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In this paper, we introduce the standard Homotopy Perturbation Method (HPM) for 
obtaining semi-bounded solutions of the first kind of system of Cauchy-type singular 
integral equations (CSIEs) with constant coefficients. We use the Gauss elimination 
technique to reduce the system of CSIEs to a diagonal triangle system of algebraic 
equations. We then apply the HPM to solve the resulting equations. By applying the 
theory of semi-bounded solutions of CSIEs, we can determine the inverse operators for 
the first kind of CSIEs. We demonstrate that the proposed method is exact for the 
system of characteristic SIEs, regardless of the choice of initial guesses (in the Holder 
class of functions). To illustrate the validity and accuracy of our proposed method, we 
supply and analyse three examples. We compare the results obtained using our method 
with those obtained using the Chebyshev collocation and Galerkin methods. Our 
method includes the ability to solve the complex-valued system of CSIEs. Based on the 
numerical results, we conclude that the HPM is more dominant than the other methods.  
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1. Introduction 
 

The SIEs of both Abel and Cauchy types are well-known to exist in various scientific fields, such as 
Jakeman and Anderssen [1] applied it in stereology, Healy et al., [2] in radio occultation (RO) 
measurements, Bracewell and Riddle [3] in radio astronomy, Buck [4] in molecular scattering, Kosarev 
[5] in electron emission, Hellsten and Andersson [6] in radar ranging, Fleurier and Chapelle [7] in 
plasma spectroscopy, and Glantschnig and Holliday [8] in X-ray tomography, among others. 

Investigations of the system of SIEs have attracted much concern in the applied sciences. Their 
general ideas and essential features are broadly applicable in engineering science. The solution to a 
large class of mixed boundary value problems in physics and engineering is reduced to a one-
dimensional system of SIEs. The system of Cauchy and Abel type SIEs, their generalized form, and the 
weakly type SIEs, using a variety of methods [9,10]. There are many methods developed for one-
dimensional CSIEs can be seen in review papers by several authors [11-14]. Unfortunately, less 
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research has been done on the system of CSIEs. Nevertheless, the HPM method for the system of 
CSIEs has rarely been applied, and very few articles have been published. 

HPM and homotopy analysis method (HAM) are crucial methodologies utilized to tackle both 
linear and nonlinear problems across multiple fields of science and technology. These approaches 
have demonstrated their effectiveness in solving various types of nonlinear problems. For example, 
Alhawamda et al., [15] successfully applied them to solve the nonlinear Fredholm Integral Equation, 
while Biazar and Ghazvini [16] utilized them for Abel's integral equations. Several authors have 
employed these methods to address nonlinear functional integral equations [17,18], nonlinear 
equations [19,20], special non-linear Fredholm integral equation by Aminikhah and Salahi [21], the 
quadratic Riccati differential equation by Odibat and Momani [22], the nonlinear second-order 
differential equation by Cveticanin [23], the Zakharov–Kuznetsov equations by Biazar et al., [24], the 
non-linear partial differential equations by Biazar et al., [25] and many others. 

In this note, the application of HPM is demonstrated for a semi-bounded solution of the first kind 
of system of CSIEs of the first kind given by 
 

       (1) 

 
where  and  are given constants with , , the forcing functions

and kernels  are all known to be real-valued or complex-valued continuous functions and 
 are unknown functions to be determined. 

 
2. Methodology and Reduction Techniques 

 
It is known that the characteristic singular integral equations of the form  

 

             (2) 

 
has four types of solutions (bounded, unbounded and semi-bounded). Based on the theory of 
solutions in Lifanov [13], we obtained semi-bounded solutions of Eq. (1) in the following form: 

Case 1: The solution is bounded at the endpoint , but unbounded at the endpoint  as 
follows 
 

         (3) 

 
Case 2: The solution is bounded at the endpoint , but unbounded at the endpoint , as 

follows 
 

        (4) 
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          (5) 

 
where  
 

          (6) 

 
To solve Eq. (5), in the case of , extension matrix  has the form  

 

            (7) 

 
By applying the Gaussian elimination technique to Eq. (7), we obtain 

 

          (8) 

 
where  and 
 

        (9) 

 
Then, Eq. (5) and Eq. (6) has the form 

 

                    (10) 

 
In order to generalize Eq. (10) for different values of , we can write it in the following operator 

form: 
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where  and 
 

                (12) 

 
Here, is given by Eq. (6), while coefficients  and  are defined by solving  

algebraic equations. 
To find semi-bounded solutions of Eq. (11) and Eq. (12), we search for solutions in the form:  

 

                     (13) 
 
where 
 

                        (14) 

 
Remark 1: The Gauss elimination method and the existence of an inverse operator greatly helped 

us to handle the system of CSIEs Eq. (1). Direct implementation of HPM for solving CSIEs Eq. (1) did 
not yield good results. Fortunately, the hybrid method gave us highly accurate results.  

Detailed implementation of HPM is provided in the next section. 
       

3. Description of the HPM and Its Application for the System of CSIES of the First Kind  
 
It is known from the previous studies [17,18] that the general theory of HPM for nonlinear 

equations has the form  
 

                         (15) 
 
where  is the linear operator and  is the nonlinear operator. 

Implementation of HPM to Eq. (1) yields the following 
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                 (18) 

 
By equating the coefficient of the terms according to the same power of , we obtain 

 

                (19) 

 
where  is the inverse operator of . Hence, the semi-analytical approximate solution is given by 
 

                (20) 

 
where   are defined by Eq. (14). 

In the practical problem, we usually choose the initial guess  in the standard HPM as follows:  
 

                       (21) 
 
Note that if the operator  in Eq. (11), then the operator Eq. (15) becomes 

 
                     (22) 

 
If operator  is invertible, then the exact solution of Eq. (22) is  

 
                     (23) 

 
Let us now find the exact solution of Eq. (22) using the standard HPM. From Eq. (19), it follows 

that 
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Now, from Eq. (20) and Eq. (24), it follows that 
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Schemes Eq. (24) and Eq. (25) lead to the following theorem: 
 

Theorem 1: Let the kernel in Eq. (11) be a Cauchy singular kernel given by  and 

 (Holder class). If operator  in Eq. (22) is linear, then the iterative scheme Eq. (24) 
provides an exact solution for the operator Eq. (22). 

 
4. Numerical Example 

 
Example 1: (Ahdiaghdam and Shahmorad [11], Sharma et al., [26]): Consider the system of SIEs 

of the form 
 

                    (26) 

 
where 
 

 

 
Remark 2: Example 1 is discussed by Sharma et al., [26], who found the semi-bounded solution 

for . Additionally, Ahdiaghdam and Shahmorad [11] also examined this example and derived 
the corresponding error function as follows: 
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We solve Eq. (34) using standard HPM Eq. (24). Since Eq. (34) can be written as Eq. (35) due to 
Theorem 1, we are able to get the exact solution for two cases, as shown below: 

Case 1: Let us search semi-bounded solution of Eq. (26) given in the form  
 

                (28) 

 
We choose the initial guess as follows 

 

                  (29) 

 
By applying standard HPM Eq. (24) to Eq. (27), we obtain 

 

 

                (30) 

 

 
The approximate solution of Eq. (26) for the semi-bounded solution case is 
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which is identical to the exact solution. We chose the following functions as the initial guess  

 

( ) ( ) { }1 ,   1,2 .
1i i
tu t v t i
t

+
= =

-

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

1,0 1 1 2 2

2,0 1 1 2 2

1 1 ,
975 19500
1 1 .
390 195

u t f ig t f ig t

u t f ig t f ig t

= + - +

= - + + +

( )
7 6 5 4 3 2

0 8
1,0

7 6 5 4 3 2
8

11 19 1083 3537 40161 7667 28199 13451:
10 20 1000 10000 100000 1000000 2000000 500000
6 91 603 663 11313 3143 18033                      
5 100 500 2000 25000 1000000 100000

t t t t t t tp v t t

t t t t t t ti t

= - + + - - + + - -

- - + + - - +
56491 ,    

0 2000000
æ ö

+ç ÷
è ø

( )
7 6 5 4 3 2

8
2,0

7 6 5 4 3 2
8

11 13 371 4539 10893 623 2887 1       v
10 10 250 10000 100000 10000 40000 160

11 129 1553 1789 3627 557 2599 681                    
10 100 1000 5000 6250 100000 40000 400000

t t t t t t tt t

t t t t t t ti t

= - - + + - - + -

æ
- + + - - + + - +ç
è

( )
6 5 4 3 2

1 7
1,1

6 5 4 3 2
7

,

8 633 1247 40571 263863 229697  :
5 10 1000 10000 100000 1000000 1000000

17 19 343 197 10913 282867 485561                     ,
10 100 500 2000 25000 1000000 2000000

t t t t t tp v t t

t t t t t ti t

ö
÷
ø

= - + + + - + -

æ ö
- + - - - + - +ç ÷
è ø

( )

( ) ( )

6 5 4 3 2
7

2,1

6 5 4 3 2
7

1, 2,

8 1209 753 2671 1969 127   v
5 4 1000 5000 10000 40000 20000

8 6 1273 1381 22397 10723 939              ,
5 25 1000 5000 100000 200000 80000

: 0,        v 0,      k
k k

t t t t t tt t

t t t t t ti t

p v t t

= - + + - + + - -

æ ö
- - + - - + +ç ÷

è ø
= =  2,3, .k = !

( ) ( ) ( )( )
7 6 5 4 3 2

8
1 1,0 1,1

7
8

1 1 21 13 983 2793 52631 398043 499527 256599
1 1 10 20 1000 10000 100000 1000000 2000000 1000000

11                                                              
5

t t t t t t t t tu t v t v t t
t t

ti t

æ+ +
= + = - + - - + + - + -ç- - è

-

( ) ( ) ( )( )

6 5 4 3 2

7 6 5 4 3 2
8

2 2,0 2,1

79 127 709 27551 433377 132417 135513 ,  
100 125 2000 50000 1000000 500000 500000

1 1 21 3 867 7551 7881 128 459 63
1 1 10 10 500 10000 20000 625 20000 5000

t t t t t t

t t t t t t t t tu t v t v t t
t t

öæ ö
+ + - - + - + ÷ç ÷÷è øø

æ+ +
= + = - + + - - + + -ç- - è

7 6 5 4 3 2
8 21 31 1793 572 7603 273 71 42                                                              ,

10 100 1000 625 25000 1250 6250 3125
t t t t t t ti t

öæ ö
- + - - + + - - + ÷ç ÷÷è øø



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 51, Issue 2 (2025) 124-137 

131 
 

a)               b)  

 
Remark 3: In case a), the initial guess  is chosen as part of  and , 

respectively. For case b), the initial guess  is selected as any continuous function not related 

to  and . 
 
Case 2: Let us search semi-bounded solution of Eq. (26) given in the following form  

 

                (32) 

 
Let us choose the initial guess as follows 

 

 

 
By applying standard HPM Eq. (24) to Eq. (27), we obtain 
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                 (34) 

 
which is the exact solution of Example 2. 

Remark 4: It should be noted that we obtained the exact solution for two iterations. On the other 
hand, HPM provides an exact solution for the system of CSIEs Eq. (26) with any choice of initial guess 

. 

Example 2: (Turhan et al., [9]): Solve the system of CSIEs of the form 
 

                 (35) 

 
Remark 5: Turhan et al., [9] examined Example 2, utilizing the Chebyshev series method to 

uncover a limited solution. Interestingly, they managed to attain the precise solution effectively. 
The Gaussian elimination method reduces Eq. (35) into the form 
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In this case, we apply the standard HPM Eq. (19) to solve Eq. (36), yielding 

 
 

                (38) 

 

 
The approximate solution of Eq. (35) for semi-bounded is given by 

 

                (39) 

 
which is identical to the exact solution. 

Case 2: Let us search semi-bounded solution of Eq. (35)  
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The exact semi-bounded solution of Eq. (35) is given by 
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                 (41) 

 
The approximate solution of Eq. (35) for semi-bounded is 

 

                (42) 

 
which is identical to the exact solution. 

Example 3: (Ahdiaghdam and Shahmorad [11]): Consider the system of SIEs of the form 
 

                 (43)

            
Case 1: Let us search semi-bounded solution of Eq. (43) given in the form  

 

                (44) 

 
In this case, we define the exact solution for Eq. (43) as 

 

                (45) 

 
Let us choose the following initial guesses given by 
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powerful numerical method that can provide accurate approximations for a wide range of problems. 
However, the accuracy of the approximation depends on the number of terms used in the HPM series 
expansion. In this case, it appears that the HPM was implemented using M=50 terms. The errors term 
displayed in Table 1 indicates how close the approximation obtained using the HPM with M=50 is to 
the exact solution. A smaller errors term indicates a more accurate approximation. Overall, the 
statement suggests that the HPM with M=50 provides a good approximation to the exact solution, 
as evidenced by the small errors term displayed in Table 1. 
 

Table 1 
Errors term of Eq. (43) for standard HPM for   

     

-0.999 -0.0778213726195 -0.203682184063 3.9430794036e-14 6.757624961e-16 
-0.5 -1.4113006580198 -3.977301854417 7.6365833735e-13 7.663362409e-15 
-0.2 -1.4878382141358 -4.536092116265 8.6385991638e-13 2.522065813e-15 
0.0 -1.4074074074082 -4.666666666666 8.8154997704e-13 3.700743415e-15 
0.2 -1.2156726871599 -4.626813958590 8.6355775195e-13 1.284803175e-14 
0.5 -0.6415002991003 -4.233901974057 7.6280368726e-13 3.580983847e-14 
0.999 29.714052987496 -10.13430697076 6.3551691753e-15 1.681771022e-14 

 
Case 2: We can search the semi-bounded solution of Eq. (43) given in the form  

 

                (46) 

 
In this case, the exact solution for Eq. (43) is defined as 

 

                (47) 
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indicates a more accurate approximation. Overall, the statement suggests that the HPM with M=50 
provides a good approximation to the exact solution, as evidenced by the small errors term displayed 
in Table 2. 
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Table 2 
Errors term of Eq. (43) for standard HPM for  

     

-0.999 -29.833280128329 9.776625548272 7.5170723571e-15 1.393021903e-14 
-0.5 -1.6679007776595 -2.694301256218 6.5736835538e-13 2.957089286e-14 
-0.2 -1.3971163718104 -3.211553218315 7.4416251171e-13 1.053949547e-14 
0.0 -1.2592592592600 -3.333333333333 7.5965571281e-13 2.960594732e-15 
0.2 -1.1249508448345 -3.302275060641 7.4440424325e-13 2.191699365e-15 
0.5 -0.8981004187400 -2.950901375858 6.5805207544e-13 6.438363957e-15 
0.999 -0.0414057682131 -0.153999238434 3.3977572246e-13 5.644244468e-16 

 
4. Conclusions 

 
In conclusion, our study focused on the application of the Homotopy Perturbation Method (HPM) 

for solving the system of Cauchy-type singular integral equations of the first kind. We have 
successfully developed and applied HPM to several numerical examples, as demonstrated in our 
study. The results obtained from HPM were compared with the Chebyshev series method, and it was 
observed that HPM outperformed the latter in terms of accuracy and reliability. Moreover, the 
numerical examples presented in our study demonstrate that the solutions obtained using the HPM 
method coincide with the exact solutions and provide an exact solution for the system of CSIEs with 
any initial guess in the selected examples. This indicates that HPM is a robust and effective method 
for solving the system of singular integral equations of the first kind, and it can be considered a 
valuable tool in the field of mathematical modelling and analysis. 

The findings of our study contribute to the existing literature on numerical methods for solving 
singular integral equations and provide insights into the potential of HPM for tackling such problems. 
Further research can be undertaken to explore the applicability of HPM in other areas of 
mathematical and scientific computations, as well as to investigate its performance in more complex 
scenarios. Our study demonstrates that HPM is a promising approach for obtaining semi-bounded 
solutions of the system of Cauchy-type singular integral equations of the first kind. The numerical 
examples and comparisons with other methods validate the effectiveness of HPM in providing 
accurate and reliable results. This research has the potential to contribute to the advancement of 
numerical methods for solving singular integral equations and open up new possibilities for future 
research in this area. 
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