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The Internet of Things (IoT) is a rapidly growing field that connects various devices and 
systems to the internet, enabling them to communicate and share data. However, this 
increased connectivity also makes IoT networks vulnerable to various types of attacks, 
one of which is the wormhole attack. A wormhole attack is a type of security threat in 
which an attacker creates a tunnel between two or more nodes in an IoT network, 
allowing the attacker to intercept, modify or inject malicious packets into the network. 
This can lead to serious security issues such as unauthorized access, data leakage and 
network disruption. The problem of wormhole attack detection in IoT networks is a 
crucial issue that must be addressed. Traditional security methods, such as firewalls and 
intrusion detection systems, may not be effective in detecting and preventing 
wormhole attacks, as these attacks are difficult to detect due to the stealthy nature of 
the attacker. Therefore, there is a need for new and more advanced methods for 
wormhole attack detection in IoT networks, such as deep learning approaches. The goal 
of this paper is to use a deep learning approach to detect wormhole attacks in IoT 
networks and to compare the performance of this approach with traditional machine 
learning methods. This research paper presents a deep learning approach for wormhole 
attack detection in Internet of Things (IoT) networks using Long Short-Term Memory 
(LSTM) model. The proposed method is compared with traditional machine learning 
techniques which are Decision Tree, and Naive Bayes. The performance of the proposed 
approach is evaluated using a malware dataset for predicting the type of wormhole 
attack (WHR). The evaluation metrics used in this study include accuracy, F1 score, 
precision, recall and confusion matrix. The implementation of the proposed approach 
is performed using Python programming and the Anaconda Navigator (Spyder 
notebook) tool. The results show that the proposed LSTM-based approach outperforms 
traditional machine learning techniques in terms of accuracy and F1 score which is 99% 
while Decision Tree Model accuracy is 94% and Naïve Bayes Model scores 93%, the 
output results of this paper demonstrating the effectiveness of deep learning in 
wormhole attack detection in IoT networks.  
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1. Introduction 
 

The Internet of Things (IoT) refers to the growing network of interconnected devices, sensors, 
and systems that are able to collect and share data. These devices can range from simple sensors to 
complex systems such as self-driving cars and industrial control systems. As the number of connected 
devices continues to grow, the security of IoT networks has become a critical concern (Paudel & 
Neupane) [1]. IoT networks are vulnerable to a variety of security threats, including unauthorized 
access, data breaches, and denial of service attacks. One particularly dangerous type of attack is the 
wormhole attack, in which an attacker creates a virtual tunnel through the network to intercept and 
manipulate data. This can have serious consequences, such as causing equipment failure or exposing 
sensitive information. 

To protect IoT networks from these types of attacks, various security methods have been 
developed, including intrusion detection systems (IDS), firewalls, and encryption. However, many of 
these solutions are designed for traditional internet applications and may not be suitable for resource 
constrained IoT networks. Furthermore, as IoT technology continues to evolve and new types of 
attacks emerge, it is important to continue researching and developing new security solutions to keep 
IoT networks safe (www.oracle.com/internet-of-things). AODV (Ad hoc On-Demand Distance Vector) 
and TCP (Transmission Control Protocol) are both networking protocols that are used in different 
types of networks. AODV is a routing protocol used in mobile ad hoc networks (MANETs) while TCP 
is a transport protocol used in traditional internet networks. 

In terms of security, both AODV and TCP have their own vulnerabilities and potential attack 
vectors (Sobral et al.,) [2]. A wormhole attack is one such attack that can be launched against both 
AODV and TCP. A wormhole attack in AODV networks involves creating a tunnel between two 
malicious nodes, through which the attacker can intercept and manipulate network traffic. This can 
allow the attacker to control the routing of data packets and disrupt the normal operation of the 
network (Ma et al.,) [3].  

In TCP networks, a wormhole attack can be used to intercept and delay or reorder packets, 
disrupting the normal flow of data and potentially causing connection timeouts or other issues 
(Violettas et al.,) [4]. In fact, both AODV and TCP protocols have some vulnerabilities to wormhole 
attacks, and it is important to be aware of these threats and take steps to mitigate them in order to 
maintain the security of the network. 

Wormhole attacks in Internet of Things (IoT) networks are a serious security concern that can 
greatly impact the functionality and reliability of IoT systems. In a wormhole attack, an attacker 
creates a virtual tunnel, or wormhole, between two or more nodes in an IoT network. This tunnel 
allows the attacker to intercept and redirect network traffic, potentially allowing them to gain 
unauthorized access to sensitive information or disrupt communication within the network. This type 
of attack is particularly concerning in IoT networks due to the large number of connected devices and 
the lack of security measures in many IoT devices. As a result, it is essential to develop effective 
methods for detecting and mitigating wormhole attacks in IoT networks to ensure the security and 
reliability of these systems. 

Wormhole attacks in wireless networks can be classified based on the number of hidden and 
participating nodes. 

 
i. Single-hop wormhole attack: In this type of attack, the wormhole link is established 

between two directly visible nodes. The attacker creates a tunnel between these nodes, 
and all the packets that are transmitted through this tunnel are captured, modified, or 
dropped. 
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ii. Multi-hop wormhole attack: In this type of attack, the wormhole link is established 
between two or more hidden nodes. The attacker creates a tunnel between these nodes, 
and all the packets that are transmitted through this tunnel are captured, modified, or 
dropped. 

iii. Participating wormhole attack: In this type of attack, a hidden node participates in the 
normal communication of the network and establishes a wormhole link with another 
hidden node. The attacker can capture, modify, or drop the packets that are transmitted 
through this tunnel. 

 
Wormhole attacks involve the creation of a fake, shorter path within a network that disrupts the 

normal routing topology by manipulating the distance between nodes (Singh et al.,) [5]. The attack is 
carried out by two malicious nodes that establish a tunnel between them. The first node captures 
data packets from one location and sends them to the second node, which is located at a distant 
location. The second node then sends the data packets locally, allowing the attacker to intercept and 
manipulate network traffic. This type of attack can be easily launched by an attacker without any 
prior knowledge of the network and without disturbing any legitimate nodes. There are different 
modes of wormhole attacks, such as hidden and participation modes. Figure 1 illustrates the types 
of wormhole attacks. 

Figure 2 shows an example of a wormhole attack in a wireless sensor network (Hanif et al.,) [6]. 
In hidden modes, packet encapsulation and packet relay are included. In packet encapsulation, each 
data packet is sent through legal paths only. When one wormhole node receives a data packet, it 
encapsulates the packet to stop the increasing hop count. In packet relay mode, a wormhole attack 
can be launched using one node only. This malicious node relays packets of far-located nodes to make 
them neighbours. In participation modes, high-power transmission and out-of-band are included. In 
high-power transmission, a single malicious node with a high transmission capability attracts the data 
packets to follow its path. In the out-of-band mode, two malicious nodes make an out-of-band 
channel with high bandwidth to create a wormhole tunnel between them. 

 

 
Fig. 1. Types of Wormhole Attacks  

 
Fig. 2. An example of a wormhole attack in a wireless 
sensor network  

 
An intrusion detection system (IDS) that can detect wormhole attacks at an early stage has been 

designed in previous studies [7,8]. However, there is little evidence that intrusion detection systems 
(IDS) can effectively address the security needs of resource-constrained IoT networks at this time. 
Existing IDSs are used for either WSN (Wireless Sensor Network) or traditional internet applications. 
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Security in the Internet of Things and various security attacks on RPL and 6LoWPAN were covered in 
few research articles [9,10]. 

It's a challenging task to design a security solution for IoT networks due to many new protocols 
like DTLS (Choudhury et al.,) [11], IPsec (Raza et al.,) [12], 6LoWPAN (Verma & Ranga) [13], etc. 
involved in IoT communication. Wormhole attacks, sinkhole attacks, black hole attacks, selective 
forwarding attacks and other attacks have an adverse effect on the performance of the Internet of 
Things network [14-16]. Due to the introduction of many threats in the Internet of Things (IoT) 
networks, data communication in the Internet of Things is affected. Routing errors are an important 
factor that affects the security of data communication at the network layer of the IoT protocol stack. 
Wormhole attacks can cause routing errors, which in turn affect data communication in the Internet 
of Things. 

The Internet of Things (IoT) has witnessed several studies focusing on the use of deep learning 
techniques to detect wormhole attacks. For example, [17-19] have explored the application of deep 
learning in intrusion detection and wormhole attack detection in cyber-security networks, IoT 
networks, and RPL-based IoT, respectively. These studies have made valuable contributions to the 
field by leveraging deep learning methods to enhance the detection of wormhole attacks. However, 
despite these advancements, there remain challenges and opportunities for further research. This 
paper aims to address these challenges and present novel contributions to the detection of 
wormhole attacks in IoT networks, specifically in the context of environmental monitoring systems 
for agriculture. 

While existing studies have explored deep learning techniques, this research differentiates itself 
in several key aspects. Firstly, it focuses on the unique domain of environmental monitoring systems 
for agriculture, which requires tailored security solutions to protect critical agricultural infrastructure. 
The specific requirements and constraints of such systems, including limited resources and the need 
for high detection accuracy, present distinct challenges that need to be addressed. 

Secondly, this research aims to extend the current state-of-the-art by not only leveraging deep 
learning approaches but also comparing their performance with traditional machine learning 
techniques. By conducting a comprehensive evaluation and comparison, including Decision Tree and 
Naive Bayes models, this study aims to provide insights into the effectiveness of deep learning in 
detecting wormhole attacks compared to traditional machine learning methods. By conducting a 
thorough comparative analysis, we aim to demonstrate the superiority of deep learning approach, 
specifically the Long Short-Term Memory (LSTM) model in detecting wormhole attacks in IoT 
networks, particularly within the context of environmental monitoring systems for agriculture. 

Moreover, this research aims to address the limitations identified in previous studies. While the 
existing literature has demonstrated promising results, such as high accuracy rates achieved by 
machine learning algorithms, these studies have often been conducted on limited numbers of nodes 
or smaller datasets. This research seeks to overcome these limitations by working with larger 
numbers of nodes and datasets, thereby providing a more realistic evaluation of the proposed 
approach's effectiveness. 

By incorporating insights from the state-of-the-art studies while emphasizing the unique 
contributions and differentiating factors of this research, we lay the foundation for further 
exploration of wormhole attack detection in IoT networks, specifically in the domain of 
environmental monitoring systems for agriculture. The subsequent sections of this paper will delve 
into the methodology, experimental setup, and evaluation results to showcase the effectiveness and 
superiority of the proposed approach over existing methods. 

To conclude, this research makes a significant contribution to the field by tackling the unique 
challenges faced by environmental monitoring systems in agriculture. It offers a thorough evaluation 
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and comparison of deep learning and traditional machine learning methods for detecting wormhole 
attacks. By doing this, the study aims to enhance the accuracy and positive detection rate, particularly 
when dealing with larger datasets and a greater number of nodes. 
 
2. Literature Review 

 
The increasing use of the Internet of Things (IoT) has also led to an increase in malicious attacks, 

with the wormhole attack being a significant threat to the security of IoT networks. Intrusion 
Detection Systems (IDS) play a crucial role in detecting such attacks at an early stage. Existing IDSs 
have limitations, particularly when applied to resource-constrained IoT networks. As a result, 
researchers have explored various approaches, including deep learning techniques, to enhance the 
detection of wormhole attacks in IoT networks. This literature review aims to summarize and critically 
analyse the research papers related to detecting wormhole attacks using deep learning in 
environmental monitoring systems for agriculture. 

A comparison of the impacts of black-hole and wormhole attacks in Cloud MANET-enabled IoT 
for agricultural field monitoring, using the AODV routing protocol was conducted by Safdar Malik et 
al., [20]. The authors used the NS-3 simulator to measure performance metrics such as throughput, 
packet delivery ratio, end-to-end delay, and jitter. Their findings indicated that wormhole attacks 
have a more significant impact on network performance than black-hole attacks. 

Another study conducted by Azman et al., [21], evaluated three wireless sensor network routing 
protocols (AODV, OLSR, and OEG) for agriculture applications. They proposed a novel OEG routing 
protocol that uses an odd-even criterion to distribute traffic load and reduce congestion. The 
comparison based on metrics like packet delivery ratio, throughput, energy consumption, routing 
overhead, fairness index, and passive nodes showed that OEG outperforms AODV and OLSR, 
especially in large-sized networks. However, OEG has limitations regarding network fairness, which 
suggests opportunities for future improvements. 

Meddeb et al., [22] presented an anomaly-based approach to network traffic patterns, simulating 
three types of attacks, including packet loss attacks, route interruption attacks, and resource 
depletion attacks. They used a Support Vector Machine (SVM) classifier to transform their dataset 
into rules, achieving a high detection rate and efficient identification of Denial of Service (DoS) 
attacks. However, this study has room for improvement in identifying other types of attacks. 

The research by Geethapriya & Chawla [23] developed an IDS using deep learning techniques to 
detect malicious traffic in IoT networks. They found that using deep learning algorithms for detecting 
various types of attacks, including wormhole attacks, in IoT networks is both feasible and practical, 
achieving high precision and recall rates for different attack types. 

Another study conducted by Thiyagu et al., [24] proposed a Recurrent Neural Network (RNN) 
based on LSTM to detect wormhole attacks in IoT networks. The RNN was tested in the Cooja 
simulator and achieved high accuracy and F1 score of 96%, indicating its effectiveness in detecting 
wormhole attacks. 

Thamilarasu & Chawla [25] proposed an IDS based on Deep Belief Network to identify malicious 
routing traffic in IoT networks. The proposed IDS demonstrated efficient performance in both real 
and simulated data scenarios. 

Singh et al., [26] proposed a framework for detecting wormhole attacks in Wireless Sensor 
Networks using artificial intelligence techniques. However, the framework did not fully consider the 
computation and processing limitations of heterogeneous IoT networks. 
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A machine learning approach for identifying wormhole attacks in ad hoc networks introduced by 
Prasad et al., [27]. Their method showed promise in identifying wormhole attacks using critical 
features and a limited number of nodes in a network simulator. 

Bhosale et al., [28] presented a hybrid wormhole mitigation technique called RHE2WADI, which 
utilized hop count and Received Signal Strength Indicator (RSSI) data to detect malicious nodes in IoT 
networks. The proposed method achieved a high detection accuracy of up to 95%. 

Gulganwa & Jain [29] proposed an unsupervised learning-based method for detecting wormhole 
attacks using a weighted clustering algorithm. The proposed system collected data from the base 
station and formed network clusters without disrupting network operations, achieving an accuracy 
rate of 90%. 

Abdan & Seno [30] proposed several machines learning algorithms, including K-Nearest 
Neighbour (KNN), Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB), and 
Convolutional Neural Network (CNN) for classification of wormhole attacks in mobile ad-hoc 
networks (MANET). The results showed varied accuracy for different methods, indicating the 
potential of different techniques for detecting wormhole attacks. 

The literature review highlights the efforts made by researchers to develop effective intrusion 
detection systems for detecting wormhole attacks in IoT networks, particularly in the context of 
environmental monitoring systems for agriculture. The use of deep learning techniques and other 
machine learning algorithms has shown promising results, achieving high detection rates and 
accuracy. However, there is still room for improvement, especially regarding the adaptability of these 
methods to resource-constrained IoT networks. Future research should focus on refining the existing 
techniques to address the unique security challenges posed by IoT environments in agriculture. 
 
3. Methodology 
3.1 Research Framework 

 
This research paper focuses on detecting wormhole attacks in IoT network. It consists of three 

phases:  
 

i. analysis of wormhole attack in the AODV and TCP routing protocols 
ii. design and development of detection models using dataset selection, pre-processing, and 

coding 
iii. implementation and analysis of the accuracy of the Decision tree model, Naive Bayes 

model, and LSTM model. The results are used to evaluate the performance of the models. 
The research framework is shown in Figure 3. 
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Fig. 3. Research Framework 

 
3.2 Dataset 

 
Malware Dataset  were used to achieve the objective of this study which is available online at 

(https://github.com/anchal27sri/Intrusion-Detection-with-machine-Learning/find/master). It 
contains 6,37,862 different samples including normal and malicious (normal 1,52,144 and malicious 
4,85,718). Moreover, the dataset compiled on 21 selected features and labelled. Indeed, an 
incomplete field of the dataset is filled with -1. This large dataset introduced into IOT wireless 
network (AODV, TCP and UDP protocols) to detect the wormhole attacks. 
 
 

https://github.com/anchal27sri/Intrusion-Detection-with-machine-Learning/find/master
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3.3 Data Selection 
 
Data selection is the process of determining the appropriate data type and source, as well as 

suitable instruments to collect data. It precedes the actual practice of data collection, then this data 
goes through filtration were the only data that is relevant to the purpose of this study were selected. 
Therefore, the data selected contains Attack and Normal in the network nodes specifically in AODV 
and TCP protocols. 
 
3.4 Data Pre-Processing 

 
The dataset can have many irrelevant and missing data. To handle this issue, data pre-processing 

was done to ensure the dataset is clear for training and obtaining significant accuracy of the 
wormhole attack detection. 
 
3.5 Missing Data 

 
This situation arises when some data is missing. It can be handled in various ways. 
 

i. Ignore the tuples: This approach is suitable only when the dataset we have is quite large 
and multiple values are missing within a tuple. 

ii. Fill the Missing values: There are various ways to do this task. You can choose to fill the 
missing values manually, by attribute mean or the most probable value. 

 
In this step, the missing values is replaced by “0”. 

 
3.6 Encoding Categorical Data 
 

That categorical data is defined as variables with a finite set of label values. That most machine 
learning algorithms require numerical input and output variables. An integer and one hot encoding 
are used to convert categorical data to integer data. In this step, “0” and “1” are assigned to represent 
the wormhole attack in the IOT network as “Normal” and “Attack” respectively. 
 
3.7 K-Means Clustering 

 
K-means is an unsupervised learning method for clustering data points. The algorithm iteratively 

divides data points into K clusters by minimizing the variance in each cluster. Each data point is 
assigned to one of the K clusters at random. Then, for each cluster, we compute the centroid 
(functionally the centre) and reassign each data point to the cluster with the closest centroid. This 
process is repeated until the cluster assignments for each data point no longer change. Figure 4 
illustrate the K-means cluster for 175341 network samples. 
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Fig. 4. Illustration K-Means of The Network Samples 

 
Data splitting is the act of partitioning available data into two portions, usually for cross-validator 

purposes. One Portion of the data is used to develop a predictive model and the other to evaluate 
the model's performance. Separating data into training and testing sets is an important part of 
evaluating data mining models. Typically, when you separate a data set into a training set and testing 
set, most of the data is used for training, and a smaller portion of the data is used for testing. To train 
any machine learning or Deep learning model irrespective what type of dataset is being used, you 
have to split the dataset into training data and testing data. In this step, the data splitting details 
presented in Table 1. 
 

Table 1 
Data Splitting Details 

x_train shape 574075 samples 
y_train shape 574075 samples 
x_test shape 63787 samples 
y_test shape 63787 samples 

 
4. Results and Discussion  

 
The results generated by Naïve bayes, Decision Tree, and LSTM models of true positive rave, false 

positive rate, confusion Matrices, and the classification accuracy are discussed in the flowing 
sections. 
 
4.1 Naive Bayes Model 

 
The performance of a Naive Bayes model in detecting wormhole attacks can vary depending on 

the specific implementation, the quality of the training data, and the complexity of the wormhole 
attack. Naive Bayes models are based on the Bayes' theorem and make assumptions about the 
independence of the features, which may not hold in the case of wormhole attack detection. There 
have been several studies that have reported the performance of Naive Bayes models in detecting 
wormhole attacks. However, the performance of Naive Bayes alone is generally not as good as other 
AI models, such as LSTM which has been studied in this research. 

Furthermore, this research conducted an algorithm experiment using Naive Bayes wormhole 
detection model on the data proposed in the previous chapter. However, the average true and false 
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positive rate recorded in this model is 36% and 64% respectively. Figure 5 illustrates the graphical 
result of the true and false positive rate using Naive Bayes. 
 

 
Fig. 5. The output of True Positive Rate Vs False 
Positive Rate generated by Naive Bayes Model 

 
In the context of a wormhole attack, the true label would refer to the actual presence or absence 

of a wormhole in the network, while the predicted label would be the output of a detection model 
that attempts to identify the presence or absence of a wormhole based on the analysis of network 
data. Figure 6 illustrated the true label vs predicted label using Naive Bayes. Based on the confusion 
matrix below the predicted absence of wormhole attack by the model and the actual attacked 
networks are 4342 nodes. Moreover, the predicted wormhole attacks, and it is true these networks 
got attacked are 44220 nodes. Furthermore, the predicted absence of wormhole attack  and the 
actual absence of wormhole attacks are 15203 nodes. Naive Bayes model predicted wormhole attack, 
but it did not attack 22 nodes. 

 

 
Fig. 6. Confusion Matrices Generated by Naive Bayes Model 

 
Naive Bayes model performance for detecting the wormhole attack through the data  is given in 

Table 2 as well illustrated in Figure 7. The weighted average for F1-score has a value of 93% which 
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means the balance between precision and recall has a very high percentage in this model. Moreover, 
the precision of detecting wormhole attack or not utilizing Naive Bayes model has scored 95%.  
 

Table 2 
Accuracy Detection Generated by Naive Bayes 

Class Name F1-Score Precision Recall 
Weighted average  
(Naive Bayes) 0.93 0.95 0.93 

 
Referring to confusion Matrices above, predicting the number of nodes that has been or has not 

been attacked by wormhole are significant compared to false predicted. Furthermore, predicting the 
wormhole attack only using Naive Bayes model as illustrated in Figure 7, has achieved 93%. 

 

 
Fig. 7. Accuracy Detection Generated by Naive Bayes 

 
4.2 Decision Tree Model 

 
Detecting the wormhole attack through Decision Tree Model as illustrated in Figure 8 which 

presented by the true positive rate. The positive rate in this model increased slightly compared to 
the previous model. However, the TPR in this model recorded 39% which means 39% of the nodes in 
the given data that is actually attacked by wormhole is predicted or identified by the model. 
Moreover, identifying the normal nodes or these nodes that were not attacked by wormhole can be 
presented by the false positive rate  (TFR). Decision Tree Model  recorded 65% in the given data. 
Indeed, TPR and TFR enhanced using Decision Tree Model which reflect on increasing the 
classification accuracy. 
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Fig. 8. The Output of True Positive Rate Vs False 
Positive Rate Generated by Decision Tree Model 

 
Predicting the non-attacked nodes as well the attacked nodes by wormhole are illustrated in 

Figure 9. The confusion Matrices below presents the true label and the predicted label by Decision 
Tree Model. The number of nodes that were predicted to be attacked by wormhole 46181 nodes 
which is correct prediction. Moreover, the prediction of the absence of wormhole attack which is 
true recorded in 2205 nodes. Furthermore, the prediction of the absence of wormhole attack while 
it is true there is wormhole attacked are 13950 nodes. total of prediction of the absence of wormhole 
attack which is true recorded in 1451 nodes. 
 

 
Fig. 9. Confusion Matrices Generated by Decision Tree Model 

 
Figure 10 and Table 3 illustrate the performance accuracy of decision tree model. However, F1-

score is the harmonic mean of precision and recall and is a commonly used metric to evaluate the 
performance of a classification model. An F1-score of 94% means that the model has a good balance 
between precision and recall. Moreover, Precision is the proportion of true positive predictions out 
of all positive predictions made by the model. A precision of 94% means that the model correctly 
identified 94% of wormhole attacks that were predicted by the model. Furthermore, Recall is the 
proportion of true positive predictions out of all actual positive cases. A recall of 94% means that the 
model was able to correctly identify 94% of all the wormhole attacks in the dataset. 
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Table 3 
Accuracy Detection Generated by Decision Tree Model 
Class Name F1-Score Precision Recall 
Weighted average (Decision Tree) 0.94 0.94 0.94 

 
In summary, the decision tree model is doing well in terms of accuracy, as it's able to correctly 

identify a high proportion of positive and negative cases, and also in terms of balance between 
precision and recall. 

 

 
Fig. 10. Accuracy Detection Generated by Decision Tree Model 

 
4.3 LSTM Model 

 
True Positive Rate is a measure of the proportion of wormhole attacks that were correctly 

identified by LSTM model. Figure 11 illustrates the true positive rate vs false positive rate  generated 
by the model. However, the average true positive rate is 43% which means that the model correctly 
identified 43% of all wormhole attacks in the dataset IoT networks. Moreover, false positive rate  
indicates the predicted non-attack wormhole by the model, where the average false positive rate  is 
79%. Using LSTM model enhanced the detection of wormhole attacks compared to the other models 
proposed by this study. Furthermore, detailed analysis will be discussed in the coming sections. 
 

 
Fig. 11. The Output of True Positive Rate Vs False 
Positive Rate Generated by LSTM Model 
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Figure 12 illustrates the confusion Matrices of LSTM model. The predicted wormhole attacks by 
the model are 47955 nodes, where these nodes submitted to wormhole attacks. Moreover, the 
predicted non-wormhole attack by LSTM model is 607 nodes but it is true these nodes have been 
attacked by wormholes. Furthermore, the model predicted there are 15213 nodes that have not been 
attacked by wormhole while it is true these nodes did not attack by wormhole. Indeed, only 12 nodes 
from the dataset were not predicted by the model as wormhole attack while it is true these nodes 
submitted to the type of attack. 
 

 
Fig. 12. Confusion Matrices Generated by LSTM Model 

 
Figure 13 illustrates the distribution nodes in the dataset, where the red coloured dots present 

the detected wormhole attacks, while the dark blue dots represent the non-wormhole attack.    
 

 
Fig. 13. Distribution Nodes Generated By LSTM Model 

 
F1-score, is a measure of a model's accuracy that balances precision and recall. It is calculated as 

the harmonic mean of precision and recall, where the best value is 1.0 and the worst value is 0.0. An 
F1-score of 0.99 indicates that the model has a very high accuracy, as it is close to 1. Moreover, 
precision is a measure of how many  nodes classified as wormhole attack by the model are actually 
true. A precision of 0.99 means that 99% of the nodes classified as wormhole attack are actually 
correct these nodes exposed to the type of attack.  
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Table 4 
Accuracy Detection Generated by LSTM Model 
Class Name F1-Score Precision Recall 
Weighted average (LSTM) 0.99 0.99 0.99 

 
Furthermore, Recall is a measure of how many  nodes identified by the models and these 

identifications are correct . A recall of 0.99 means that the model correctly identifies 99% of the 
actual attack and unattacked by the wormhole. A F1-score, precision, and recall of 0.99 for an LSTM 
model indicate that the model is very accurate and perform well on the task it was trained for. Table 
4 and Figure 14 presenting the result generated by the algorithm using LSTM model. 
 

 
Fig. 14. Accuracy Detection Generated by LSTM Model 

 
4.4 Models Comparison (TPR and TFR) 

 
True Positive Rate (TPR) and false positive rate are a measure of the correct proportion of 

detection of wormhole attack or non-wormhole attack by the models. In the context of wormhole 
attack detection, a TPR of 1.0 would mean that the model is able to correctly identify all wormhole 
attacks, while a TPR of 0.0 would mean that the model is not able to identify any wormhole attacks 
which means the network is not attacked by the wormhole (TFR). Figure 15 illustrates the true 
positive rate vs false positive rate generated by the three models. However, the LSTM model has the 
highest true positive rate among these models. LSTM models gave better results in True Positive Rate 
(TPR) is their ability to handle long-term dependencies. In the case of wormhole attack detection, for 
example, an attack may be spread out over a period of time, and an LSTM model can learn to identify 
patterns that indicate an attack is taking place. Additionally, LSTMs have an internal memory that can 
store information from previous steps and make decisions based on that information. This can help 
the model to distinguish between normal and abnormal behaviour.  
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Fig. 15. True Positive Rate Vs False Positive Rate for LSTM, Naive Bayes, and 
Decision Tree Models 

 
Furthermore, Figure 16 and Figure 17 illustrate the average true positive rate and false positive 

rate in all models respectively. 
 

 
Fig. 16. The Average True Positive Rate LSTM, Naive Bayes, and Decision Tree 
Models 
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Fig. 17. The Average False Positive Rate for LSTM, Naive Bayes, and 
Decision Tree Models 

 
4.4.1 Confusion matrices 

 
Table 5 and Figure 18 presenting the number of nodes that are predicted to have wormhole 

attack on them which is true prediction. However, LSTM model predicted the highest number of 
nodes that were exposed to wormhole attack with 47955 nodes followed by Decision Tree model 
with 46181 then lastly Naïve Bayes model with 44220 nodes.  
 

Table 5 
The Corrected Prediction of Wormhole Attack on the Total Number of Nodes 
that Actually attacked by Wormhole 
Models Nodes NO 
LSTM (Predicted wormhole attack = presence of wormhole attack) 47955 
Naive Bayes (Predicted wormhole attack = presence of wormhole attack) 44220 
Decision Tree (Predicted wormhole attack = presence of wormhole attack) 46181 

 
LSTM model is recurrent neural network that is well-suited for processing sequential data, such 

as network traffic data, and can learn to identify patterns that indicate a wormhole attack. 
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Fig. 18. The Corrected Prediction of Wormhole Attack on the Total Number of 
Nodes that is Actually Attacked by Wormhole 

 
Table 6 and Figure 19 present the result generated by each model in this study of the total nodes 

that has been predicted the absence of wormhole attack which is true in the given dataset.  
 

Table 6 
The Corrected Prediction of the Absence of Wormhole Attack on the Total 
Number of Nodes that is Actually Not Attacked by Wormhole 

Model Nodes NO 
LSTM (Predicted NO wormhole attack = absence of wormhole attack) 15213 
Naive Bayes (Predicted NO wormhole attack = absence of wormhole attack) 15203 
Decision Tree (Predicted No wormhole attack = absence of wormhole attack) 13950 

 
Due to the advance mechanism of LSTM model compared to the rest of the models, LSTM model 

records the highest correct prediction of the absence of wormhole attack with 15213 nodes followed 
by Naïve Bayes model then Decision Tree model by 15203 and 13950 nodes respectively. 

 

 
Fig. 19. The Corrected Prediction of the Absence of Wormhole Attack on the 
Total Number of Nodes that is Actually Not Attacked by Wormhole 
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Table 7 and Figure 20 present the incorrect prediction of wormhole attack by the models in this 
study while it is not true where there is no wormhole exposed to the networking nodes. However, 
slight differences between LSTM model and Naïve Bayes model identify the presence of wormhole 
attack, where LSTM model misidentifies 12 nodes while Naïve Bayes misidentifies 22 nodes.  
 

Table 1 
The Incorrected Prediction of the presence of Wormhole Attack on the Total 
Number of Nodes that Actually Not Attacked by Wormhole 

Models Nodes NO 
LSTM (Predicted wormhole attack = absence of wormhole attack) 12 
Naive Bayes (Predicted wormhole attack = absence of wormhole attack) 22 
Decision Tree (Predicted wormhole attack = absence of wormhole attack) 1451 

 
Moreover, the Decision Tree model recorded the highest number of nodes that were 

misidentified as wormhole attack while they are not attacked by wormhole. The number of nodes 
that was incorrectly predicted is 1451 nodes.   

 

 
Fig. 20. The Incorrected Prediction of the presence of Wormhole Attack on the 
Total Number of Nodes that is Actually Not Attacked by Wormhole 

 
Table 8 and Figure 21 illustrate the results generated by LSTM, Naïve Bayes, and Decision Tree 

models of predicting the absence of wormhole attack while these nodes have been exposed to the 
attack.  

 
Table 8 
The Incorrected Prediction of the absence of Wormhole Attack on the Total 
Number of Nodes that are Actually Attacked by Wormhole 
Models Nodes No 
LSTM (Predicted NO wormhole attack = presence of wormhole attack) 607 
Naive Bayes (Predicted NO wormhole attack = presence of wormhole attack) 4342 
Decision Tree (Predicted No wormhole attack = presence of wormhole attack) 2205 
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However, the lowest number of nodes that have been misidentified in this case is recorded by 
LSTM model with 607 nodes. Decision Tree model has lower number of nodes that incorrectly 
predicted with 2205 nodes than that was recorded in Naïve bayes model (4342 node). 

 

 
Fig. 21. The Incorrected Prediction of the absence of Wormhole Attack on the 
Total Number of Nodes that are Actually Attacked by Wormhole 

 
4.4.2 Classification accuracy 

 
The classification accuracy of LSTM, Naive Bayes, and Decision Tree models for wormhole attack 

detection will depend on several factors, including the quality and quantity of the data used to train 
and evaluate the models, the specific implementation and configuration of the models, and the 
characteristics of the wormhole attack being detected. In general, LSTMs are well-suited for 
processing sequential data, such as network traffic data, and can learn to identify patterns that 
indicate a wormhole attack. They are often used in wireless sensor networks and other similar 
applications where the data is time-series in nature. Naive Bayes is a probabilistic classifier based on 
Bayes' theorem, which is often used for text classification and spam filtering. It can be less accurate 
than other models for wormhole attack detection, as it makes the "naive" assumption that features 
are conditionally independent given the class, which may not hold true for network traffic data. 

Table 9 and Figure 22 presenting the Classification accuracy of the models have been studied by 
this paper. However, the best model that scores the highest accuracy in the dataset proposed in this 
paper is LSTM model with 99% followed by Decision Tree model with 94% and lastly Naïve Bayes 
model with 93%. LSTM models are a type of Recurrent Neural Network (RNN) that are specifically 
designed to handle sequential data and maintain information from previous time steps. This makes 
LSTM well suited for tasks such as time series prediction, language translation, and speech 
recognition. 
 

Table 2 
Classification Accuracy of All the Models 
 LSTM Deep Learning Decision Tree Naïve Bayes 
F1-Score 99% 94% 93% 
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In the context of wormhole attack detection in IOT network, LSTM models are able to analyse the 
patterns and trends in the data over time, which allows them to detect the presence of a wormhole 
attack more effectively than Naive Bayes and decision tree models. Additionally, LSTM models can 
handle high-dimensional and complex data, which makes them well suited for the analysis of the 
large datasets typically used in IOT network. 

In contrast, Naive Bayes and decision tree models are not designed to handle sequential data. 
They are based on simple probability calculations and decision-making algorithms, respectively, and 
do not have the ability to maintain information from previous time steps. 

In summary, LSTM models are able to handle sequential data, maintain information from 
previous time steps, and handle high-dimensional and complex data, which makes them well suited 
for wormhole attack detection in IOT network and thus able to outperform Naive Bayes and decision 
tree models. 
 

 
Fig. 22. Classification Accuracy of All the Models 

 
5. Conclusion 

 
In conclusion, this research focused on the challenging task of wormhole attack detection in 

wireless sensor networks. Several models, including LSTM Deep Learning, Decision Tree, and Naive 
Bayes, were studied and evaluated. The Naive Bayes model demonstrated a classification accuracy 
of 93% on the given data, while the Decision Tree model achieved a classification accuracy of 94% on 
the same data. However, the most promising results were obtained using the LSTM Deep Learning 
model, which achieved a remarkable classification accuracy of 99% for wormhole attack detection 
on the proposed dataset. Leveraging the strengths of LSTM in modelling time series data and 
sequences, the LSTM model exhibited superior performance in detecting wormhole attacks. 

In summary, this research highlights the effectiveness of deep learning, particularly LSTM, in 
addressing the challenges of wormhole attack detection in wireless sensor networks. The findings 
underscore the potential of advanced machine learning techniques to enhance the security and 
reliability of IoT networks, especially in the context of environmental monitoring systems for 
agriculture. Future research may further explore the integration of deep learning models into 
practical IoT applications to fortify network defences and safeguard critical infrastructures. 
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6. Recommendation 
 
To improve the accuracy of the AI models in detecting wormhole attacks in IoT networks, it's 

recommended to add more features to the model which can help it to capture more information 
about the network and better distinguish between normal and malicious traffic. Furthermore, it's 
recommended to use ensemble methods, combining multiple models can lead to better performance 
than using a single model alone. Combining decision tree with other techniques such as Artificial 
Neural Networks or Support Vector Machines may lead to better performance. Also, it's 
recommended to validate the test the AI models on different types of networks, and different types 
of wormhole attacks in order to improve its robustness and adaptability. Additionally, it is important 
to take into account the effect of node mobility on the detection system, as wormhole attacks are 
likely to be affected by node mobility. 
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