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Wireless sensor networks (WSN) authorize the control of different source 
environmental aspects and crop states as far as precision agriculture is concerned. 
Nevertheless, the complicated agricultural environment brings about the WSN topology 
changing often and hence link association likelihood is laborious to predict. Information 
pertaining to agriculture is an essential distress for localization-based service in the 
domain of WSNs. Smooth planning and control as the most typical range-free 
localization method localization performance is said to be good in even distributed 
networks. Nevertheless, it demonstrated extremely poor accuracy under that in an 
urgent issue that required to be addressed. In this work a novel topology construction 
method called, Partial Derivative Laurent Approximation and Stochastic Feedforward 
Hyperbolic (PDLA-SFH) based Agriculture Sensor Network Formation is proposed. The 
proposed method is split into three steps. They are agriculture sensor topology 
construction, average hop size distance validation and position estimation. First 
topology construction is performed by employing Game Theory Partial Derivative 
Regression Coefficient-based Topology model. Second, Laurent Approximation-based 
Hop Size Distance validation model is designed for optimal topology formation. Finally, 
the Stochastic Feedforward Hyperbolic-based Position Estimation is modeled. The 
simulation results performed in NS3 showed that the proposed localization algorithms 
can attain better localization performance in terms of accuracy, time and error rate in 
comparison with other existing methods such as basic Digital Twins and Autonomous 
Groups Particles Swarm Optimization (AGPSO) under distinct arbitrary network 
topologies. 
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1. Introduction 
 

In precision agriculture (PA), several factors like, type of the soil and temperature differs in an 
automatic fashion depending on the region. Nevertheless, any irrigation system must be pliable in 
adapting to differing variations. Irrigation management based on the Wireless Sensor Networks 
(WSNs) however can adapt to any type of scheduling technique to meet particular environmental 
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requirements. But WSNs being under evolution stage are at times found to be unreliable, and hence 
easily lose communication particularly when deployed in harsh environment like an agricultural field. 

A method called, Digital Twins was designed with the purpose of combining smart farming 
towards improvement in terms of both farming productivity and sustainability [1]. The Digital Twin 
was designed on the behaviour and states aspects over its lifetime for farm management, therefore 
ensuring smooth planning and control. With this type of design, farmers in turn were found to 
manage operations in a remote manner upon comparison with the traditional mechanisms that 
hugely depended on direct observation manually. As a result, deviations were found to be 
immediately addressed based on real-life data and therefore ensured advance smart farming in an 
accurate and precise manner. However, location information is said to be the major concerns as far 
as localization-based service is concerned in the domain wireless sensor networks (WSNs). 
Nevertheless, Digital Twins demonstrated exceedingly poor accuracy under anisotropic networks 
that remains a major cause to be addressed. With this objective an optimized distance vector-based 
hop localization employing, Autonomous Groups Particles Swarm Optimization (AGPSO) was 
proposed by Fengrong et al., [2] for optimizing coordinate initially was designed. Moreover, 
localization coverage was also determined employing evaluation indicator. With this type of design 
resulted in the improvement of localization accuracy and computational complexity. 

As far as the agriculture domain is considered Artificial Intelligence is considered as the upcoming 
technology. As a result the AI-based machines, has taken hold of the present agriculture system to a 
distinct extent. This AI-based technology has improved the production of crop and enhanced 
monitoring in a real time manner. Moreover, the state-of-the-art technologies utilizing agricultural 
drones have made an extensive contribution.  

According to Dzaky and Sang-Hwa, [3] network formation using Q-learning was designed based 
on minimal cell and transmission queue conditions. Application of AI during the design stage for 
optimized irrigation process was designed [4]. Yet another particle swarm optimization technique 
was applied in with the purpose of improving the lifetime of design of network in agriculture domain 
[5].  

The evolution of WSNs stimulated a new regulation of research in agricultural and farming 
domain. Over the past few years, WSNs are extensively appertained in several agricultural 
applications. According to Ojha et al., [6] the prospective of WSN applications were reviewed, and 
the particular concerns and confronts analogous with arranging WSNs for enhanced farming was 
investigated in detail. Also to concentrate on the individual requirements, the sensors and 
communication strategies related with WSNs in agricultural field of interest were also inspected in 
an exhaustive manner.  

Scheduling of corresponding sensor activity is analytical for extending the WSN lifetime. However, 
most prevailing methods were designed with the assumption of positioning the sensors in a 
predetermined sensing range. To address on this aspect, Neighborhood based Estimation of 
Distribution Algorithm was designed [7].  With this type of design, the network lifetime was said to 
be improved significantly. Yet another quantum based swarm optimization algorithm was presented 
by Velasquez et al., [8] that with the aid of approximate separation distance ensured robustness with 
improved network lifetime.  

Nevertheless, a design of intelligent and robust sensor network formation for agriculture farm 
land in wireless network still remains major concern to be addressed. Therefore, our goal is to 
develop the right learning mechanism that can achieve acceptable network formation accuracy, the 
successful agriculture farmland design in a representative track, but which operates in real-time 
within time and minimal complexity of its target automotive platform. In order to achieve this, the 
mechanism we took was to split the overall process into topology construction, distance validation 
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and position estimation that can be used for agriculture sensor network formation. The extensive 
plan to associate a suitable model is to initially, design agricultural WSN model with which the point 
of interest of sensor samples can be obtained in a precise manner according to distinct volumetric 
water readings and temperature readings.  
 
1.1 Contributing Remarks  

 
In summary, the contributions of the method proposed in this paper are: 
• We modified the conventional game theory by employing Game Theory Partial Derivative 

Regression Coefficient-based Topology construction and used both the transmission power 
and residual energy aspects into consideration for obtaining optimal topology formation.  

• We proposed a novel Laurent Singularity-based Hop Size Distance validation model, despite 
having a light architecture in comparison with Digital Twins and AGPSO, is able to successfully 
perform smooth and robust sensor network formation for agriculture land.  

• To present Stochastic Feedforward Hyperbolic-based Position Estimation employing both 
distance and position estimates between anchor sensor node and regular sensing node for 
obtaining intelligent positioning.  

• We have demonstrated the suitability of a new proposed Partial Derivative Laurent 
Approximation and Stochastic Feedforward Hyperbolic (PDLA-SFH) based Agriculture Sensor 
Network Formation by doing the performance evaluation in simulated environment, where 
the PDLA-SFH method shows the best performance in terms of network formation time, 
network formation error rate, network formation complexity and network formation 
accuracy among three implemented solutions. 

 
1.2 Organization of the Work  
 

In the next section, the related work is presented. In section 2 the reviews of the state-of-the-art 
methods and conventional methods for network formation is briefed. The overall structure and 
implementation details of the proposed PDLA-SFH method are also given in this section. Results and 
discussion of the implementation of all three methods and inference during sensor network 
formation for farmland are given in section 4. The conclusion remarks is given in the last section 5. 

 
2.  Related works 

 
With the evolution of the Internet of Things (IoT), WSNs are extensively researched and 

transposed our life significantly. Nevertheless, as far as precision agriculture is concerned, WSNs have 
played a significant role. However, with the application of mobile autonomous vehicles carrying 
multi-sensors being applied in precision agriculture, the sensor nodes connectivity changes in an 
arbitrary fashion. As a result, the stability and reliability of sensor network communication has to be 
enhanced significantly.  

A novel method based on an Open vSwitch extension that can improve agriculture network 
survivability and stability was presented by Huang et al., [9]. A survey of machine learning in precision 
agriculture was investigated by Condran et al., [10]. A systematic review of machine learning in the 
field of agriculture was proposed [11]. In the face of the perception similarity may have interested 
agricultural practices however in the recent past few years, the persistence of agricultural science is 
found to be accurate, precise and robust than ever. The consequence of the techniques based on IoT 
has improved smart agriculture or precision agriculture. The power and potentiality of computing 
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mechanisms, like, Iot, WSNs and machine learning in agriculture was reviewed by Akhter et al., [12]. 
A detailed bibliographic analysis on application of machine learning for smart agriculture was 
presented by Ünal and  Zeynep, [13]. 

The formation of state-of-the-art technological solutions in agricultural sector directs in 
accomplishing the development objectives in a sustainable fashion. As a result, the organization 
involving the structure formation for Food and Agriculture and the International Funding performed 
for the development of Agricultural sector made an appearance in boosting exploration, interest and 
rationality in agriculture.  

A spatio temporal semantic design was presented by San et al., [14] for improved interoperability. 
Yet another precise agriculture mechanism focusing on the root mean square error was designed by 
Dhanavanthan et al., [15]. Also as the modern farmers are at the central of the social network, 
information obtained are also said to be supervised and managed within the community in an 
accurate fashion.  

Aspects of social network involved in the design of smart agriculture were presented by Albizua 
et al., [16]. Yet another social network analysis model for knowledge exchange concerning topology 
construction was presented by Wood et al., [17]. An exponential random graph modeling based on 
the social network analysis was presented by Hermans et al., [18] with the purpose of investigating 
the structural aspects involved in agriculture network formation. A holistic review on the application 
of artificial intelligence in smart farming and precise agriculture was proposed by Elbasi et al., [19]. 
Cloud based application for precise agriculture employing AI was presented by Ampatzidis et al., [20]. 

A low-cost wireless sensor network for drip irrigation monitoring designed by Vandôme et al., 
[21] . A Mobile Ad-hoc sensor node was introduced by Li et al., [22] to comprise the sensors to collect 
real time environment from the agricultural land with wireless communication technology and 
process the data before data sharing with other nodes in the network. Wireless sensor networks in 
ginseng field in precision agriculture were designed by Parashar et al., [23]. According to Abdollahi et 
al., [24], efficient soil resistivity measurement technique using wireless sensor network (WSN) has 
been proposed to collect and process the data for application in the agriculture fields. 
 
3. Methodology 
 

Owing to the complexity involved in agricultural environment with the crop growth being 
influenced by several factors, like, soil moisture, climatic conditions, it becomes laborious process for 
conventional wired monitoring system in precisely sensing the agricultural environments. WSN on 
the other hand consists of microsensors that possess the capability of low cost and high precision 
that makes high appropriateness for smart agriculture. Prevailing topology control mechanisms can 
though enhance the network performance to an indisputable degree, nevertheless in the field of 
agriculture, compactness nature of crops and composite climate provoke the multipath influence of 
wireless signals, therefore causing unsteady like associated probability.  

 
3.1 Agricultural WSN Model 

 
Let us consider that ‘𝑛’ nodes sense the environment and are distributed in an even fashion in 

the farm, represented by a graph ‘𝐺(𝑉, 𝐸, 𝑃)’, where ‘𝑉 = {1,2, . . , 𝑛}’ denotes the nodes set in the 
agricultural WSN and ‘𝐸 = /𝑒!" , 𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗5’ denotes the association between nodes. 
Therefore ‘𝑒!"’ is set to ‘1’, upon communication between nodes and on contrary ‘𝑒!"’ is set to ‘0’.  
Finally, ‘𝑃 = {(𝑃#, 𝑃$, … , 𝑃%), 𝑃! ∈ [𝑃&!%, 𝑃&'(]}’ denotes the transmission power of all sensing nodes 
in process with unique identifier (i.e., ID).  In this work the proposed Partial Derivative Laurent 
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Approximation and Stochastic Feedforward Hyperbolic-based Agriculture Sensor Network Formation 
method, the agricultural sensor network formation process is split into three sections, sensor nodes 
participating in the agricultural WSN model for network formation stream their positions by 
employing Game Theory Partial Derivative Regression Coefficient, a novel formulates for average hop 
size distance is introduced by employing Laurent Approximation-based Hop Size Distance validation 
model, and the Stochastic Feedforward Hyperbolic-based Position Estimation model is applied to 
measures the agriculture nodes location.  

 
3.2 Game Theory Partial Derivative Regression Coefficient-based Topology model 

 
The topology construction in our work initiates the process with the game theory formulation 

when applied to topology control obtains an optimal topology by taking into consideration the energy 
consumption of each node. The potential game in our agriculture WSN optimal topology construction 
including ‘𝑛’ nodes, with partial derivative strategy ‘𝑆’ is 
expressed as ‘𝑓 = {𝑓#, 𝑓$, … , 𝑓%}’ where ‘𝑓!’ represents the optimal price obtained by node ‘𝑖’ with 
the policy (i.e., transmission power) set ‘𝑇𝑃 = {𝑇𝑃#, 𝑇𝑃$, … , 𝑇𝑃%}’ respectively. Agricultural WSN 
topology or network formation in our work employing Game Theory Partial Derivative Regression 
Coefficient-based Topology model is optimized by taking into consideration multiple factors like, 
node magnitude, initial energy consumption, residual energy, and network lifetime. Figure 1 shows 
the structure of Game Theory Partial Derivative Regression Coefficient-based Topology model. 

 

 
Fig. 1. Structure of Game Theory Partial Derivative Regression Coefficient-based Topology model 
 
As shown in the above figure, in the initial stage, each sensor node ‘𝑛!’ from the agricultural WSN 

network floods the hello packet along with the location possessing initial energy, node magnitude via 
potential game theory. The potential game theory for agricultural network initialization is 
mathematically represented as given below.  

 

 

 

Gateway node 
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Potential game theory (agricultural 
network initialization) 

Partial Derivative Regression 
(agricultural node localization) 
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𝑓=𝑇𝑃! , 𝑇𝑃"> = 𝑓=𝑇𝑃! , 𝑇𝑃"> ?𝑤!𝑇𝑃!)'(
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"#$

*+!
"!% ; 𝑅𝐸! < 𝑅𝐸.34    (2) 

 
From the above equations (1) and (2), ‘𝑇𝑃!’ and ‘𝑇𝑃"’ represents the transmission power of node 

‘𝑖’ and ‘𝑗’ respectively.  In addition ‘𝑓=𝑇𝑃! , 𝑇𝑃">’ represents the connectivity between nodes with 
‘𝑓=𝑇𝑃! , 𝑇𝑃"> = 1’ representing the agriculture WSN is connected and in contrary ‘𝑓=𝑇𝑃! , 𝑇𝑃"> = 0’ 
representing the agriculture WSN is not connected via weights ‘𝑤!’ and ‘𝑤"’. Moreover, ‘𝑁𝐿!)'(’, 
‘𝑁𝐿!)!%’, ‘𝑀𝑎𝑔(𝑇𝑃!)’, ‘𝑁𝑁!)'(’, ‘𝑅𝐸!)!%’ and ‘𝑅𝐸)'(’ represents the maximum network lifetime, 
minimum network lifetime, magnitude of node ‘𝑖’, neighbor nodes with maximum transmission 
power, minimum residual energy and maximal residual energy. ‘𝑅𝐸!’ and ‘𝑅𝐸.34’ represents the 
residual energy of node ‘𝑖’ and residual energy threshold to validate the network formation. 
Following which the Partial Derivative Regression for modeling sensor nodes localization is 
mathematically formulated as given below.  

 

𝑃𝐷𝑅5 =
678./!,./&:

6./!
𝛼5 + 𝜇5 , 𝑡 = 1,2, … , 𝑇       (3) 

 
From the above equation (3), ‘𝑇’ represents the sample length of agricultural WSN network, with 

‘𝑓=𝑇𝑃! , 𝑇𝑃">5’ denoting the ‘𝑖 ∗ 𝑗’ dimensional assessment matrix based on the transmission power, 
‘𝛼5’ representing the ‘𝑗 ∗ 1’ state vector and ‘𝑦5’ denoting the ‘𝑖 ∗ 1’ observable vector respectively. 
Moreover, if ‘𝛼5 ≥ 1’, then the agricultural WSN network is said to be flooded with the corresponding 
node location and on contrary if ‘𝛼5 < 1’, then there remains room for nodes to provide their 
corresponding node location. The pseudo code representation of Game Theory Partial Derivative 
Regression Coefficient-based Topology construction is given below.  

 
Input: Nodes ‘𝑁 = {𝑁!, 𝑁", … , 𝑁#}’ 
Output: Optimal topology formation ‘𝑇𝑜𝑝’ 
Step 1: Initialize ‘𝑛’, ‘𝑇𝑃$’, ‘𝑇𝑃%’, weights ‘𝑤$’, ‘𝑤%’ 
Step 2: Initialize residual energy of node ‘𝑖’ ‘𝑅𝐸$’, residual energy threshold ‘𝑅𝐸&'(’  
Step 3: Begin 
Step 4: For each Nodes ‘𝑁’ 
Step 5: Formulate potential game theory for agricultural network formation as given in equations (1) 

and (2) 
Step 6: Formulate Partial Derivative Regression for obtaining the state vector as given in equation (3) 
Step 7: If ‘𝛼) ≥ 1’ 
Step 8: Then agricultural WSN network is said to be flooded 
Step 9: Else Agricultural WSN network is not said to be flooded  
Step 10: End if 
Step 11: End for 
Step 12: End  

Algorithm 1 Game Theory Partial Derivative Regression Coefficient-based Topology construction 
 

As given in the above algorithm with the objective of constructing agricultural internet of things 
system for wireless sensor network for smart agriculture, the network formation time plays a major 
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role. Earlier the network being deployed in farmland so that the time of node deployed reaches the 
minimum and the formed monitoring network can efficiently cover the entire farmland. With this 
objective, the agricultural network initialization is made by means of potential game theory focusing 
on the transmission power. Second, a Partial Derivative Regression model is formulated with the 
initialized agricultural network so that agricultural node localization is achieved with minimum time. 
In our work a star topology is formed where the agricultural sensor nodes are connected to directly 
a hub or sink node.  

 
3.3 Laurent Approximation-based Hop Size Distance validation model   
 

It is known that the localization error generated optimized localization algorithm is due to the 
uncertainty involved that it is said to be occurred while evaluating the distance in terms of average 
hop size and minimum hop count. A tradeoff is said to occur during this duo estimation (i.e., hop size 
and hop count). As a result the error generated is relatively large and it therefore influences the 
localization accuracy of sensor nodes extensively. In our work, Laurent Singularity-based Hop Size 
Distance validation model is employed as they are able to identify the best solution. Figure 2 shows 
the structure of Laurent Singularity-based Hop Size Distance validation model. 

As shown in figure 2, with the agricultural topology formatted network in hand, the objective 
remains in designing Hop Size Distance validation based on Laurent Singularity function. Let ‘𝜖!;’ 
represent the approximation error of distance between ‘𝑖 − 𝑡ℎ’ regular sensing node and ‘𝑘 − 𝑡ℎ’ 
anchor sensed node then the approximation error is mathematically stated as given below.  

 
𝜖!; = 𝐷𝑖𝑠!;< − 𝐷𝑖𝑠!;          (4) 
 
From the above equation (4) employing estimated distance and actual distance between ‘𝑖 − 𝑡ℎ’ 

regular sensing node and ‘𝑘 − 𝑡ℎ’ anchor sensed node. According to the above topology construction 
we have, 

 

𝑃𝑜𝑠!; = Z
𝑝! = 𝑝!< + 𝛿𝑝!
𝑞! = 𝑞!< + 𝛿𝑞! 	

          (5) 

 
Form the above equation (5), ‘𝛿𝑝!’ and ‘𝛿𝑞!’ represents the position errors to be determined for 

each sample instances. Then, by employing the Laurent series, approximation function is formulated 
for estimating hop size distance as given below.  

 
 𝐴𝑣𝑔𝐻𝑜𝑝𝑆𝑖𝑧𝑒 = 𝐷𝑖𝑠!; = 𝐷𝑖𝑠!;<< + 𝛽𝑘#𝛿𝑝! + 𝛽𝑘$𝛿𝑞! 	     (6) 
 
 𝐷𝑖𝑠!;<< = c(𝑝!< − 𝑥;)$ − (𝑞!< − 𝑦;)$        (7) 
 

 𝛽𝑘# =
6=!>!'
6?

= ?!
(@('
=!>!'

((           (8) 

 

 𝛽𝑘$ =
6=!>!'
6A

= A!
(@B'
=!>!'

((           (9) 

 
From the above equations (6), (7), (8) and (9), hop size distance is obtained with minimal error 

for agriculture sensor network formation. 
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Fig. 2. Structure of Laurent Singularity-based Hop Size Distance validation model 

 
The pseudo code representation of Laurent Approximation-based Hop Size Distance validation is 

given in algorithm 2.  
As can be seen the algorithm, with the objective of minimizing the node formation error with 

maximum convergence speed, two different errors based on the approximation error and position 
error with respect to regular sensor node and anchor sensed nodes are initially obtained. Second, 
based on the resultant error values, hop distance is measured employing approximation function. 
This in turn ensures agricultural sensor network formation with minimal error by taking into 
consideration both the approximation error and position error. 
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Input: Nodes ‘𝑁 = {𝑁!, 𝑁", … , 𝑁#}’ 
Output: Minimal error-based average hop size distance  
Step 1: Initialize topology formed ‘𝑇𝑜𝑝’ 
Step 2: Begin 
Step 3: For each  ‘𝑖 − 𝑡ℎ’ regular sensing node, ‘𝑘 − 𝑡ℎ’ anchor sensed node and topology formed  
Step 4: Formulate approximation error as given in equation (4) 
Step 5: Evaluate position errors as given in equation (5)’ 
Step 6: If ‘𝜖$* > 𝑃𝑜𝑠$*’ 
Step 7: Error in distance validation 
Step 8: Go to step 4  
Step 9: End if  
Step 10: If ‘𝜖$* ≤ 𝑃𝑜𝑠$*’ 
Step 11: Evaluate hop size distance via approximation function as given in equations (6), (7), (8) and 

(9) 
Step 12: Return average hop size ‘𝐴𝑣𝑔𝐻𝑜𝑝𝑆𝑖𝑧𝑒’  
Step 13: End if  
Step 14: End for 
Step 15: End  

Algorithm 2 Laurent Approximation-based Hop Size Distance validation 
 

3.4 Stochastic Feedforward Hyperbolic-based Position Estimation model  
 

Finally in this section with the constructed topology and minimal error-based hop size distance 
evolved, position estimation for agriculture sensor network formation is modeled by employing 
Stochastic Feedforward Hyperbolic-based Position Estimation model. The Stochastic Feedforward 
Hyperbolic-based Position Estimation model involves factorization of joint distribution and an 
adaptive filter designing for designing computationally efficient network formation. Figure 3 
illustrates the Stochastic Feedforward Hyperbolic-based Position Estimation model.  

As shown in figure 3, in the position estimation learning model the iterative procedure starts from 
the formed topology, flows through average hop size, and then generates output or the actual 
position estimation. The Stochastic Feedforward network is initially formulated as given below. 

 
𝑃𝑟𝑜𝑏(𝑃𝑜𝑠, 𝐴𝑣𝑔𝐻𝑜𝑝𝑆𝑖𝑧𝑒, 𝑇𝑜𝑝) = 𝑃𝑟𝑜𝑏(𝑃𝑜𝑠|𝐴𝑣𝑔𝐻𝑜𝑝𝑆𝑖𝑧𝑒)	𝑃𝑟𝑜𝑏(𝐴𝑣𝑔𝐻𝑜𝑝𝑆𝑖𝑧𝑒|𝑇𝑜𝑝)        (10) 
 
Based on the above equation results (10), a Stochastic Feedforward network is initially modeled. 

Second with the modeled network, a hyperbolic location analysis is applied. Let us assume that ‘𝑥!’ 
represents the coordinate of anchor sensed node ‘𝑖’ and ‘𝑥%’ represents the coordinate of regular 
sensing node ‘𝑛’, then the distance estimated is mathematically represented as given below.  

 
 𝐷𝑖𝑠!,%$ = 𝐴𝑣𝑔𝐻𝑜𝑝𝑆𝑖𝑧𝑒[(𝑥! − 𝑥%)$ + (𝑦! − 𝑦%)$]                (11) 
 
Let us further assume that ‘𝑈! = (𝑥!$ + 𝑦!$)’ and ‘𝑉! = (𝑥%$ + 𝑦%$)’, then the estimated position of 

‘𝑛’ is mathematically represented as given below.  
 
 𝑃𝑜𝑠!,%$ − 𝑈$ = 𝐴𝑣𝑔𝐻𝑜𝑝𝑆𝑖𝑧𝑒[−2𝑥!𝑥; − 2𝑦!𝑦; + 𝑉!]                (12) 
 
Based on the above formulation, the matrix representation is provided as given below.  
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 𝐴𝑅𝑒𝑠 = 𝐴𝑣𝑔𝐻𝑜𝑝𝑆𝑖𝑧𝑒	[𝑏]                    (13) 
 

𝐴 = i

−2𝑥# −2𝑦# 1
−2𝑥$ −2𝑦$ 1
… … …

−2𝑥% −2𝑦% 1

j ; 𝑅𝑒𝑠 = [𝑥%, 𝑦%, 𝑉%]; 𝑏 =

⎣
⎢
⎢
⎡𝑃𝑜𝑠#,%

$ −𝑈#
𝑃𝑜𝑠$,%$ −𝑈$
… …

𝑃𝑜𝑠;,%$ −𝑈;⎦
⎥
⎥
⎤
                (14) 

 
According to equation as given above (14), using the adaptive filter, the result ‘𝑅𝑒𝑠’ is obtained 

as given below.  
 
𝑅𝑒𝑠 = (𝐴.𝐴)@#𝐴. 	𝐴𝑣𝑔𝐻𝑜𝑝𝑆𝑖𝑧𝑒	[𝑏]                    (15) 
 
With the above obtained intermediate results, the point estimation of each sensor’s are evolved 

as given below.  
 
𝑥% = 𝑅𝑒𝑠(1);	𝑦% = 𝑅𝑒𝑠(2)                     (16) 
 

 

 
Fig. 3. Structure of Stochastic Feedforward Hyperbolic-based Position Estimation model 
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Finally, by allowing for both distance and average hop size in a single Stochastic Feedforward 
network hidden layer, allowing the mean ‘𝑃𝑟𝑜𝑏(𝑃𝑜𝑠, 𝐴𝑣𝑔𝐻𝑜𝑝𝑆𝑖𝑧𝑒, 𝑇𝑜𝑝)’ to have contributions from 
two elements, one from the hidden state ‘𝐻!’ (i.e., application of hyperbolic location analysis), and 
another one from defining a mapping between nodes ‘𝑥%, 𝑦%’, computationally efficient network 
formation are guaranteed. The pseudo code description of Stochastic Feedforward Hyperbolic-based 
Position Estimation for location identification is given below. 
 

Input: Nodes ‘𝑁 = {𝑁!, 𝑁", … , 𝑁#}’ 
Output: computationally efficient node location identification  
Step 1: Initialize topology formed, average hop size ‘𝐴𝑣𝑔𝐻𝑜𝑝𝑆𝑖𝑧𝑒’ 
Step 2: Begin 
Step 3: For each  ‘𝑖 − 𝑡ℎ’ regular sensing node, ‘𝑘 − 𝑡ℎ’ anchor sensed node, topology formed and 

average hop size ‘𝐴𝑣𝑔𝐻𝑜𝑝𝑆𝑖𝑧𝑒’ 
Step 4: Formulate Stochastic Feedforward network as given in equation (10) 
Step 5: Evaluate distance estimates as given in equation (11) 
Step 6: Evaluate position estimates as given in equation (12) 
Step 7: Formulate matrix representation as given in equations (13) and (14) 
Step 8: Evaluate agriculture nodes location of corresponding coordinate as given in equations (15) and 

(16) 
Step 9: End for 
Step 10: End  

Algorithm 3 Stochastic Feedforward Hyperbolic-based Position Estimation 
 
As given in the above algorithm with the objective of evolving computationally efficient position 

updates two distinct principles are modeled. First, Stochastic Feedforward network is designed in the 
first input layer. Seconds, both distance and position estimates between anchor sensor node and 
regular sensing node are formulated using distance estimation. Finally, with the aid of matrix 
representation, the location information of agriculture nodes is arrived at in a computationally 
efficient manner.  

 
4. Experimental setup 
 

The proposed Partial Derivative Laurent Approximation and Stochastic Feedforward Hyperbolic 
(PDLA-SFH) based Agriculture Sensor Network Formation is compared with Digital Twins [1] and 
Autonomous Groups Particles Swarm Optimization (AGPSO) [2] that we re-implemented in order to 
conduct an objective performance evaluation of novel design. The state-of-the-art methods with the 
PDLA-SFH were implemented, trained with the same Cook Farm sensor network data set (i.e., 
https://data.nal.usda.gov/dataset/data-field-scale-sensor-network-data-set-monitoring-and-
modeling-spatial-and-temporal-variation-soil-moisture-dryland agricultural-field) were utilized for 
inference in simulator for sensor network formation. The data has been found in the Cook Farm 
sensor network dataset; the cook farm data set contains four data frames. The readings data frame 
contains measurements of volumetric water content (cubic-m/cubic-m), temperature (degree C) and 
bulk electrical conductivity (dS/m), measured at 42 locations using 5TE sensors at five standard 
depths (0.3, 0.6, 0.9, 1.2, 1.5 m) for the period. The results were compared in terms of performance 
metrics like, network formation time, network formation complexity, network formation accuracy 
and network formation error rate. The experimental data processing is simulated via NS3. For 
performing fair comparison same cook farm sensor network dataset was applied for all the three 
methods and accordingly the performance metrics were analyzed.  
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4.1 Performance analysis of network formation time 
 
A significant amount of time is said to be consumed during the formation of agriculture WSN. This 

is because of the reason that according to the number of samples or sensors, agriculture field of 
interest, soil moisture and soil temperature, the network formation time differs. The network 
formation time is mathematically stated as given below.   

 
 𝑁𝐹5!)C = ∑ 𝑆!%

!D# ∗ 𝑇𝑖𝑚𝑒	[𝑦5]                   (17) 
 
From the above equation (17), the network formation time ‘𝑁𝐹5!)C’ is evolved based on the 

sample agriculture nodes involved in the simulation process ‘𝑆!’ and the time consumed in optimal 
topology formation ‘𝑇𝑖𝑚𝑒	[𝑦5]’. It is measured in terms of milliseconds (ms). Table 1 lists the 
performance evaluation results of network formation time using the proposed PDLA-SFH and existing 
methods, Digital Twins [1] and AGPSO [2] by substituting the values in equation (17).  

 
Table 1  
Performance evaluation of network formation time using BNVO-PR, OVEAP [1], RoadSegNet [2] 

Samples Network formation time (ms) 
PDLA-SFH Digital Twins AGPSO 

50 1.75 2.1 2.75 
100 2.15 2.45 3.15 
150 2.35 3 3.85 
200 2.85 3.35 4.25 
250 3 3.85 4.85 
300 3.35 4.15 5.35 
350 3.55 4.55 6 
400 4 5 6.55 
450 4.15 5.85 7.35 
500 4.85 7 8.35 

 

 
Fig. 4. Network formation time versus sensor samples 
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Figure 4 illustrates the network formation time or the time involved in agriculture field monitoring 
for sensor network formation with respect to distinct numbers of sensor samples in process.  From 
the above figure it is inferred that increasing the sensor samples results in the increase of point of 
interest and therefore increasing the overall localization process also. However, with simulations 
performed for 50 sensor samples, the time for agriculture field monitoring for sensor network 
formation, i.e., the time consumed in performing the overall localization process was found to be 
1.75ms using PDLA-SFH method, 2.1ms using [1] and 2.75ms using [2]. From this result it is inferred 
that the network formation time using PDLA-SFH method was found to be comparatively lesser upon 
comparison with [1] and [2]. The reason behind the minimization of network formation time using 
PDLA-SFH method was owing to the application of Game Theory Partial Derivative Regression 
Coefficient-based Topology algorithm. By applying this algorithm, initially, the agricultural network 
initialization was made by utilizing the potential game theory that specifically concentrated on the 
transmission power. Following which, a Partial Derivative Regression model was applied to the game 
theory results for the corresponding according to volumetric water readings and temperature 
readings. With this the network formation time using PDLA-SFH method was said to be reduced by 
21% compared to [1] and 382% compared to [2]. 
 
4.2 Performance analysis of network formation error rate 

 
The second major performance metric that has a great influence on agriculture sensor network 

formation is the error rate. The error rate is said to occur because of the difference in the volumetric 
water readings according to the depth measurement and also due to the difference in the 
temperature reading. The error rate is mathematically formulated as given below.  

 

 𝑁𝐹C44E4 = ∑
F)!'*+,-!'

F!
%
!D#                      (18) 

 
From the above equation (18), the network formation error rate ‘𝑁𝐹C44E4’ is measured by taking 

into consideration the sample agriculture nodes involved in the simulation process ‘𝑆!’ and the 
samples with approximation error greater than the position error ‘𝑆G!'H/E>!'’ respectively. It is 
measured in terms of percentage (%). Table 2 lists the performance evaluation results of network 
formation error rate using the proposed PDLA-SFH and existing methods, Digital Twins [1] and AGPSO 
[2] by substituting the values in equation (18).  

 
Table 2  
Performance evaluation of network formation error rate using BNVO-PR, OVEAP [1], RoadSegNet [2] 

Samples Network formation error rate (%) 
PDLA-SFH Digital Twins AGPSO 

50 4 6 10 
100 4.35 6.85 10.25 
150 5 7.35 10.75 
200 6.16 8 10.85 
250 7 9.25 11 
300 8.35 10 11.55 
350 9 10.55 13 
400 9.85 11.25 13.35 
450 10 12 14 
500 10.55 13.15 14.85 
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Fig. 5. Network formation error rate versus sensor samples 

 
Figure 5 given above illustrates the graphical representation of network formation error rate with 

respect to 500 distinct sensor samples obtained at different time intervals with file containing 
locations of each of the 42 monitoring locations. Also, from the above figure an increasing trend is 
observed with 500 different samples conducted for an average of 10 simulation runs. Nevertheless, 
with simulations performed using 50 samples 2 wrong position updates or estimations were made 
when applied with PDLA-SFH, 3 and 5 wrong position updates were made when applied with [1] and 
[2]. With this the network formation error rate using the three methods were found to be 4%, 6% 
and 10% respectively. From this result the network formation error rate using PDLA-SFH was found 
to be comparatively better than [1] and [2]. The reason behind the minimization of error rate using 
PDLA-SFH was due to the of Laurent Singularity-based Hop Size Distance validation algorithm. By 
applying this algorithm two distinct errors were evolved by taking into consideration the 
approximation and position error for distinct regular sensor node and anchor sensed nodes. 
Following which, on the basis of the resultant error values, an approximation function was applied to 
arrive at the hop distance. This in turn resulted in the minimization of agricultural sensor network 
formation with minimal error using PDLA-SFH method by 23% compared to [1] and 39% compared 
to [2] respectively.  

 
4.3 Performance analysis of network formation accuracy  

 
The third influencing factor in agriculture sensor network formation is the accuracy with which 

the configuration is said to be established. To be more specific, based on the validation results, the 
network formation accuracy is ensured. The network formation accuracy is measured as given below.  

 

𝑁𝐹'II = ∑
F)!'.+,-!'

F!
%
!D#                      (19) 
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From the above equation (19), the network formation accuracy ‘𝑁𝐹'II’ is measured based on the 
sample sensors involved in the simulation process ‘𝑆!’ and the percentage of error in distance 
validation ‘𝑆G!'J/E>!'’.  It is measured in terms of percentage (%). Table 3 lists the performance 
evaluation results of network formation accuracy using the proposed PDLA-SFH and existing 
methods, Digital Twins [1] and AGPSO [2] by substituting the values in equation (19).  

 
Table 3  
Performance evaluation of network formation accuracy using BNVO-PR, OVEAP [1], RoadSegNet [2] 

Samples Network formation accuracy (%) 
PDLA-SFH Digital Twins AGPSO 

50 96 94 92 
100 95.35 93.15 91.35 
150 95 93 91 
200 94.25 92.55 90.25 
250 94.15 92 89.15 
300 93.85 91.55 88.35 
350 93.65 91.05 88 
400 92.85 90 86.35 
450 92.35 88.15 86 
500 92 87 85.45 

 

 
Fig. 6. Network formation accuracies versus sensor sample 

 
Figure 6 given above shows the network formation accuracy involved in the process of agriculture 

sensor network formation. From the above figure, the network formation accuracy is found to be in 
the decreasing trend with the increase in the sensor samples ranging between 50 and 500. This is 
because two different classes of volumetric water and temperature readings with five distinct depths 
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were involved in the simulation process and also positioned randomly. For example, with simulations 
performed using 50 sensor samples, 48 sensor samples were correctly positioned as it is and 
therefore ensuring intelligent and robust network formation using PDLA-SFH method whereas only 
47 and 46 sensor samples were positioned correctly with the aid of [1] and [2], respectively. As a 
result, the overall network formation accuracy performed for 10 simulation runs using the three 
methods were observed to be 96%, 94% and 92% respectively. This result showed accuracy 
improvement using PDLA-SFH method upon comparison to [1] and [2]. The reason behind the 
improvement was due to the application of Stochastic Feedforward Hyperbolic-based Position 
Estimation algorithm. By applying this algorithm, initially, Stochastic Feedforward network was 
modeled initially in the first input layer. Following which between anchor sensed and regular sensing 
nodes both distance and position estimates were made via distance estimation. Finally, location 
information was arrived at that in turn improved the network formation accuracy using PDLA-SFH 
method by 3% compared to [1] and 6% compared to [2] respectively.  

 
4.4 Performance analysis of network formation complexity  

 
Finally, network formation complexity for sensor network formation is measured. Complexity 

here refers to the storage space occupied while performing the entire process. The network 
formation complexity is measured as given below.    

 
𝑁𝐹IE)? = ∑ 𝑆!%

!D# ∗ 𝑀𝑒𝑚	[𝑦5]                          (20) 
 
From the above equation (20), the network formation complexity ‘𝑁𝐹IE)?’ is measured on the 

basis of the sample sensors involved ‘𝑆!’ and the memory consumed in the overall network formation 
process ‘𝑀𝑒𝑚	[𝑦5]’. It is measured in terms of kilobytes (KB). Table 4 lists the performance evaluation 
results of network formation complexity using the proposed PDLA-SFH and existing methods, Digital 
Twins [1] and AGPSO [2] by substituting the values in equation (20).  
 
Table 4  
Performance evaluation of network formation complexity using BNVO-PR, OVEAP [1], RoadSegNet  [2] 

Samples Network formation complexity (KB) 
PDLA-SFH Digital Twins AGPSO 

50 52.5 77.5 92.5 
100 65.35 85.35 105.35 
150 71.25 95.25 115.25 
200 80 105.35 135.15 
250 95.35 115.55 150.35 
300 100.15 135.35 165.35 
350 115.85 150.55 185.25 
400 135.35 185.25 215.55 
450 150 205.35 245.35 
500 175.85 235.15 260.35 
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Fig. 7. Network formation complexities versus sensor sample 

 
Figure 7 given above illustrates the graphical representation of network formation complexity 

versus 500 distinct sensor samples. From the above figure it is inferred that increasing the sensor 
samples results in the increase in continuous monitoring, measuring and analyzing of different 
physical features and occurrences for sensor network formation. This in turn would increase the 
network formation overhead for distance validation and position estimation, therefore increase in 
the overall sensor network traffic management also. However, simulations performed with 50 sensor 
samples using the proposed PDLA-SFH method was observed to be 52.5KB, 77.5KB using [1] and 
92.5KB using [2]. The reason behind the minimum complexity incurred using PDLA-SFH method was 
owing to the application of Stochastic Feedforward Hyperbolic-based Position Estimation. By 
applying this model, two distinct functions were applied for arriving at the results of distance and 
position estimates. Here, the distance estimate was made based on the coordinate of anchor sensed 
node and coordinate of regular sensing node. By combing these two functions, matrix representation 
was made separately, therefore guaranteeing intelligent network formation for agricultural field. This 
in turn reduced the network formation complexity using PDLA-SFH method by 25% compared to [1] 
and 38% compared to [2] respectively.  
 
5. Conclusion  

 
The evolution of machine learning based sensor network formation intelligent routing for 

precision agriculture in wireless network results in considerable evolution or development in novel 
techniques to known issues. However, the network formation for agriculture farmland application 
frequently necessitates machine learning solutions that can be accomplished by cautious 
arrangement of neural network model architecture. The Partial Derivative Laurent Approximation 
and Stochastic Feedforward Hyperbolic (PDLA-SFH) presented in this paper is one possible solution 
for intelligent and robust Agriculture Sensor Network Formation. The aim of our work was to achieve 
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successful farm management via sensor network formation using a Partial Derivative Laurent 
Approximation that is suitable for inference and deployment in wireless networks. Having this in 
mind, we designed and implemented PDLA-SFH with sensor network formation for crop management 
ensuring intelligent and robust design for quality control. The main contribution of proposed method 
is the novel solution that is computationally efficient due to application of Game Theory Partial 
Derivative Regression Coefficient-based Topology construction. Also, by validating hop distance by 
means of two distinct approximation and position error, the overall network formation error was said 
to be reduced significantly. Finally, accuracy was also focused using Stochastic Feedforward 
Hyperbolic-based Position Estimation algorithm. The performance analysis of proposed PDLA-SFH 
method-based Agriculture Sensor Network Formation is compared with existing Digital Twins [1] and 
AGPSO [2] using various metrics that are 22% of network formation time, 31% of network formation 
complexity, 5% of network formation accuracy and 32% of network formation error rate with 
numbers of sensor samples. 
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