification 

and the first modification of ACO algorithm (later referred as ACO-S). In Scenario 1, the simulations 
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were repeated 30 times using a various set of capabilities needed by the task. Simulations for 
Scenario 2, however, were also repeated 30 times but with a various set of robot positions.  

The simulations were conducted using 10 virtual robots, 10 types of robot capabilities, and one 
target. Both simulations of the two scenarios use a Cartesian coordinate dimension space of 50×50 
centimeters as the simulation area. In the two scenarios, the same target position (X = 30, Y = 25) and 
the same agent capability matrix (Table 1), referred as Matrix Agent Capabilities, were used for all 
test data. Here, the Matrix Agent Capabilities (MAC) is the matrix that lists all capabilities possessed 
by each robot. In this study, it is assumed that no robots have the same capabilities, meaning that 
the robots in the multi-robot system are assumed to be heterogeneous. Following Sriatun et al., [19], 
each capability value in this study is either set to be 0 when the robot does not have certain capability 
or 1 when the robot has the capability. For example, as can be seen in Table 5, robot R1 has the 
following capabilities: C3, C5, C8, and C10. 

 
Table 5 
Matrix Agent Capabilities (MAC) of 10 
robots for testing scenarios 

Robot Capabilities 
[C1,C2,C3,C4,C5,C6,C7,C8,C9,C10] a 

R1 [0, 0, 1, 0, 1, 0, 0, 1, 0, 1] 
R2 [1, 0, 1, 0, 0, 1, 0, 0, 1, 1] 
R3 [0, 1, 0, 0, 0, 0, 0, 1, 1, 1] 
R4 [0, 0, 1, 0, 0, 1, 0, 0, 0, 0] 
R5 [1, 1, 0, 0, 1, 0, 1, 0, 0, 0] 
R6 [1, 1, 0, 0, 1, 0, 0, 0, 1, 1] 
R7 [0, 0, 1, 1, 1, 0, 1, 1, 0, 0] 
R8 [1, 1, 1, 1, 0, 0, 1, 1, 0, 0] 
R9 [0, 0, 0, 1, 0, 1, 1, 1, 1, 0] 
R10 [0, 1, 0, 1, 0, 0, 1, 0, 0, 0] 

a Capabilities that are assumed owned by each 
robot 

 
3.2.1 Scenario 1 

 
The first scenario is designed to see which algorithm produces the most optimal robot coalition 

(i.e., the coalition that has the highest percentage of total resource used). In the first scenario, the 
positions of the robots are depicted in Table 6. In this scenario, 30 simulation data is used with a 
variety of set capabilities required by the task. 

 
Table 6  
Position data of 10 virtual robots for Scenario 1 

Robot R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 
X Position 10 20 30 40 50 50 40 30 20 10 
Y Position 35 50 50 50 35 15 0 0 0 15 

 
The simulation results of the two algorithms in the first scenario are measured based on the 

percentage of total average resource used, the total average communication costs between robots 
in the best robot coalition, and the average total distance between the robots’ position in the 
coalition to the target. Figures 4 and 5 show the simulation results for Scenario 1. 
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Fig. 4. Total Average of resource-used in the multi-
robot systems for Scenario 1 

 
It can be seen from Figure 4 that, by using a 95% confidence interval, the proposed ACO algorithm 

produces a higher total average resource used compared to the ACO-S algorithm. In terms of the 
total average communication cost and travel distance, the performance of the proposed ACO 
algorithm and the ACO-S algorithm is not statistically significant (see Figure 5).  
 

 
Fig. 5. Total average communication cost and travel distance for Scenario 1 

 
3.2.2 Scenario 2 

 
The second scenario is conducted to see the performance of the proposed algorithm in terms of 

the total communication costs used by the robots and the total distance between the robots to the 
task. In this scenario, 30 simulation data were used with different robot positions that were manually 
determined for the first four test data and randomly generated for the rest of the data. The target 
position and the robot capabilities (Table 4) are set following the first scenario. Specifically for this 
scenario, the capabilities required by the task are set as C1, C3, C4, C7, and C9. The simulation results 
from the second scenario can be seen in Figure 6 and Figure 7. 
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Fig. 6. Total Average resource used in the multi robot 
systems for Scenario 2 

 
In Figure 6, it can be seen that the percentage of total average resource used of the proposed 

ACO algorithm is about 10% higher than ACO-S. Using a 95% confidence interval, it can be concluded 
that the proposed ACO has produced a significantly higher total average of resource used than the 
ACO-S algorithm. Furthermore, it can be seen from Figure 7 that the total average communication 
cost from the proposed ACO is also significantly lower than the ACO-S algorithm. 
 

 
Fig. 7. Total average communication cost and travel distance from Scenario 2 

 
3.3 Overall Evaluation 

 
Table 7 summarizes the overall simulation results. It can be seen from Table 7 that the proposed 

ACO algorithm produced a relatively higher average of total resource used, which is 10.62% higher 
than ACO-S in the first scenario and 10.11% higher in the second scenario. The proposed ACO 
algorithm has also succeeded in reducing the total average communication costs between the robots 
by ±20% and ±52% in Scenario 1 and Scenario 2 respectively. Simulation results also indicate that the 
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average total travel distance obtained by the proposed ACO algorithm has been reduced by ±12% 
and ±10% in Scenario 1 and Scenario 2 respectively. 
 

Table 3  
Simulation results summary 
 ACO-S Second modification of ACO 

Resource used (%) Scenario 1 50.70 ± 5.40 61.32 ± 3.47 
Scenario 2 41.18 ± 2.83 51.29 ± 3.07 

Communication costs (cm) 
Scenario 1 40.45 ± 14.68 32.29 ± 8.76 
Scenario 2 38.32 ± 12.28 18.04 ± 6.34 

Travel distance (cm) 
Scenario 1 58.46 ± 7.39 51.07 ± 5.04 
Scenario 2 36.61 ± 5.26 2.89 ± 4.42 

 
3.4 The Implementation on Multi-Robot System 

 
To see how the proposed algorithm can be implemented in the real world, the algorithm is also 

tested with real robots. Figure 8 shows the design of multi-robot implementation for this study. It 
can be seen that the robots in the multi-robot system will first send the information of their position 
and capabilities to the server via a Wi-Fi network. The robots will then go idle while the server begins 
to decide the best coalition of robots to execute the task using the proposed ACO algorithm. When 
the server has found the best coalition of robots, the server sends this command to the multi-robot 
system. The robots that are chosen to by the server to execute the task will then move towards the 
position of the task. On the other hand, robots that are not chosen will stay in their positions. 

 

 
Fig. 8. The design of multi-robot system implementation 

 
The communication between the server and the robots (as clients) are set in parallel to make the 

process more efficient. In this study, the computation of the proposed ACO algorithm is conducted 
in the server. Figure 9 (a) shows the initial setting for the experiment using five gripper robots as the 
clients and a target that is marked with black tape. In this experiment, the robots have successfully 
communicated with the server. It can be observed that the robots chosen by the proposed ACO 
algorithm have moved towards the target as expected. Figure 9 (b) shows the results after the 
proposed ACO algorithm has been executed. After the robots receive the information of the best 
coalition from the server, the chosen robots are able to move forward to the location of the target, 
while the others remain in their initial position. 
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(a) (b) 

Fig. 9. Experiment of multi-robot system 
 
4. Conclusion 

 
This study has proposed a modification of Ant Colony Optimization (ACO) algorithm for task 

allocation problem in agriculture. Two modifications on the algorithm were proposed, i.e.,  
 

i. Consideration of the Distance between the Agent and the Task 
ii. Consideration of the Actual Capability Utilization to Perform the Task. Simulation Results 

have shown that, by employing the first modification, the average total travel cost of each 
agent can be reduced compared to the benchmark algorithm. By performing the second 
modification, it was found that in some scenarios, the algorithm is more optimal in terms 
of the total average resource used and the total communication cost compared to the 
ACO algorithm that we have modified earlier.  

 
To further examine the effectiveness of the algorithms, the proposed ACO algorithm can be 

compared with other optimization techniques such as Genetic Algorithm and Constrained Particle 
Swarm Optimization. For future research, the robots can also be further developed to move in 
parallel and integrated with obstacle avoidance algorithms to become more adaptive. Future 
research directions would be to develop these features so that the systems can be implemented to 
solve wider task allocation problems situated in dynamic and uncertain environments. 
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