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This paper proposes an artificial intelligence-based recommendation model for military 
cabin space environment design schemes to satisfy military cabin operators with a 
comfortable and efficient working environment and improve the safety and health of 
the operators. Each key design feature is used to extract the interactive relationship 
between the operator and the cabin design. Through the neural network, the 
operator's psychological comfort is interactively matched with the cabin space 
environment factors. As result, the interactive artificial intelligence cabin space 
environment design scheme recommendation system is recommended and 
established. The results showed that the method can optimize the environmental 
design of military cabins, alleviate some of the design complexities associated with 
military cabins, and improve the physical and mental health of operators. Additionally, 
by using an AI-based recommendation system for cabin space environment design, 
engineers can reduce the time and resources required to design military cabins, 
resulting in faster turnaround times and lower costs. 
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1. Introduction 
 

The military cabin refers to a special type of semi-enclosed or fully enclosed workplace with 
certain limitations and special performance requirements in a certain complex environment. There 
is a relatively complex man-machine-environment system in its space. It is mainly used in military 
deep-sea submersible cabins, military vehicle-mounted command systems and other fields. The 
complex environment of military cabins contains various factors, including color, temperature, air 
quality, noise and light, etc. The above factors are considered in the design process, including 
comfort, functional safety, and other issues. Therefore, under the premise of meeting the strict 
requirements of the military, it is a difficult task to design a complex and interactive military cabin 
environment. Thus, it is required to consider several design factors such as work reliability, physical 
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and mental health in order to develop a sustainable development cycle for military cabin. At this 
stage, research related to the spatial environment design of military cabins is very crucial, especially 
related to thermal comfort, noise reduction, and lighting. For example, Zhou et al., (2021) explored 
the influence of temperature and humidity on the thermal comfort of soldiers in military cabins [1]. 
The research result showed the temperature and humidity within a specific range is affecting the 
thermal comfort of soldiers. Besides that, from the same research mentioned the noise level is one 
of the significant factors that affects the space environment of military cabins. According to another 
similar research by Malhari et al., (2021) found that high noise levels in the cabin environment led to 
increased stress levels and cognitive decline, thereby affecting the overall effectiveness of soldiers 
[2]. Blanch et al., (2021) explored the effect of lighting conditions on the vision of soldiers in military 
compartments, and found that low lighting levels lead to vision loss, which affects the ability of 
soldiers to perform critical tasks [3]. The development of artificial intelligence systems in various 
industries, including aviation and navigation, has brought about innovative changes. Applying 
machine learning algorithms to cabin design can optimize the design of various aspects of the cabin, 
such as temperature and airflow, to provide comfort and efficient cabin environment. The application 
of artificial intelligence in the design of military cabins is limited, and most systems are designed for 
civilian and commercial cabins. However, military cabins have unique requirements that are different 
from civilian and commercial cabins. Veitvh et al., (2021) explored the application of artificial 
intelligence in the design of military cabins and proposed an artificial intelligence-based method to 
optimize the design process. The research showed that artificial intelligence can improve the 
efficiency and accuracy of military cabin design and reduce costs. In addition, the research also 
showed that the artificial intelligent can ensure that the final product meets the needs of military 
personnel [4]. Russo et al., (2022) proposed an artificial intelligence-based method to optimize the 
design of military cabins, considering various factors such as cabin layout, comfort, and safety. The 
study also indicated that the proposed method could reduce the design cost and improve the design 
process efficiency [5]. 

As conclusion, the above-mentioned cabin design research has the application of artificial 
intelligence theory, however it only focuses on a single factor of the cabin environment to meet the 
comfort and safety of the cabin personnel, and does not comprehensively analyze the cabin 
environmental factors. Therefore, it is necessary to develop research on the environmental design of 
cabin space complexity. Therefore, this paper applies the innovation of deep learning theory in the 
field of artificial intelligence to the environmental design of military cabins that interactively matches 
the operator's psychological comfort with the complex environmental characteristics of the cabin 
through establishment of an interactive artificial intelligence recommendation system. Through the 
system, it quickly obtains the optimal adaptability between psychological comfort and the cabin 
environment and the establishment of an interactive artificial intelligence military cabin space 
environment design scheme recommendation system to reduce the time and resources required to 
design military cabins, thereby shortening the delivery time and reducing costs. A cost-effective way 
to optimize the cabin environment and improve operator safety and health [6-10]. 
 
2. Methodology 
2.1 Construct the Overall Framework of The Military Cabin Environment Design Model 
 

As the most prominent and concentrated area of the human-machine interface, the military cabin 
has a direct impact on the psychological and physiological comfort and work efficiency of the 
operators. Therefore, in the design of the military cabin environment, it is helpful to solve the 
problem through accurate design schemes which include Operator’s comfort and efficient work 
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issues. In order to improve the accuracy of the designer's design plan and shorten the time and cost 
of designing the comfort of the military cabin environment, it is an effective way to be recommended 
to the designer. It is necessary to find a suitable and efficient recommendation system to assist 
designers in their design work in order to fulfill the preferences from operators. Based on the fact 
that the military cabin is a complex man-machine-environment system, a recommendation system 
that can obtain the recommended system the interaction between the operator and the cabin 
environment is needed. This paper will discuss the use of each key design of the operator and the 
cabin environment through an independent scoring model featuring of extracting the composition of 
the interaction between the operator and the cabin design, and obtaining the feature vector model 
through the prediction neural network from the historical and current perspectives. Extracting the 
operator’s psychological optimum comfort and the key features of the cabin environment through 
the gradient descent method to train the neural network subsequently establish an interactive 
artificial intelligence recommended system to obtain the optimal adaptability between the 
operator's psychological comfort and the cabin environment [11-16]. 

In this paper, the feature vectors of the operator and the cabin environment need to be trained 
before the neural network is initiated. In order to predict the score of an operator for a specific cabin 
environment, the feature vector corresponding to the operator and the cabin environment needs to 
input into the predicted value that is obtained from the neural network [17]. Therefore, the model 
can be divided into two main stages. The frame diagram of the research process of the military cabin 
system model is shown in Figure 1. In the feature learning stage, the feature learning model 
generates the corresponding operator and cabin environment feature vectors according to the 
operator-operator and cabin environment-cabin environment co-occurrence relationship through 
the operator's scoring matrix. The eigenvectors of the operator and the cabin environment are 
generated independently of each other, and their generation processes correspond to (a) and (b) in 
Figure 1, respectively. In the neural network training phase, the final score is obtained by the score 
prediction neural network by using the Recurrent Independent Mechanisms (RIM) feature vector of 
the operator and the cabin environment obtained from the previous pre-training as input, and is 
calculated layer by layer in the network [18]. This process corresponds in Figure 1(c) is to get an 
accurate prediction, and the neural network needs to be trained. As shown in Figure 1(d), where the 
target label of the network is the score of the corresponding operator in the scoring matrix for the 
specific cabin environment. Through training, the network can capture the interaction between the 
operator and the cabin environment. 

 

 
Fig. 1. Research process of military cabin system model 
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2.2 Pre-trained Feature Vector Model 
 

Considering that the different ratings between the operator-operator and the cabin 
environment-cabin environment are ignored, the RIM is used to represent the status of the cabin 
environment under different ratings by using different feature vectors. The process of cabin 
environment feature vector in RIM is shown in Figure 2. 

 
Fig. 2. Cabin environmental feature vector process diagram 

 
In RIM, each cabin environment will be represented by K (different cabin environment feature 

vectors), where 𝑒!" represents the feature vector of cabin environment, ti represent the score under 
k,  𝑧!,"

$,%represents the co-occurrence value in the case where 𝑒!" and 𝑒$% correspond. 
Therefore, the feature vector of the training cabin environment under RIM can be expressed by 

Eq.  (1). 

min
&̃∗,&̂∗,)∗

𝐽'* = ∑ *(�̃�!")+�̂�$% + 𝑏! + 𝑏$ − log 𝑧*!,"
*$,%5

,+
*"
#,*$

%∈+,".%,/&",#
&$,%01

                                                      (1) 

Similarly, RIM can also be used to train operator eigenvectors. The corresponding objective 
function is shown in Eq. (2). 

min
2̃∗,2̂∗,)∗

𝐽'* = ∑ *(�̃�!")+�̂�$% + 𝑏7! + 𝑏7$ − log �̂�*!,"
*$,%5

,+
3"
#,3$

%∈+,".%,/̂",#
$,%01

                                                          (2) 

In Eq. (2), both �̃�!" and �̂�!" are operator feature vectors of operator 𝑢! under score k. In order to 
learn the RIM eigenvectors of the operator and the cabin environment, they are adopted to minimize 
the objective functions Eq. (3) and Eq. (4), respectively. 

The partial derivative of the objective function to the operator eigenvector or cabin environment 
eigenvector is shown in Eq. (3). 
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45(
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= 2𝜏.                                                                               (3) 

in, 

	𝜑 = �̃�!+�̂�$ + 𝑏! + 𝑏$ − log 𝑦!
$ , 

𝜏 = �̃�!+�̂�$ + 𝑏7! + 𝑏7$ − log 𝑦A!
$                                                                                                       (4) 

Similarly, the objective functions Eq. (5) and Eq. (6) for RIM have the following, 
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Finally, as shown in Eq. (7), the feature vectors to be learned are updated. 
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where ω is the learning rate. 
 

2.3 Predictive Neural Network 
 

In this paper, the eigenvectors of the operator and the cabin environment obtained through the 
feature learning model reveal the co-occurrence characteristics of both, but these eigenvectors 
cannot directly obtain the results of final score prediction. Therefore, an additional component is 
required to estimate the operator's rating of the cabin environment. Due to the artificial neural 
network can effectively extract features, simulate complex objective functions, and fuse input 
features from multiple angles, the neural networks are an ideal model for rating prediction [19-20]. 

The goal of scoring prediction is to input a real-number predicted value according to the 
characteristics of the given operator and the cabin environment. This predicted value represents the 
estimation of the score given by the operator to the cabin environment. The neural network is used 
to directly input the pre-obtained characteristics of the operator and the RIM in the cabin 
environment into a feed-forward neural network to obtain the predicted value. In order to further 
improve the prediction ability of the model, a new perspective based on the historical records of the 
operator and the cabin environment can be introduced. Both the perspectives of the operator and 
the cabin environment of the current perspective and the historical perspective can be recorded, 
that is, through RIM feature input and after updating the features are inputs to form a multi-view 
neural network, which can be divided into a multi-view feature extraction stage and an integrated 
prediction stage. 

In order to obtain the prediction of the cabin environment 𝑡! 	given to the operator 𝑢" , in the 
feature extraction stage, two kinds of feature inputs under the current viewing angle and the 
historical viewing angle are required. For the current perspective, you need to input the feature 
vectors corresponding to 𝑢"  and 𝑡! ; for the historical perspective, you need to input the 
representation of the historical features obtained from the cabin environment that has been 
evaluated historically by the operator 𝑢" , and the operator that has been evaluated by the cabin 
environment  𝑡!, a representation of the historical characteristics of the cabin environment. Among 
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of them, the network inputs the RIM features of the operator and the cabin environment from the 
current perspective and the historical perspective respectively. 

Therefore, the composite connection vector 𝛼#$ = &𝛽#(𝑢"), 𝛽$(𝑡!), 𝛾#(𝑢"), 𝛾$(𝑡!),  from both 
perspectives, the remaining score prediction part of the neural network can be expressed as Eq. (8). 

𝑑!,$ = 𝑓8(𝛼3* ).                                                                                                                             (8) 

In Eq. (8), 𝑑",!  is the predicted score of the operator and the cabin environment, 𝑓&  is the 
feedforward neural network, 𝜎 is the parameter that the network needs to learn, and the activation 
function g used in 𝑓&  is defined as 𝑔(𝑥) = 𝑚𝑎𝑥(𝑥, 0). 

The feature extraction part of different perspectives is the main component of the neural 
network. The following is the extraction process: 

 
2.3.1 Feature extraction of current view 
 

Since there may be specific 𝑟!" or 𝑒$" that cannot be obtained through the training set, especially 
the zero vector is used to represent the operator 𝑢! and the cabin environment 𝑡$in these special 
cases. Given K different scoring categories, there will be K RIM eigenvectors representing different 
ratings, the calculation process is shown in Eq. (9). 

𝑣!(𝑢!) = I𝑟!9, 𝑟!,, . . . , 𝑟!"J, 𝜇$(𝑡$) = I𝑒!9, 𝑒!,, . . . , 𝑒$"J                                                                        (9) 

where 𝑣"(𝑢") and 𝜇!(𝑡!) are the unique integrated RIM eigenvectors for 𝑢"  and 𝑡!, respectively. 
Since the RIM feature vectors with different scores actually exist in the same space, in order to 

effectively extract features from 𝑣"  and 𝜇!, the extraction equation in this mode is shown in 10. 

𝑣!"(𝑢!) = 𝑔(𝑊N 2𝑣!(𝑢!)[(𝑘 − 1) × 𝑙2: 𝑘 × 𝑙2]), 
𝜇$"(𝑡$) = 𝑔(𝑊N &𝜇$(𝑡$)[(𝑘 − 1) × 𝑙&: 𝑘 × 𝑙&]).                                                                                       (10) 

Among them, 𝑙'  and 𝑙(  represent the dimension of RIM vector 𝑟")  and 𝑒!)  respectively, 
𝑣"(𝑢")[(𝑘 − 1) × 𝑙': 𝑘 × 𝑙'] is 𝑣"(𝑢")from the (𝑘 − 1) × 𝑙 element to the 𝑘 × 𝑙th element, 𝑊B '  and 
𝑊B (  are the shared parameter matrices of the operator and the cabin environment, respectively. 

 
2.3.2 Historical perspective feature extraction 
 

In order to effectively process the historical information, it is first necessary to perform further 
feature extraction on the operator's evaluated cabin environment set or feature vectors 
corresponding to the operator's evaluated cabin environment set. Based on the RIM feature model, 
it is assumed that 𝑇") represents the set of cabin environments with score K given by operator 𝑢", and 
𝑈!)denotes the set of operators who give score K to cabin environment 𝑡!. 𝑦)(𝑢") and 𝑦F)(𝑡!) are the 
historical features corresponding to 𝑢"  and 𝑡!under the score K, respectively. The corresponding 
formulas of 𝑦)(𝑢")and 𝑦F)(𝑡!) are shown in Eq. (11). 

𝑦"(𝑢!) =
∑ &"

#
&$∈*"

#

;+"
#;

, 𝑦A"(𝑡𝑗) =
∑ 2$

#
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#

<=$
#<

.                                                                                                  (11) 
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The operator and the cabin environment combine the historical features 𝑠(𝑢!)and �̂�(𝑡$)under 
the score in K as shown in Eq. (12). 

𝑠(𝑢!) = I𝑠9(𝑢!), , 𝑠,(𝑢!). . . , 𝑠"(𝑢!), �̂�(𝑡$) = �̂�9(𝑡$), �̂�,(𝑡$), . . . , �̂�"(𝑡$)J.                                                  (12) 

2.3.3 Integrated prediction stage 
 

In the integrated prediction stage, the features obtained in the previous step are fused into a 
unified feature vector through an integration layer to represent the interaction characteristics of the 
operator and the cabin environment. Finally, the fused feature is used as input, and the prediction 
score of the operator 𝑢!and the cabin environment 𝑡$ is output through a situation network. 

The error function used to train the predictive neural network is the mean square error 
function (MSE), as shown in Eq. (13). 

𝑚𝑖𝑛 +
|-|
∑ (𝑓.(𝑢" , 𝑡!) − 𝑟"

!)/#!,$"∈-                                     (13) 

In Eq. (8), 𝑓. represents the multi-view network, and n is the parameter that needs to be learned. 
A is the training set, and each sample in the training set is an operator 𝑢", cabin environment 𝑡!  and 
the corresponding score 𝑟"

!. 
The neural network is trained by stochastic gradient descent (SGD), and the evaluation result of 

the network on the verification set is used as the condition for ending the training early. If 
performance does not improve within a few epochs on the validation set, then training ends. 

 
3. Results  
 

According to the research method of this paper, after interacting with the operator and the cabin 
environment, the operator is mainly scored from the following dimensions: vision, hearing, touch, 
smell, perception, and the overall comfort of the cabin. In terms of scoring, it is mainly scored from 
the following dimensions: lighting environment, air quality, temperature, noise environment, and 
cabin layout. 

First, search for 500 groups of military cabins with high comfort ratings and input their various 
parameters into the neural network, and input the scores at the same time to determine the scoring 
standard. Next, input the parameters of the military cabin design plan into the neural network, so as 
to obtain the predicted score and recommend the optimal design scheme. Second, the optimal 
design obtained by the artificial intelligence-based recommendation model in this paper was tested 
in various simulation scenarios and achieved satisfactory results. The model can effectively predict 
and evaluate the cabin design scheme, recommend the optimal cabin design scheme, shorten the 
time of design, and reduce the cost of design. 

 
4. Conclusions 
 

The application of artificial intelligence in the design of military cabins is expected to provide 
engineers with efficient solutions to design the cabin environment and ease the complexity of 
military cabin design. The artificial intelligence-based recommendation model proposed in this paper 
provides a novel and effective approach for designing military cabins. The model considers various 
factors that affect the cabin environment and provides an optimized solution for cabin design. Future 
work includes developing an integrated system that allows real-time adjustments to the cabin 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 52, Issue 2 (2025) 130-138 

137 
 

environment based on recommendations provided by artificial intelligence-based models. The 
accuracy of the models can be improved by adding data sources and improving machine learning 
algorithms. 

The AI-based recommendation model proposed in this paper has great potential in the field of 
military cabin design. Applying artificial intelligence to military cabin design promises to revolutionize 
the way engineers design cabin environments, and the model offers a cost-effective way to optimize 
cabin environments and improve crew safety and health. By using an artificial intelligence-based 
system, engineers can reduce the time and resources required to design cabins, resulting in shorter 
delivery times and lower costs. 
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