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Scalar multiplication in elliptic curve cryptography is the most expensive and time-
consuming operation. The elliptic curve cryptography attracted interest due to the 
development of modern technology since it could offer the equivalent high level of 
security with a reduced length of key. Therefore, improving elliptic curve scalar 
multiplication performance has always been the primary goal of cryptography. In this 
paper, a novel scalar multiplication algorithm based on the modified double and double 
add via elliptic net with Karatsuba method was proposed in order to enhance the 
efficiency of scalar multiplication. In the experimental results, the elliptic net 
equivalence sequence was applied to the Twisted Edwards curve together with safe 
curves of numsp384t1 and numsp512t1. At the point operational level, the proposed 
method reduced the cost of multiplication by 46.15% and 42.30% for double and 
double add, respectively, when compared to elliptic net using eight blocks method. The 
proposed double lowered the multiplication cost by 12.5% and the squaring cost by 
20% when compared to elliptic net using ten temporary variables method. Following 
this, proposed double add cost reductions of 6.25% and 20% were obtained to 
multiplication and squaring. At the field operational level, in comparison to the binary 
method, the eight-block elliptic net method, and the elliptic net method with ten 
temporary variables for the 384 bits scenario, the developed scalar multiplication 
algorithm obtained cost reductions of 57.6%, 31.3%, and 13.2%, respectively. On 512 
bits with similar comparison, the designed algorithm exhibited better performance by 
averages 59.2%, 31.0% and 13.2%. The results signified that the designed algorithm 
over prime field performed better at the point and field operational levels with larger 
scalar bit size.  
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1. Introduction 
 

The Elliptic Curve Cryptography (ECC) was initiated by Miller [1] and Koblitz [2]. ECC provides 
equal security to Rivest-Shamir-Adleman scheme but with a smaller key size. For instance, RSA 
requires a key size of 2048 bits to reach a security level of 112 bits, but ECC only needs 224 bits [3]. 
Besides that, ECC uses less hardware and memory and faster [4]. It is thus appropriate for memory-
constrained devices like smart cards [5]. ECC relies on the scalar multiplication (SM) algorithm for 
efficiency [6]. 

SM is the operation to compute the n-multiple of points in the EC group [7]. P and Q are points 
on the EC, where the process is indicated by n times, with n as a positive integer. That means, 
Q=nP=P+P+P+⋯+P (for n times). Traditionally, SM relies on the points doubling and addition on an 
elliptic curve (EC) using the binary method (BM). The digits are scanned bits by bits to perform points 
double add when digits “1” and point double when digits “0”. SM algorithm includes Multiplication 
(M), Squaring (S), and Inversion (I) field operations. The inversion operation required for the 
computation of SM using BM results in expensive costs in ECC [9]. Projective coordinates are 
therefore suggested in the previous studies [10-12] in order to prevent the inversion, but doing so 
incurs additional costs. To eliminate the inversion, some scholars suggested using Jacobi coordinates 
[13]. Besides the projective coordinates, recent researchers focused on improving the efficiency of 
SM by reducing the Hamming weight by converting the binary number to a new representation such 
as non-adjacent form (NAF) [14-15] or {0,1,3)-NAF [16,17].  

Another method that can be used to compute the SM is the double and double add via elliptic 
net (EN) as proposed by [8]. From the EN perspective, reducing the number of operations in double 
and double add methods can generate faster SM and consequently efficient ECC. These double and 
double add operations via EN do not involve inverse operation which is suitable for restricted devices 
[18] and the cost of double is equal to the double add step in each iteration loop of the algorithm 
[19]. The EN approach can withstand side-channel attacks and does not rely on the scalar's Hamming 
weight since these two functions are equal [18-20]. The authors in [21] used the division polynomials 
to compute small scalar multiplications in Affine and Jacobian coordinates. However, the conversion 
to Affine coordinate slows the computation and only improves the SM algorithm at the point 
operational level.  

The primary purpose of this research is to improve the performance of SM in Affine coordinate 
over prime field using elliptic net at the point and field operational levels. The research outcomes are 
intended to confirm the relationships between the Karatsuba method, equivalent sequences on 
elliptic nets, and division polynomials of Twisted Edwards curve. Specifically, a new SM algorithm 
using modified double and double add with Karatsuba method [22] is proposed. 

 
1.1 Twisted Edwards Curve 

 
As a generalisation of the Edwards curve [24], the Twisted Edwards curve over prime field was 

presented by [23], and the curve has been utilised to accelerate the points addition and doubling on 
the Edwards curve. The general form of Twisted Edwards curve with 𝑎	 ≠ 𝑑 is represented by 𝑎𝑥! + 
𝑦! = 1 +	𝑑𝑥!𝑦!. A corresponding Edwards curve's quadratic twist is the basis for every Twisted 
Edwards curve. Given that the addition formula may be utilised for doubling and that it is complete 
by defined formula for all inputs, the group law of the Twisted Edwards curve is said to be unified 
[25]. The addition formulas in affine coordinates for Twisted Edwards curve are given as follows. Let 
𝑃 = ,𝑥",𝑥"-, 𝑄 = ,𝑥!,𝑥!-	and 𝑃 + 𝑄 = ,𝑥$,𝑥$- be points on the EC. If 𝑃 = 𝑄, then the point doubling 
is denoted by, 
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𝑥$ =
!%!&!
'%!"(	&!"

, 𝑦$ =	
&!#" 	'%!"

!*'%!"(	&!"
	           (1) 

 
If , then the point addition is generated by, 
 

𝑥$ =
%!&"(&!%"	
"(+%!%"&!&"

, 𝑦$ =	
&!&"(	'%!%"
"*+%!%"&!&"

	           (2) 

 
From Eq. (1), the cost of addition point is 7𝑀 + 2𝐼 and the cost for double a point is 2𝑀 + 2𝑆 +

2𝐼 as Eq. (2).  
 

1.2 Twisted Edwards Curve’s Division polynomials 
 
The Twisted Edwards’s division polynomials are defined by 𝛹,(𝑥, 𝑦) over F- and the rational 

functions 𝛹,(𝑥, 𝑦) on the function field of elliptic curve for 𝑛 ≥ 0 are denoted by, 
 

𝛹. = 0,𝛹" = 1,𝛹! =
('*+)("(&)
!%("*&)

           (3) 

 

𝛹$ =
('*+)$('(!'&!*!+&$*+&%)

(!("*&))%
           (4) 

 

𝛹1 =
!('*+)&&("(&)('*+&%)

%(!("*&))'
              (5) 

     
Recursively, 𝛹,	can define the division polynomials for 𝑛 ≥ 5 using: 
 

𝛹!,(" = 𝛹,(!𝛹,$ −𝛹,*"𝛹,("$               (6) 
 

𝛹!𝛹!, = 𝛹,(𝛹,("𝛹,*"! −𝛹,*!𝛹,("! )           (7) 
 
The auxiliary polynomials from the equation for the Twisted Edward curve are represented by,  
 

𝜙, =
("(&)2("

("*&)
−	12(#!2()!

('*+)
	              (8) 

 
 𝜔, =

!2"(
('*+)2(

	                (9) 

 
The set of Twisted Edward’s division polynomials from Eq. (8) and Eq. (9) can be expressed as 

multiple points as follows: 
 

𝑛𝑃 = ,𝑥,,𝑦,- = 	@
3(2(
4(

, 3(*2(
"

3(*2("
A                       (10) 

        
The EDS sequence denoted by must meets that for all 𝑚 > 𝑛, then ℎ5(,ℎ5*, =

ℎ5("ℎ5*"ℎ,! − ℎ,("ℎ,*"ℎ5! [26]. Another condition that needs to be satisfied is  divides  
whenever n divides m. The generalisation of EDS to EN using 𝑤5(,𝑤5*, = 𝑤5("𝑤5*"𝑤,! −
𝑤,("𝑤,*"𝑤5!  has been proposed by [19].  

 

¹P Q

!0 1, , , nh h h

nh mh
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1.3 Binary method 
 
This section reviews the traditional method for SM computation namely as BM algorithm [27].  
 
Algorithm 1. BM 
Input: An affine point 𝑃 ∈ 𝐸,F-- and 𝑛 = (𝑛6*", … , 𝑛.)!. 
Output: 𝑛𝑃 ∈ 𝐸,F--. 
1.  For i from l-2 down to 0 do 
2.  𝑄 ← 2𝑄 
3.  If 𝑛7 = 1 then  
     3.1 𝑄 ← 𝑃 + 𝑄  
4. Return Q.   

 
Referring to Algorithm 1, Line 2 denotes the process of double (see Eq. (1)) and Line 3 in the 

process of addition (see Eq. (2)). In BM, the operation involves is double and double add. The cost of 
double add is the total cost of double and addition. Thus, the cost of double add is 9𝑀 + 2𝑆 + 4𝐼. 
Let ℎ and 𝑙 be the scalar Hamming weight and the bit length, respectively. 

Proposition 1. For a sufficiently large scalar 𝑛 = (𝑛6*", … , 𝑛.)!, the complexity of BM in terms of 
double and double add processes is denoted by 

 
𝐶89 = (𝑙 − ℎ)𝑑𝑜𝑢𝑏𝑙𝑒 + (ℎ − 1)𝑑𝑜𝑢𝑏𝑙𝑒	𝑎𝑑𝑑                              (11) 

 
Proof.  From BM Algorithm, it is clear that line 2 executed consecutively for every non-zero digit 

𝑛7  and 𝐼 − 2 ≤ 𝑖 ≤ 0. For every 𝑛7 = 0, line 2 operates as double process and for every 𝑛7 = 1, lines 
3.1 operate as double add process. When line 2 executes for 𝐼 − 2 ≤ 𝑖 ≤ 0, this excludes 𝑛:*"	from 
𝑛 = (𝑛6*", … , 𝑛.)! and double add is performed as ℎ − 1 times. Since double add operates for every 
non-zero digit  and 𝐼 − 2 ≤ 𝑖 ≤ 0, then double is executed as 𝑙 − ℎ times. Therefore, the overall 
cost of Algorithm 1 is 𝐶89 = (𝐼 − ℎ)𝑑𝑜𝑢𝑏𝑙𝑒 + (ℎ − 1)𝑑𝑜𝑢𝑏𝑙𝑒	𝑎𝑑𝑑. 

 
2. Methodology  

 
The Twisted Edwards curve division polynomial sequences satisfy with the non-linear recurrence 

relation. Let 𝑃 = (x", 𝑦") be a point on the Twisted Edwards curve of the form 𝑎𝑥! + 𝑦! = 1 +
𝑑𝑥!𝑦!  over prime field F-, the rational functions 𝛹,(𝑥, 𝑦) on the function field of EC are the division 
polynomials. For developing the new SM algorithm, the following Lemma pertaining to elliptic 
divisibility sequence (EDS) is required: 

 
i. Lemma 1: Let {𝛹,} denotes the proper EDS over  with p elements with 𝛹! ≠ 0. Then, 

there exists 𝑤, over F- which is equivalent to the sequence {𝛹,}. 
ii. Proof: Assume {𝛹,} is defined over F-. The cube root c of 𝛹!*" that lies in F- can be found. 

Suppose that gcd(𝑝 − 1,3) = 1. To change the 𝛹! to 1, choose c such that 𝑐$ =	𝛹!*" then 

𝑐$ = ]𝛹!*"
$ . To solve the cube root modulo p,  use the formula √𝑢$ = 𝑢

"*#!
$ mod𝑝 [28] 

then 𝑐 = (𝛹!)
!#"*
$ . A sequence 𝑊, by 𝑊, = 𝑐,"#!𝛹, for any integer n with 𝑤! = 1. The 

sequence 𝑊, is an EN over F- since c and 𝛹, belongs to F-. This completes the proof. 
 
The next EN values can be calculated using Eq. (3), Eq. (4) and Eq. (5) respectively, 

in

pF
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𝑊. = 0,𝑊" = 𝑐.𝛹" 
𝑊! = 𝑐$𝛹!,𝑊$ = 𝑐;𝛹$,𝑊! = 𝑐"<𝛹1 
𝑊< = 𝑊1𝑊!

$ −𝑊"𝑊$
$ 

 
The multiple points denoted by 𝑛𝑃 via EN Twisted Edwards curve can be calculated as stated 

below: 
Theorem 1: Let 𝑤, defined from Lemma 1 and 𝑊! = 𝑐$𝛹!. If 𝑃 = (x", 𝑦") on Twisted Edwards 

curve over prime field, then 𝑛𝑃 = (x,, 𝑦,) can be computed as follows: 
 

𝑥, =
('*+)=(>+"?

!>"(
                                   (12) 

 

𝑦, =
=(*>+"?"

=((>("?"
                                    (13) 

 
Where 
 

𝜎, =
("(&)>("?"

"*&
−	1>(#!>()!

'*+
                               (14) 

 
Proof: Note that 𝛹, =	𝑐"*,

"𝑊, for any integer i and 𝑐$ = 𝛹!*". By Eq. (8) and Eq. (9), 𝜙, was 
obtained, then by Eq. (10), 𝑛𝑃 = (x,, 𝑦,) can be produced. That means,  

 

𝜙, =	
(1 + 𝑦)𝛹,!

1 − 𝑦 −	
4𝑊,*"𝑊,("

𝑎 − 𝑑 	 

 

							= 	
(1 + 𝑦)𝑊,!𝑐!("*,

")

1 − 𝑦 −	
4𝑊,*"𝑐!("*,

")𝑊,("𝑐"*(,(")
"

𝑎 − 𝑑  

 

							= 	
(1 + 𝑦)𝑐!𝑐*!,"𝑊,!

1 − 𝑦 −	
4𝑐*!,"𝑊,*"𝑊,("

𝑎 − 𝑑  

 

							= 	 𝑐*!," c
(1 + 𝑦)𝑐!𝑊,!

1 − 𝑦 −
4𝑊,*"𝑊,("

𝑎 − 𝑑 d 

 
 

Let 𝜎, =
("(&)>("?"

"*&
−	1>(#!>()!

'*+
 and 𝜙, = 	𝜎𝑐*!,". So,  

 

𝑥, =
(𝑎 − 𝑑)𝜙,𝛹,!

2𝛹!,
 

 

						=
(𝑎 − 𝑑)𝜎𝑐*!,"𝑊,!𝑐!("*,

")

2𝑊!,𝑐"*1,
" −

(𝑎 − 𝑑)𝜎𝑐*!,"𝑊,!𝑐!𝑐*!,
"

2𝑊!,𝑐"*1,
"  
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						=
(𝑎 − 𝑑)𝜎𝑐*1,"𝑊,!𝑐!

2𝑊!,𝑐"*1,
"  

 

						= ('*+)=(>("?
!>"(

. 

 

𝑦, =
3(*2("

3((2("
  

 

						=
𝜎𝑐*!,"−𝑊,!𝑐!

(!#(")

𝜎𝑐*!,"+𝑊,!𝑐!
(!#(")

=	
𝜎𝑐*!,"−𝑊,!𝑐!𝑐*!,

"

𝜎𝑐*!,"+𝑊,!𝑐!𝑐*!,
"  

 

						= 	
𝑐*!,"(𝜎 −𝑊,!𝑐!)
𝑐*!,"(𝜎 +𝑊,!𝑐!)

 

 

						= 	 =(*>(
"?"

=((>("?")
.  

 
The performance of new SM over prime field was assessed throughout the analysis and results 

phase using point and field operational levels. The number of point operations per scalar was 
determined by the execution of the elliptic curve SM algorithm. The costs of point operations were 
assessed and contrasted using double and double add costs. An experiment was carried out using 30 
samples with various Hamming weights and fixed bit lengths to further study the relationship 
between the bit length of the scalar and its cost in the SM approaches. The examined safe Twisted 
Edwards curves namely nums384t1 and nums512t1 had 15 Hamming weights ranging from 192 to 
305 and bit lengths that satisfied the equivalence sequences of 384 and 512 bits. The running time 
of the field operations was computed using Miracl [28]. For 384-bits, the squaring and inversion were 
converted to multiplication by multiplying with 0.87 and 14.51 respectively. For 512-bits, the 
multiplication requires 0.89 and 15.26 respectively. 

 
3. Results  

 
This section highlights the modification of the double and double add functions that required on 

designing a new SM algorithm. Then, the complexity of the proposed algorithm based on the point 
and field operational levels are discussed.  

 
3.1 Modified Double and Double Add Algorithm 

 
In order to generate new Vi in double and double add blocks, the Karatsuba-Ofman method [29] 

was deployed over prime field by setting 𝑆7 = 𝑉7("! , 𝑃7 = ((𝑉7 + 𝑉7(!)! − 𝑆7 − 𝑆7(!)/2 , and 𝑅7 = 𝑆7𝑃7  
for 1 ≤ 𝑖 ≤ 4, in which the outcomes are 𝑉. = (𝑆. − 𝑆")(𝑃. + 𝑃") − 𝑅. + 𝑅" , 𝑉" = (𝑆. − 𝑆!)(𝑃. +
𝑃!) − 𝑅. + 𝑅!)𝛼, 𝑉!(𝑆" − 𝑆!)(𝑃" + 𝑃!) − 𝑅" + 𝑅!, 𝑉$((𝑆" − 𝑆$)(𝑃" + 𝑃$) − 𝑅" + 𝑅$𝛼, 𝑉! = 𝑉1 =
(𝑆! − 𝑆$)(𝑃! + 𝑃$) − 𝑅! + 𝑅$), 𝑉<((𝑆! − 𝑆1)(𝑃! + 𝑃1) − 𝑅! + 𝑅1)𝛼 and 𝑉@ = (𝑆$ − 𝑆1)(𝑃$ +
𝑃1) − 𝑅$ + 𝑅1). This new Vi had 1M each with an overall cost of 7𝑀 in double block. Similar 𝑅7 	was 
used for double add block, except that the latter block was set at 𝛽 = Ŵ(1)Ŵ(3), 𝜀 = Ŵ(2)!, 𝑡" =
𝑉$𝑉<, and , 𝑡! = 𝑉1! for 𝑉@. Then, the new terms are 𝑉. = ((𝑆. − 𝑆!)(𝑃. + 𝑃!) − 𝑅. + 𝑅!)ᾶ, 𝑉! =
((𝑆" − 𝑆$)(𝑃" + 𝑃$) − 𝑅" + 𝑅$)ᾶ,𝑉$(𝑆! − 𝑆$)(𝑃! + 𝑃$) − 𝑅! + 𝑅$,𝑉1 = ((𝑆! − 𝑆1)(𝑃! + 𝑃1) −
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𝑅! + 𝑅1)ᾶ,𝑉<(𝑆$ − 𝑆1)(𝑃$ + 𝑃1) − 𝑅$ + 𝑅1)	and 𝑉@ = (𝑡"𝜀 − 𝛽𝑡!)/𝑉!. Each value of 𝑉. until 𝑉< 
required 1𝑀, but 2𝑀 was noted in 𝑉@. Hence, the total cost of 8M was obtained for double add block. 
Algorithm 3 shows the modification of the double and double add algorithm using Karatsuba-Ofman 
Algorithm.  

 
Algorithm 3. New double and double add  
Input: A block 𝑉 = [𝑉., 𝑉", … , 𝑉A] centered at k, Boolean add, 𝛼 = 1, 𝛽 = 𝑊"𝑊$, 𝛿 = 𝑊!

!. 
Output: Block V centred at 2k if add=0 and centred at 2k+1 if add=1. 
1.  For i from 0 to 4 do 
       1.1  𝑆7 = 𝑉7("!        
2.  For i from 0 to 1 do 
       2.1  𝑃<7 = 𝑉<7𝑉<7(!        
3.  For i from 0 to 2 do 
       3.1  𝑃"(7 = ((𝑉7(" + 𝑉7($)! − 𝑆7 − 𝑆7(!)/2   
4.  For i from 0 to 4 do 
       4.1  𝑅7 = 𝑆7𝑃7       
5.  For i from 0 to 2 do 
       5.1 If  then 
                    𝑉!7 ← (𝑆7 − 𝑆7(")(𝑃7 + 𝑃7(") − 𝑅7 + 𝑅7(" 
                    𝑉!7(" ← ((𝑆7 − 𝑆7(!)(𝑃7 + 𝑃7(!) − 𝑅7 + 𝑅7(!)𝛼      
       5.2 𝑉@ ← (𝑆$ − 𝑆1)(𝑃$ + 𝑃1) − 𝑅$ + 𝑅1   
       5.3 Else 
                    𝑉!7 ← ((𝑆7 − 𝑆7(!)(𝑃7 + 𝑃7(!) − 𝑅7 + 𝑅7(!)𝛼   
                    𝑉!7(" ← ((𝑆7(" − 𝑆7(!)(𝑃7(" + 𝑃7(!) − 𝑅7(" + 𝑅7(!)  
       5.4 𝑡" ← 𝑉$𝑉<; 𝑡! ← 𝑉1!; 𝑡$ ← 𝑖𝑛𝑣𝑒𝑟𝑠𝑒(𝑉!)  
       5.5 𝑉@ ← (𝑡$𝛿 − 𝑡!𝛽)𝑡$      
6.  Return V. 

 
Lines 1.1, 2.1, and 3.1 in Algorithm 3 are the temporary variables that are the same as [18] and 

[30]. This research adds line 4.1 which contains five temporary variables, 5𝑀 that are used for both 
double and double add compared to [30] which contains 10 different temporary variables for double 
and double add. Compared to Algorithm 1 (line 1.2), the cost is reduced from 6𝑀 to 2𝑀 + 4𝑆 by 
applying the squaring and multiplication trade-offs inspired by [18] by replacing it with 𝑃"(7 =
((𝑉7 + 𝑉7(!)! − 𝑆7 − 𝑆7(!)/2 for 1 ≤ 𝑖 ≤ 4. Lines 5.1 and 5.2 utilized the new formula (see Eq. (12) 
and Eq. (13)). Line 5.1 denotes the process of double which produces a block centred at 2K while line 
5.2 represents the double add process produces a block centred at 2K+1.  

In comparison to Algorithm 1, a reduced cost was obtained from 20M to 10M with five temporary 
variables. Furthermore, as α=1 existed in double and double add processes, this reduces 3M in each 
iteration. Lines 5.2 and 5.5 is the last terms in the EN generated with a cost 1M for double and double 
add respectively. The cost of Line 6.2 could be ignored because 𝑡" and 𝑡! must be calculated in the 
next iteration to update the block and become 𝑆$ and 𝑃$, while the cost of 𝑡$ could be removed with 
binary inverse algorithm. Thus, the cost of Algorithm 3 is 14𝑀 + 8𝑆 for double and 15𝑀 + 8𝑆 for 
double add operation. In comparison to [8], the proposed method obtained 46.15% and 42.30% 
multiplication cost reductions for double and double add, respectively. In comparison to [30], the 
proposed double reduced the multiplication cost by 12.5% and squaring cost by 20%. This was 
followed by 6.25% and 20% cost reductions in multiplication and squaring via proposed double add. 

= 0add
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Now, the proposed double and double add is used to create a new design for the SM algorithm as 
depicted in Algorithm 4. 

 
Algorithm 4: New SM algorithm via EN  
Input: 𝑛 = (𝑛6*", … , 𝑛.)!, with 𝑛6 = 1, 𝑃 ∈ 𝐸,F--, 𝑎, 𝑑 ∈ 𝐸,  

𝐾 = Ŵ(2), 𝐿 = Ŵ(3),𝑀 = Ŵ(4), ᾶ = Ŵ(2)*", 𝐴 = (1 − 𝑦)*", 𝐵 = (𝑎 − 𝑑)*", c such that 𝐶$ =
ᾶ, 𝑐!("*,"), 𝑆 = 𝑐*!,"  and 𝑇 = 𝑐"*1,"). 

Output: (𝑥,, 𝑦,). 
1.  𝑉 ← [−𝐾,−1,0,1, 𝐿, 𝐿,𝑀] 
2.  For i from 𝐼 − 1 down to 0 do 
       2.1 If 𝑛7 = 0 then 
          𝑉!7 ← (𝑆7 − 𝑆7(")(𝑃7 + 𝑃7(") − 𝑅7 + 𝑅7(" 
          𝑉!7(" ← ((𝑆7 − 𝑆7(!)(𝑃7 + 𝑃7(!) − 𝑅7 + 𝑅7(!)𝛼       
          𝑉@ ← (𝑆$ − 𝑆1)(𝑃$ + 𝑃1) − 𝑅$ + 𝑅1.  
       2.2 Else 
          𝑉!7 ← ((𝑆7 − 𝑆7(!)(𝑃7 + 𝑃7(!) − 𝑅7 + 𝑅7(!)ᾶ 
          𝑉!7(" ← (𝑆7(" − 𝑆7(!)(𝑃7(" + 𝑃7(!) − 𝑅7(" + 𝑅7(!       
        𝑡" ← 𝑉$𝑉< 
         𝑡" ← 𝑉1! 
       𝑡$ ← 𝑖𝑛𝑣𝑒𝑟𝑠𝑒(𝑉!) 
       𝑉@ ← (𝑡$𝛿 − 𝑡!𝛽)𝑡$ 
3.  𝑉 ← [𝑉., 𝑉", 𝑉!, 𝑉$, 𝑉1, 𝑉<, 𝑉@, 𝑉A]  
4.  𝑆. ← 𝑉!!; 𝑆" ← 𝑉$!; 𝑆! ← 𝑉1!   
5.  𝐽 ← 𝑉$(𝑉<𝑆.−𝑉"𝑆!)  
6. 𝐾 ← [(𝑉! + 𝑉1)! − 𝑆. − 𝑆!]/2  
7. L← 𝐴𝐵𝑆"𝑅 − 4𝐾𝐶    
8. M← 2𝐽       
9. 𝑁 ← 𝐿 + 𝑆"𝑅     
10. 𝑂 ← 𝑖𝑛𝑣𝑒𝑟𝑠𝑒(𝑀𝑁)     
11. 𝑥, ← (𝑎 − 𝑑)𝑔𝐿𝑆"𝑂𝑁  
12. 𝑦, ← (𝐿 − 𝑆"𝑅)𝑂𝑀  
13.   Return (𝑥,, 𝑦,). 

 
From Algorithm 4, the generation of EN block is computed with double or double add of 

sequences in lines 3 or 4. This process takes 𝑙 − 1 time based on the Boolean values ‘0’ or ‘1’.  The 
process of lines 3 and 4 are based on Algorithm 2 which means for every zero Boolean processes 
double is executed and the nonzero Boolean process double add is computed. The double add is 
executed for ℎ − 1 times while the double add is for 𝑙 − ℎ times. Lines 5 until 11 are the variables 
calculated using the EN value from the last block generated n0 based on the Eq. (14) to Eq. (16) with 
cost 7M+4S. The inversion in line 11 is computed using the binary inversion algorithm [31] which 
replaces the inversion with cheaper shifts divisions by 2 and subtraction [32]. Thus, the overall cost 
of Algorithm 5 uses double to illustrate the double process in line 3 and double add to illustrate the 
double add process in line 4 and 𝐶𝐿" to illustrate the cost of multiple points (see lines 5-13). The point 
operational cost of the proposed algorithm is stated in the following proposition: 

Proposition 1. For a sufficiently large scalar 𝑛 = (𝑛6*", … , 𝑛.)!, the complexity of Algorithm 4 in 
terms of double, double add processes is denoted by 

 

[ ]¬ 0 1 2 3 4 5 6 7, , , , , , ,V V V V V V V V V



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 40, Issue 2 (2024) 22-35 

30 
 

𝐶BCD-DEF+ = (𝑙 − ℎ)	double	 +	(ℎ − 1)	double	add + 𝐶𝐿"	                       (15) 
 

      Proof.  From Algorithm 4, the required number of doubles add process depends on Hamming 
weight of the scalar denoted by h. Since the first digit of the scalar nl-1 will not be counted then the 
double add process is ℎ − 1 times while the remainder of the bit length after subtracting by the 
hamming weight is a double process. Thus, the double process is executed for 𝑙 − ℎ times. The cost 
of multiple points formula using Twisted Edwards curve is denoted by 𝐶𝐿". Therefore, the cost of the 
proposed algorithm is the total of double, double add process, and SM where the cost is 𝐶BCD-DEF+ =
(𝑙 − ℎ)double	 +	(ℎ − 1)	double	add + 𝐶𝐿".  Recall back the complexity of ENPM algorithm 
proposed by [30] is 𝐶[$.] = (𝑙 − 1)𝑑𝑜𝑢𝑏𝑙𝑒 + 𝐶𝐿.  with 1	𝑑𝑜𝑢𝑏𝑙𝑒 = 16𝑀 + 10𝑆 and 𝐶𝐿. = 8𝑀 +
3𝑆 + 1𝐼. 

An experimental data is developed using 30 sets of data with 15 different Hamming weights for 
384 and 512-bit sizes. The following is a description of the running environment required for this 
research: 8 GB of memory and a 1.80 GHz Intel Core i-7 8565 CPU. The converted running time for 
one multiplication for 384-bits is 5.8×10-7s, while for 512-bits is 8.5×10-7s.   

 
3.2 Point Operation Cost 

 
The cost of point operation for the proposed algorithm is assessed using Eq. (15). Then, the cost 

was compared to other proposed methods in the literature. Table 1 summarizes the cost of point 
operations using various SM methods.  

 
Table 1 
Point operational cost 

Method 384-bits 512-bits 
[27] 191 double add +192 double 255 double add +256 
[8] 383 double + CL0 511 double + CL0 
[30] 383 double + CL0 511 double + CL0 
This work 191 double add +192 double + CL1 255 double add + 256 double+CL1 

 
Referring to Table 1, on average cases, for 384-bits, the Hamming weight is 192 while for 512-

bits, the Hamming weight is 256. Note that, the point operational cost for [26] was computed using 
Eq. (11), while the cost for [8] and [29] was evaluated based on 𝐶 = (𝑙 − 1)	𝑑𝑜𝑢𝑏𝑙𝑒 + 𝐶𝐿. where 
𝐶𝐿. = 8𝑀 + 3𝑆 + 1𝐼 is the cost of multiple points formulas on a short Weierstrass curve.   

 
3.3 Field Operational Cost 

 
Referring to Table 1, the costs of field operations over prime field for 384 and 512 bits denoted 

by 𝐶𝐹$;1 and 𝐶𝐹<"!, respectively, were computed by plugging in 1	𝑑𝑜𝑢𝑏𝑙𝑒 = 14𝑀 + 8𝑆, 
1	𝑑𝑜𝑢𝑏𝑙𝑒	𝑎𝑑𝑑 = 15𝑀 + 8𝑀𝑆, and 𝐶𝐿" = 14𝑀 + 4𝑆. That means,  

 
       𝐶𝐹$;1 = 192𝐷𝐵𝐿 + 191𝐷𝐵𝐿𝐴𝐷𝐷 + 𝐶𝐿" 

																			= 192(14𝑀 + 8𝑆) + 191(15𝑀 + 8𝑆) + 14𝑀 + 4𝑆 
																			= 2688𝑀 + 1536𝑆 + 2865𝑀 + 1528𝑆 + 14𝑀 + 4𝑠 
																			= 5567𝑀 + 3068𝑆. 
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Similar computation can be conducted for 512 bits and Table 2 summarises the costs of field 
operations over prime field using various SM methods. Notably, the proposed method over prime 
field decreased the number of field inversions by 100% for 384- and 512-bit lengths.  
 

Table 2 
Field operation cost 
Method 384-bits 512-bits 
[27] 2103M + 766S + 1148I 2807M + 1022S + 1532I 
[8] 9966M + 2301S + 1I 13294M + 3069S + 1I 
[30] 6136M + 3833S + 1I 8184M + 5113S + 1I 
This work 5567M + 3068S  7423M + 4092S 

 
From Table 2, the proposed SM optimized the cost by 14𝑀 + 8𝑆 using equivalent sequence 

properties, multiplication-squaring trade-offs, and seven terms of EN block with the Karatsuba 
method. Recall back that the bit lengths that satisfied Lemma 1 were 384 and 512 bits. The calculated 
number of multiplications relied on Tables 1 and 2. Consider a scalar 𝑛 with 𝑙 − 384 and ℎ − 192. 
The total number of multiplications for 384 bits in the proposed SM denoted by 𝑇𝑀$;1 was obtained 
using 1𝑆 = 0.87𝑀, as listed in the following: 

 
       𝑇𝑀$;1 = 5567𝑀 + 3068𝑆 
                    = ,5567𝑀 + 3068(0.87)-𝑀 
                    = 8236.16𝑀. 
  
Similar computation was made for 512 bits but using 1𝑆 = 0.89𝑀 and these values were 

compared with [27,8,30] as shown in Figure 1. 
 

 
Fig. 1. Estimated number of multiplications 

 
According to Figure 1, the proposed SM is far more efficient than [27,8,30]. For 384-bits, [27,8,30] 

need 19426.90M, 11982.38M, and 9485.22M respectively, while the proposed SM needs 8236.22M. 
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When the bit size increased to 512-bits, the proposed SM only needs 11064.88M compared to 
27094.9M of [27], 16040.67M of [8], and 12749.83M of [30]. Furthermore, the cost for [27] and the 
proposed SM is increased when the Hamming weight and bit size increase. For the EN method, the 
cost does not change when the Hamming increase in the same bit size but the cost increase as the 
bit size increase. Overall, the SM cost for all methods is increased when the bit size increased. The 
running time for 384 bits denoted by RTP384 was determined by converting the total multiplications 
in Fig. 1 using 1𝑀 = 5.8𝑥10*A𝑠. That means, 

 
𝑅𝑇B$;1 = 8236𝑀(5.8𝑥10 − 7)𝑠 

       = 0.00478𝑠. 
 
Similar computations can be conducted for 512 bits using 1𝑀 = 8.5𝑥10*A𝑠 for related SM 

approaches and Table 3 compares the SM complexity in terms of running time. 
 

Table 3 
Running time for SM methods 
in seconds (s) 
Method 384 bits 512 bits 
[27] 0.01127 0.02303 
[8] 0.00695 0.01363 
[30] 0.00550 0.01084 
This work 0.00478 0.00941 

 
From Table 3, at 384-bits, the proposed method speeded up the running times by 57.6% 

compared to [27], 31.3% compared to [8], and 13.2% compared to [30]. On similar comparison, the 
percentages of speed up for 512-bits were computed to 59.2%, 31.0%, and 13.2%, respectively. The 
cost of the proposed algorithm was then compared with method in [27] in order to determine the 
minimal Hamming weight necessary to make the proposed method more effective than BM over 
prime field [27]. However, no comparison was made between [8] and [30]. 

By substituting 1	𝑑𝑜𝑢𝑏𝑙𝑒 = 14𝑀 + 8𝑆, 1	𝑑𝑜𝑢𝑏𝑙𝑒	𝑎𝑑𝑑 = 15𝑀 + 8𝑀𝑆, and 𝐶𝐿" = 14𝑀 + 4𝑆 
into Eq. (15) gives the following: 

 
𝐶BCD-DEF+ = (𝑙 − ℎ)	(14𝑀 + 8𝑆) 	+	(ℎ − 1)	(15𝑀 + 8𝑀𝑆) + 14𝑀 + 4𝑆	                   (16) 

 
Plugging in 1	𝑑𝑜𝑢𝑏𝑙𝑒 = 2𝑀 + 2𝑆 + 2𝐼 and 1	𝑑𝑜𝑢𝑏𝑙𝑒	𝑎𝑑𝑑 = 9𝑀 + 2𝑆 + 4𝐼 into Eq. (11), the 

following is obtained: 
 

𝐶89 = (𝑙 − ℎ)(2𝑀 + 2𝑆 + 2𝐼	) + (ℎ − 1)(9𝑀 + 2𝑆 + 4𝐼)                            (17) 
 
By comparing Eq. (16) and Eq. (17), it can be shown that the proposed algorithm over the prime 

field is more cost-effective than [27] in terms of operational cost. Suppose that 𝐶BCD-DEF+ < 𝐶89 .	For 
𝑙 = 384 with 1𝑀 = 5.8𝑥10*A𝑠, the average case was computed such that  

 
(𝑙 − ℎ)	(20.96𝑀) +	(ℎ − 1)	(21.96𝑀) + 17.48𝑀 < (𝑙 − ℎ)(32.76𝑀) + (ℎ − 1)(68.78𝑀) 

12.1568 𝑙 + 0.58 ℎ − 2.5984 < 19.0008 𝑙 + 20.8916 ℎ − 39.8924 
ℎ > −127. 
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Similar average case can be computed for 𝑙 = 512 with 1𝑀 = 8.5x10*A𝑠 and ℎ > −182 was 
obtained. Since the required minimum Hamming weight is negative, then this depicted that the 
proposed SM algorithm over the prime field outperforms [27] in the average scenario. For the worst-
case scenario that means ℎ = 𝑙 and when substituting 𝑙 = 384 and 𝑙 = 512, the proposed over prime 
field also obtained better cost than [27]. The results of this study indicated that in each different bit 
lengths, the proposed SM attained better cost than [27] when ℎ > −127 and ℎ > −182. 
Surprisingly, the best performance was obtained by the proposed SM method when ℎ = 𝑙. 

 
4. Conclusions 

 
The choice of SM algorithm directly impacts the security of cryptographic systems, particularly in 

ECC. The proposed SM is one of robust algorithm that resists to side-channel attack and its 
vulnerability is imperative to ensure the confidentiality and integrity of sensitive information in 
engineering system. The enhanced SM algorithm has been designed using modified double and 
double add with seven terms of EN. At the point operational level, the cost of the new double and 
double add was evaluated to 14M+8S and 15M+8S which saved 2M+2S in double and saved 1M+2S 
in double add compared to the latest reported in the literature. On the other hand, the proposed 
double obtained the cost reduction by 12.5% in multiplication, 20% in squaring, while double add 
attained 6.25% in multiplication and 20% cost reductions in squaring. The improvement started by 
implementing the equivalent sequence into Twisted Edwards division polynomials. The equivalent 
sequence where the scalar had binary representation was applied to create the new explicit formulas 
upon Twisted Edwards curve in the designed SM algorithm.  

The experimental data for the prime field with 30 samples were developed under the assumption 
that the 384 and 512 bits were fixed, and that the average Hamming weight varied between 192 and 
305. The performance of the designed algorithm by bit length, Hamming weight, and running time 
was evaluated using the data. The experimental results from the field operation analysis upon the 
Twisted Edwards curve of numsp384t1 indicated that the designed algorithm enhanced the SM 
computation by 57.6%, 31.3% and 13.2% compared to [27,8,30]. While nums512t1 reduced the cost 
of SM by 59.2%, 31.0% and 13.2% for [27,8,30], respectively. The results also showed that the 
enhanced SM algorithm over prime field worked better with bigger scalar bit size. The percentage of 
speed up in the enhanced algorithm may be higher if tested on the different running environments. 
As the enhanced SM algorithm does not contain inverse operation, this research will lead to other 
advancements such as [33] in developing the SM algorithm in ECC. 
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