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The conjugate gradient (CG) algorithms are one of the efficient numerical algorithms 
that are characterized by simplicity and nice convergence properties. However, recent 
modification of the CG method has complicated algorithms and might fail to converge 
under certain line search procedures. Also, the performance of some of the classical 
methods are yet to be tested on real-life application problems. This study presents a 
new modification of conjugate gradients (CG) algorithm for optimization problems and 
image restoration. The new formula is a modification of the Liu-Storey (LS) CG formula 
that generates the descent direction for objective functions. We established the 
convergence of our formula under suitable line search condition. Results from 
computational experiments were obtained and they showed that our new approach 
outperforms other existing algorithms such as Hestenes-Steifel (HS), LS, Dai-Yuan (DY) 
and Rivaie-Mustafa-Ismail-Leong (RMIL) in terms of both iteration numbers and based 
on CPU time. To further illustrate the efficiency of our proposed method, the formula 
was extended to restore images corrupted by impulse noise and the results obtained 
showed that the method was able to restore images with better accuracy which further 
confirmed the efficiency and robustness of our method. 
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1. Introduction 
 

The CG algorithms are among the widely considered iterative procedures for solving application 
problems in medicine, engineering, sciences, and many more [1-5]. For instance, in [6], the CG was 
applied to solve regression analysis problem and [7-9] employ new CG strategy for motion control 
problem. Also, studies investigating the performance of CG methods on portfolio selection problems 
follows from [10-12]. The algorithms have also been considered for solution of the following 
unconstrained optimization problems (UOP): 

 
min{𝑓(𝑥) | 𝑥 ∈ 𝑅𝑛}                                                                                 (1) 
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where 𝑓: 𝑅𝑛 → 𝑅 is a smooth function with gradient ∇(𝑓(𝑥)) = 𝑔(𝑥). The efficacy of all CG 
algorithms depends on the memory requirements and their abilities of obtaining minimum values of 
Eq. (1) [10,13,14]. The iterative points of the CG formulas are generated via: 

 
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘,            𝑘 = 1,2, ..                                                                (2) 
 
where 𝛼𝑘 > 0 is the step size obtained using any condition of the line search (exact or inexact) along 
the direction of search 𝑑𝑘. A review of different literatures show that most studies considered the 
inexact search method because of rapid convergence. But, the major drawback of this line search is 
that it only generates approximate solutions and not the real solution. Therefore, this study will 
consider the exact minimization method that requires 𝛼𝑘 to satisfy: 

 
𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) = min

𝑎≥0
𝑓(𝑥𝑘 + α𝑑𝑘).                                                                (3) 

 
Another important component of the CG algorithm is the direction of search 𝑑𝑘 computed as: 
 

𝑑𝑘 = {

−𝑔𝑘,                                        for 𝑘 = 0

−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1,                     for 𝑘 ≥ 1
                                                                  (4) 

 
where the scalar 𝛽𝑘 is the parameter differentiating the CG formulas. The following are among the 
classical formulas of the CG methods: 
 

𝛽𝑘
𝐻𝑆 =

𝑔𝑘
𝑇(𝑔𝑘−𝑔𝑘−1)

𝑑𝑘−1
𝑇 (𝑔𝑘−𝑔𝑘−1)

                                                                     (5) 

 

𝛽𝑘
𝐹𝑅 =

𝑔𝑘
𝑇𝑔𝑘

∥𝑔𝑘−1∥2                                                                                    (6) 

 

𝛽𝑘
𝑅𝑀𝐼𝐿 =

𝑔𝑘
𝑇(𝑔𝑘−𝑔𝑘−1)

∥𝑑𝑘−1∥2
                                                                                      (7) 

 

𝛽𝑘
𝐶𝐷 = −

𝑔𝑘
𝑇𝑔𝑘

𝑑𝑘−1
𝑇 𝑔𝑘−1

                                                                                           (8) 

 

𝛽𝑘
𝑃𝑅 =

𝑔𝑘
𝑇(𝑔𝑘−𝑔𝑘−1)

∥𝑔𝑘−1∥2                                                                          (9) 

 

𝛽𝑘
𝐷𝑌 =

𝑔𝑘
𝑇𝑔𝑘

𝑑𝑘−1
𝑇 (𝑔𝑘−𝑔𝑘−1)

.                                                                            (10) 

 
The above formulas are given by Hestenes-Steifel (HS) [15], Fletcher-Reeves (FR) [16], Rivaie-

Mustafa-Ismail-Leong (RMIL) [17], Conjugate Descent (CD) [18], Polak-Ribiere (PR) [19], and the latest 
by Dai-Yuan (DY) [13]. The HS, PRP, and RMIL formulas are characterized by efficient computational 
performance, but their convergence fails under uncertain conditions. On the other hands, the FR, CD, 
and DY formulas possess excellent convergence results but their numerical performance is affected 
by jamming phenomena. For more references on the convergence of different CG formulas (see; 
[9,11,20-29]).  
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In this work, we are the interested in applying a new approach to define an efficient variant of 
Liu-Storey scheme for the unconstrained form of Eq. (1) and demonstrate the application in restoring 
corrupted images. The work is motivated by the following facts. Few numbers of modification of LS 
method for solving Eq. (1). The modifications of LS that exist are only applied to solve unconstrained 
optimization but their performance has not been evaluated on real-life problems. Some of the 
formulas available are very complicated.  

In this study, we aim to construct an LS-type method that would address the drawbacks discussed 
above. A new type of LS CG method will be developed for unconstrained optimization. We shall apply 
the new formula to define a new search direction which will be different from those in the literature. 
The new method will globally converge globally under some suitable assumptions. The performance 
of the new algorithm will be compared with other existing methods with similar characteristics. 
Furthermore, the proposed method will be used to restore corrupted images.  

This study will develop a new CG formula for optimization problem and image restoration in 
section 2. In section 3, we discuss the convergence of our formula under mild assumptions and 
present results for both unconstrained optimization problems and restored images are given in 
section 4. The conclusion is discussed in section 5.  

 
2. Motivation and New CG Coefficient 

 
Recently, Liu-Storey (LS) [30] present a modification of HS method [15] by expanding the term in 

the denominator as follows:  
 

𝛽𝑘
𝐿𝑆 = −

𝑔𝑘
𝑇(𝑔𝑘−𝑔𝑘−1)

𝑑𝑘−1
𝑇 𝑔𝑘−1

                                                                                 (11) 

 
The authors showed that their formula possesses descent properties and establish the 

convergence under mild assumptions. Results from computational experiment show that the formula 
Eq. (11) is very competitive.  

Motivated by the efficiency and convergence analysis of the LS formula, this study proposed a CG 
coefficient 𝛽𝑘 based on the modification of the LS method. This method was constructed by adding 

a new term 
‖𝑔𝑘‖

‖𝑔𝑘−1‖
 to the numerator of LS method. This new CG parameter is known as 𝛽𝑘

𝑆𝐹𝐴, where 

SFA denotes Saleh Alsuliman, Nur Fadhilah Ibrahim and Nur Aidya Hanum Aizam as below: 
 

𝛽𝑘
𝑆𝐹𝐴 = −

𝑔𝑘
𝑇(𝑔𝑘−

‖𝑔𝑘‖

‖𝑔𝑘−1‖
𝑔𝑘−1)

𝑑𝑘−1
𝑇 𝑔𝑘−1

                                                          (12) 

 

The proposed CG algorithm for the proposed formula 𝛽𝑘
𝑆𝐹𝐴 is presented as follows: 

Algorithm 1. 
Step 1: Initialize. Consider the initial guess 𝑥𝑘, set 𝑘 = 0. 
Step 2: Calculate 𝛽𝑘 formula as Eq. (12). 
Step 3: Obtain 𝑑𝑘 using Eq. (4). If ∥ 𝑔𝑘 ∥= 0, terminate. Else, proceed to the next step 
Step 4: Compute 𝛼𝑘 using Eq. (3). 
Step 5: Update the iterates using Eq. (2).     
Step 6: Re-evaluate the stopping criteria and convergence test.  
            If ‖𝑔𝑘‖ ≤ 𝜀 or 𝑓(𝑥𝑘+1) < 𝑓(𝑥𝑘), terminate.  
            Else go back to Step 1 by replacing 𝑘 = 𝑘 + 1. 
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3. Convergence Analysis  
 

This section will discuss the descent condition and global convergence of 𝛽𝑘
𝑆𝐹𝐴.  

 
3.1. Sufficient Descent Condition (SDC) 

 
The SDC is defined such that the proposed formula satisfies: 
 

𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖2 𝑓𝑜𝑟 𝑘 ≥ 0, 𝑐 > 0                                                           (13) 

 
The theorem that follows will be used to show that our formula possesses the SDC under exact 

minimization conditions.  
 
Theorem 1. 
Let 𝑥𝑘 and 𝑑𝑘 follows from Eq. (2), Eq. (4) and Eq. (12), and 𝛼𝑘 > 0 computed using Eq. (3), then, 

condition Eq. (13) will hold ∀ k ≥ 0. 
 
Proof:  
Using Induction, we let 𝑘 = 0, then it is clear that 𝑔0

𝑇𝑑0 = −𝑐 ∥ 𝑔0 ∥2. Thus, Eq. (13) is true. Next, 
we show that Eq. (13) is also true for 𝑘 ≥ 1. 

 
Multiplying Eq. (4), by 𝑔𝑘+1

𝑇  will give,  
 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = 𝑔𝑘+1

𝑇 (−𝑔𝑘+1 + 𝛽𝑘+1
𝑆𝐹𝐴𝑑𝑘) 

= − ∥ 𝑔𝑘+1 ∥2+ 𝛽𝑘+1
𝑆𝐹𝐴𝑔𝑘+1

𝑇 𝑑𝑘 
 
But 𝑔𝑘+1

𝑇 𝑑𝑘 = 0 based on exact minimization. This implies: 
 
𝑔𝑘+1

𝑇 𝑑𝑘+1 = − ∥ 𝑔𝑘+1 ∥2. 
 
which shows that Eq. (13) is true for 𝑘 + 1 and thus, completes the proof. 
 
3.2. Global Convergence Properties 

 
The following assumptions would be needed for the convergence of our formula.  
 
Assumption 1. [13] 

i. For an initial point 𝑥0, we have ℓ = { 𝑥 |𝑓(𝑥) ≤ 𝑓(𝑥0)}, the level set which is bounded. 
ii. In some neighbourhoods 𝑁 of  ℓ , 𝑓(𝑥)  is a smooth function with a Lipschitz continuous 

gradient. This implies there exist a constant 𝐿 > 0 with 
 
‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤  𝐿 ‖𝑥 − 𝑦‖ for any 𝑥 , 𝑦 ∈ 𝑁. 

 
Zoutendijk [31], presents the following lemma based on the above assumption. 
Lemma 1. 
Assume Assumption 1 is true, let 𝑥𝑘 follows from Algorithm 1 and 𝑑𝑘 satisfies Eq. (13), then: 
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∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2 < ∞∞
𝑘=0                                                                                           (14) 

 
which can be written as  
 

∑
‖𝑔𝑘‖4

‖𝑑𝑘‖2 < ∞∞
𝑘=0                                                                                           (15) 

 

The proposed formula 𝛽𝑘
𝑆𝐹𝐴 is simplified as follows for ease of convergence analysis. 

 

𝛽𝑘
𝑆𝐹𝐴 = −

𝑔𝑘
𝑇 (𝑔𝑘 −

‖𝑔𝑘‖
‖𝑔𝑘−1‖

𝑔𝑘−1)

𝑑𝑘−1
𝑇 𝑔𝑘−1

=
𝑔𝑘

𝑇 (
𝑔𝑘‖𝑔𝑘−1‖ − ‖𝑔𝑘‖𝑔𝑘−1

‖𝑔𝑘−1‖
)

−𝑑𝑘−1
𝑇 𝑔𝑘−1

 

 
From Theorem 1 we know that  𝑔𝑘+1

𝑇 𝑑𝑘+1 = − ∥ 𝑔𝑘+1 ∥2 , that yields 
 

𝛽𝑘
𝑆𝐹𝐴 =

𝑔𝑘
𝑇 (

𝑔𝑘‖𝑔𝑘−1‖ − ‖𝑔𝑘‖𝑔𝑘−1

‖𝑔𝑘−1‖
)

∥ 𝑔𝑘−1 ∥2
=

‖𝑔𝑘‖2‖𝑔𝑘−1‖ − ‖𝑔𝑘‖𝑔𝑘
𝑇𝑔𝑘−1

∥ 𝑔𝑘−1 ∥3
 

 
by using Cauchy-Schwartz inequality, we have 

 

𝛽𝑘
𝑆𝐹𝐴 =

‖𝑔𝑘‖2‖𝑔𝑘−1‖ − ‖𝑔𝑘‖𝑔𝑘
𝑇𝑔𝑘−1

∥ 𝑔𝑘−1 ∥3
≥

‖𝑔𝑘‖2‖𝑔𝑘−1‖ − ‖𝑔𝑘‖‖𝑔𝑘‖‖𝑔𝑘−1‖

∥ 𝑔𝑘−1 ∥3
= 0 

 
Thus, we get                                              
 

𝛽𝑘
𝑆𝐹𝐴 ≥ 0                                                                                         (16) 

 
Also 

𝛽𝑘
𝑆𝐹𝐴 =

‖𝑔𝑘‖2‖𝑔𝑘−1‖ − ‖𝑔𝑘‖𝑔𝑘
𝑇𝑔𝑘−1

∥ 𝑔𝑘−1 ∥3
≤

‖𝑔𝑘‖2‖𝑔𝑘−1‖ + ‖𝑔𝑘‖2‖𝑔𝑘−1‖

∥ 𝑔𝑘−1 ∥3
=

2‖𝑔𝑘‖2

∥ 𝑔𝑘−1 ∥2
 

 
which implies 

 

𝛽𝑘
𝑆𝐹𝐴 ≤

2‖𝑔𝑘‖2

∥𝑔𝑘−1∥2                                                                                       (17) 

 
Also, based on the above lemma, we have the following theorem. 
 
Theorem 2. 
Assume that Assumption 1 is true,  𝑥𝑘 be obtained by Algorithm 1, 𝛼𝑘 follows from Eq. (3), the 

SDC Eq. (13) is true and the coefficient 𝛽𝑘 obtained by Eq. (12). Then 
 

lim
𝑘→∞

‖𝑔𝑘‖ = 0                                                                                        (18) 
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Proof: 
This prove is by contradiction. i.e., let’s assume Theorem 2 is not true and supposed a constant 

say ∅ exists satisfying 
 

‖𝑔𝑘‖ ≥ ∅                                                                                        (19) 
 
From Eq. (4), 𝑑𝑘 is rewritten as: 
 

𝑑𝑘 = −𝑔𝑘 + 𝛽𝑘
𝑆𝐹𝐴𝑑𝑘−1 

 
Squaring both sides, obtained 
 

‖𝑑𝑘‖2 = ‖𝑔𝑘‖2 + (𝛽𝑘
𝑆𝐹𝐴)2‖𝑑𝑘−1‖2 − 2𝛽𝑘

𝑆𝐹𝐴𝑔𝑘
𝑇𝑑𝑘−1 

 
For exact minimization conditions 𝑔𝑘

𝑇𝑑𝑘−1 = 0, and thus, we have 
 
‖𝑑𝑘‖2 = ‖𝑔𝑘‖2 + (𝛽𝑘

𝑆𝐹𝐴)2‖𝑑𝑘−1‖2 
 
From Eq. (17) yields 
 

‖𝑑𝑘‖2 ≤ ‖𝑔𝑘‖2 +
4‖𝑔𝑘‖4

∥ 𝑔𝑘−1 ∥4
‖𝑑𝑘−1‖2 

 
divided both sides by ‖𝑔𝑘‖4 we obtain 

 
‖𝑑𝑘‖2

‖𝑔𝑘‖4
≤

1

‖𝑔𝑘‖2
+

4‖𝑑𝑘−1‖2

∥ 𝑔𝑘−1 ∥4
 

 
Then we have 
 

‖𝑑𝑘‖2

‖𝑔𝑘‖4
≤ ∑

4

‖𝑔𝑖‖2

𝑘

𝑖=0

 

 
by Eq. (15), yields 

 
‖𝑔𝑘‖4

‖𝑑𝑘‖2
≥

∅2

4𝑘
 

 
So, 
 

∑
‖𝑔𝑘‖4

‖𝑑𝑘‖2
= ∞

𝑘

𝑖=0

 

 
which contradicts Zoutendijk condition, thus we have 
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lim
𝑘→∞

‖𝑔𝑘‖ = 0 

 
and this completes the proof.  

 
4. Results  

 
This section will evaluate the efficiency of our proposed formula by comparing their performance 

with other existing formulas with similar characteristics such as LS, HS, DY and RMIL based on 
iteration numbers and CPU time. Most of the problems used for these computations as seen in Table 
1 follows from Andrei [32]. For every problem, four different initial guesses are selected which 
includes points close to the optimum points to those further away. The algorithms for all the formulas 
are written on MATLAB R2022a software and run on Ryzen5 Windows 11 Professional operating 
system. All computations will be terminated provided the condition ‖𝑔𝑘‖ ≤ 10−6 is satisfied.  

 
Table 1 
List of Test Problems 
N Functions Dimensions Initial Points 

1 Extended Rosenbrock 2, 100, 500, 1000 (3,..., 3), (7,…,7), (11,..., 11), (19,..., 19) 
2 Fletcher 10, 20, 50, 80 (2,…,2), (-2,…,-2), (9,…,9), (-9,…,-9) 
3 Perturbed Quadratic 2, 10, 100, 1000 (2,…,2), (6,…,6), (-2,…,-2), (-6,…,-6) 
4 Dixon and Price 2, 4 (6,…,6), (12,…,12), (16,…,16), (22,…,22) 
5 Extended Powell 4, 40, 100, 1000 (5,…,5), (-5,…,-5), (2,…,2), (-2,…,-2) 
6 Non Scomp 4, 40, 60, 80 (3,…,3), (13,…,13), (20,…,20), (23,…,23) 
7 Extended Quadratic Penalty 50 (-2,…,-2), (2,…,2), (-12,…,-12), (12,…,12) 
8 Hager 10, 20, 50, 100 (-2,…,-2), (2,…,2), (15,…,15), (20,…,20) 
9 Generalized Quadratic 4, 10, 50, 500 (2,…,2), (6,…,6), (18,…,18), (25,…,25) 
10 Quadratic 2 100, 500, 1000, 5000 (7,…,7), (17,…,17), (-7,…,-7), (-17,…,-17) 
11 Generalized Tridiagonal 2 2, 10 (5,…,5), (2,…,2), (12,…,12), (22,…,22) 
12 Extended Trigonometric 4, 10, 50, 100  (-16,…,-16), (-4,…,-4), (4,…,4), (16,…,16) 
13 Quadratic 1 4, 10, 100, 1000 (3,…,3), (6,…,6), (12,…,12), (24,…,24) 
14 Non Dia 20 (5,…,5), (14,…,14), (19,…,19), (23,…,23) 
15 Non Dquar 4 (-10,…,-10), (-7,…,-7), (7,…,7), (10,…,10) 
16 DQDRTIC 10, 100, 500, 1000 (5,…,5), (10,…,10), (15,…,15), (20,…,20) 
17 Quartic 4 (-6,…,-6), (2,…,2), (6,…,6), (12,…,12) 

 
All these results are obtained under exact minimization conditions. The performance plot in 

Figure 1 is for iteration numbers while Figure 2 represents the CPU time. This plots are obtained using 
performance profile tool presented by [33].  
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Fig. 1. Performance metric of iteration number Fig. 2. Performance metric for CPU time 

 
By observing these figures, we can see that the curve of our proposed formula lies above that of 

LS, HS, DY and RMIL because it was able to solve most of the test problems with better accuracy. This 
shows that the method is very competitive.         

 
5. Application to Image Restoration 

 
Image restoration is an important topic in the area of image processing which has recently gained 

attention from the research world because of its numerous applications in security and health sectors 
[10,34-36]. The process of image restoration involves restoring images from a degraded version; 
typically, the blurred and noisy images. Some of the important components that needs to be 
considered when restoring corrupted images includes: an algorithm’s experimental efficiency, quality 
of the restored images, and parameter estimate.  

In this study, the performance of the proposed algorithm will be investigated on image 
restoration problems. The following images: LENA (512 × 512) and CAMERA (512 × 512) corrupted by 
salt-and-pepper impulse noise would be restored using the proposed algorithm and the restored 
image quality would be assessed based on relative error (RelErr) and peak signal-to-noise ratio 
(PSNR). The PSNR measures the quality between the corrupted and restored images and its 
computed as follows:  

 
𝑃𝑁𝑆𝑅 = 20 ∙ log10(𝑀𝐴𝑋1) − 10 ∙ log10(𝑀𝑆𝐸) 

 
where MSE denotes the mean square error apply to assess the differences of pixels for complete 
images and 𝑀𝐴𝑋1 defines the image possible maximum pixel value. 

In this study, the image restoration problem is transformed into the following optimization 
problem [10]: 

 
min 𝜒(𝑢) 
 
and 
 

𝜒(𝑢) = ∑ {∑ 𝜙𝛼(𝑢𝑖,𝑗 − 𝜉𝑚.𝑛)(𝑚,𝑛)∈𝑇𝑖,𝑗/𝐺 +
1

2
∑ 𝜙𝛼(𝑢𝑖,𝑗 − 𝑢𝑚.𝑛)(𝑚,𝑛)∈𝑇𝑖,𝑗∩𝐺 }(𝑖,𝑗)∈𝐺 .                (20) 
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where 𝜙𝛼(𝑡) = √𝑡2 + 𝛼 defines an edge-preserving potential function with the constant value of 
𝛼 = 1 and 𝜉 is the observed noisy image corrupted by salt-and-pepper impulse noise. 

From Eq. (20), 𝐺 is the index set of noise candidates 𝑥 and its computed as: 
 

𝐺 = {(𝑖, 𝑗) ∈ 𝑄/𝜉𝑖𝑗 = 𝑠𝑚𝑎𝑥 𝑜𝑟 𝑠𝑚𝑖𝑛, 𝜉𝑖̅𝑗 ≠  𝜉𝑖𝑗 } 

 

where 𝜉̅ defines the adaptive median filter of 𝜉 and (𝑖, 𝑗) ∈ 𝑄 = {1,2,3, … , 𝑀} × {1,2,3, … , 𝑁} with 
its neighbourhood given as 𝑇𝑖,𝑗 = {(𝑖, 𝑗 − 1), (𝑖, 𝑗 + 1), (𝑖 − 1, 𝑗), (𝑖 + 1, 𝑗)}. Also, 𝑠𝑚𝑎𝑥 and 𝑠𝑚𝑖𝑛 

represents the maximum and minimum of the noisy pixel. 
Next, we present the experiment results for all the methods as follows:  
Tables 2 and 3 demonstrate the numerical performance of the proposed SFA methods and other 

existing methods based on RelErr and PSNR.  
 

Table 2 
Results of Restored Images using SFA, LS, HS, DY, and RMIL 
methods based on RelErr  
Methods SFA LS HS DY RMIL 

Image Noise Degree PSNR PSNR PSNR PSNR PSNR 

Lena 30% 0.8739 0.9457 0.9543 0.9609 0.9426 
60% 1.5654 1.4386 1.7738 1.4853 1.4562 

Camera 30% 1.1044 1.1957 1.1896 1.2815 1.1491 
60% 2.1120 2.1201 2.1512 1.7949 2.4673 

 
Table 3 
Results of Restored Images using SFA, LS, HS, DY, and RMIL methods 
based on PSNR  
Methods SFA LS HS DY RMIL 

Image Noise Degree PSNR PSNR PSNR PSNR PSNR 

Lena 30% 33.7906 33.5643 33.4291 33.5539 33.6432 
60% 29.5473 29.2987 28.4836 29.7479 29.4587 

Camera 30% 30.9399 30.6974 30.8129 30.6671 30.8022 
60% 26.5854 26.7705 25.9684 26.8705 26.8722 

 
On the other hand, Figure 3 and Figure 4 presents the corrupted images and all restored images 

using the proposed SFA and the classical LS, HS, DY, and RMIL algorithms. A method with higher PSNR 
values is said to produce better quality of the output images. By observing the results presented 
above, it is obvious that the proposed SFA algorithm produces the least relative error and higher 
PSNR values for most of the noise degrees. Also, a close observation of the images show that the new 
method produces the better quality of the output images when compared to those obtained using 
the other existing methods. With the above results, we can conclude that our proposed SFA algorithm 
has the best performance because it generates more efficient results compare to the existing 
methods.  
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A1 A2 A3 A4 A5 A6 

      
B1 B2 B3 B4 B5 B6 

Fig. 3. Lena and Camera images corrupted by 30 % salt-and-pepper noise: (A1, B1), the restored images using 
SFA: (A2, B2), LS: (A3, B3), HS: (A4, B4), DY: (A5, B5), and RMIL: (A6, B6) 

 

      
A1 A2 A3 A4 A5 A6 

      
B1 B2 B3 B4 B5 B6 

Fig. 4. Lena and Camera images corrupted by 60 % salt-and-pepper noise: (A1, B1), the restored images 
using SFA: (A2, B2), LS: (A3, B3), HS: (A4, B4), DY: (A5, B5), and RMIL: (A6, B6) 

 
6. Conclusions 

 
This study defines a new conjugate gradient formula by modifying the classical LS formula for 

optimization problems and image restoration. An important property of our method is that it satisfies 
the descent condition under suitable condition and the convergence results was established under 
exact minimization conditions. The efficiency of the new formula was evaluated by comparing its 
numerical performance with that of other methods with similar characteristics. The comparison is 
done based on iteration number and CPU time and all results show that the proposed algorithm 
produced best performance on all metrics. To further demonstrate the efficacy of our proposed 
formula, we applied the method to restore images corrupted by impulse noise and the results also 
showed that the new method was able to restore images with better accuracy which further 
confirmed the efficiency and robustness of our method.  
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