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Phytoremediation of polluted environments has received attention and developed 
rapidly in recent decades. Plant performance assessment is conducted around the 
effectiveness and efficiency of reducing the concentration of pollutants and certain 
plant-associated organisms. While supporting these advances, this paper aims to 
develop integrated phytoremediation as a pollutant treatment reactor involving all 
processes and multi-kingdoms of organisms, referred to as phytoreactor. The data 
collected comes from the results of previous studies related to various kinds of 
phytoremediation processes. Screening and selection of data were based on criteria 
for differences in plant processes, involvement of various plant-associated organisms, 
and aesthetics. An arsenic pollutant, one of the most toxic metalloids and ubiquitous, 
the kingdom’s involvement of plant-associated organisms between aboveground and 
belowground plant parts. A new perspective in phytoremediation is creating a 
phytoreactor that integrates three sequential processes. Starting with the containment 
of toxic pollutants, followed by a primary process consisting of physicochemical and 
biological processes, and completed by a secondary process in plants, which produces 
nontoxic environmental media conditions. The primary biological processes are carried 
out in the rhizosphere and phyllosphere. The involvement of the plant-associated 
organism kingdom is different in the rhizosphere and phyllosphere due to the suitability 
of the habitat, the type of pollutant, and the aesthetics of the application of the 
phytoreactor. Phytoreactor for the remediation of polluted environments involves 
synergistic multi-kingdoms of plant-associated organisms for specific types of 
pollutants in the rhizosphere and phyllosphere. 
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1. Introduction 
 

Plants coexist with all the kingdoms of organisms as environmental bioresources for human life. 
While the environment and humans emit various substances, plants and other organisms can control 
these emissions. At the level of a polluted environment, plants are seen as having the potential to 
remedy it through phytoremediation. Phytoremediation refers to the process by which plant 
communities remove pollutants in environmental media. Various physical, chemical, and biological 
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pollutants can coexist in an ecosystem. In dealing with microbial pollutants, such as Escherichia coli, 
phytomicroremediation eliminates the pathogenic bacteria with plant-derived compounds having 
antiseptic properties [1]. Plants have long been known to produce many antiseptic secondary 
metabolites,  such as phenolic compounds [2]. Myrtaceous plant species Leptospermum scoparium 
and Kunzea robusta release antiseptic compounds against pathogenic microbial communities in the 
soil ecosystem, especially the bacterium E. coli [3]. Thus, naturally, plants eliminate pollutants from 
the products of their own life. 

During the phytoremediation process, plants must stay alive by meeting the needs of beneficial 
physical and chemical factors, such as sufficient water and nutrients. In addition, living plants need 
collaborative support with other organisms. For example, plants need the support of root bacteria to 
degrade organic matter into carbon dioxide, which is their essential need. On the other hand, there 
are phytopathogenic bacteria such as Pseudomonas syringae pv. actinidiae, a bacterium that causes 
cancer in kiwifruit [4]. The same is the presence of fungi, especially the phyla Ascomycota and 
Basidiomycota [5], which can be phytopathogenic [6]. However, these phytopathogenic fungi can be 
controlled by the fungal genus Trichoderma [7]. In short, healthy plants require beneficial 
cooperation with plant-associated organisms. 

In practice, the growth of one healthy plant species in an ecosystem polluted by various pollutants 
may not eliminate all pollutants. A type of plant has a limited ability to remove pollutants from its 
environment. An example is the water hyacinth plant in a pond containing many pollutants, which 
results in different removal efficiencies, some of which do not reach safe concentrations [8]. To 
eliminate various pollutants, one can use various plants placed in polluted ecosystems [9]. With the 
use of one species or multispecies, plants need the support of other organisms to at least have the 
ability to recycle plant exudates. Thus, in the life cycle of healthy plants, the involvement of organisms 
is imperative, likewise, when plants are used to process pollutants.  

Therefore, this literature review presents a new perspective on phytoremediation using 
synergistic collaborations across plant-associated organismal kingdoms for a particular type of 
pollutant. The clarity of the collaboration of various kingdoms of organisms can be a direction to 
improve the effectiveness of plants in performing various pollutant phytoremediation. 

 
2. Methods 

 
The centre of assessment is the plant with the interactions between the various kingdoms of the 

plant-associated organism within the phytosphere. Phytosphere does not have a specific size for area 
or volume, except for the environmental area affected by plant life processes. The phytosphere 
includes the rhizosphere and aerial parts including the stems and phylllosphere, both for aquatic and 
terrestrial plants.  

The taxonomy of organisms follows the seven kingdoms [10]. The kingdom of organisms includes 
Plantae, Fungi, Animalia, Protozoa, and Chromista, all five eucaryotes containing a nucleus 
surrounded by a membrane. At the same time, it involves prokaryotic organisms that do not contain 
a membrane-bound nucleus, namely Eubacteria, referred to as Bacteria, and Archaea bacteria, from 
now on referred to as Archaea.  

Each kingdom of plant-associated organisms should be able to eliminate the same pollutant 
directly or indirectly to confirm whether there is a collaboration between kingdoms. Inorganic 
pollutant arsenic (As) is considered due to listed as the most dangerous substance to human health 
[11]. The biological role of eliminating the same pollutant uses data from previous research in the 
last ten years.  
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The literature search used Harzing's Publish or Perish 8 software. Article searches were open-
access articles indexed by PubMed and Crossref. At least three articles, which were pollutant-
organism specific, were selected to reinforce the interactive relationship between the organismal 
kingdoms mutually. 

 
3. Results and Discussion 

 
The first section describes the plant as a pollutant processing reactor to identify the complete 

stages of the phytoremediation process. The second describes arsenic characterized by exposure to 
various environmental media. The third identifies the kingdom of plant-associated organisms capable 
of processing the pollutant in the rhizosphere and phyllosphere. In the end, the suitability of arsenic 
biodetoxification is summarised, along with proposed applications in indoor and outdoor 
environments. 

 
3.1 Phytoreactor and Processes 

 
Man-made conventional water and waste treatment reactors have linear processing stages 

[12,13]. The influent stream undergoes successive processes and ends as treated effluent [14-16]. In 
addition, the reactor is a non-living material, so it cannot protect itself from external disturbances 
[17]. Meanwhile, there is no doubt about the ability of plants to process pollutants in soil [18], water 
[19], and air [20]. Therefore, a plant can be seen as a pollutant processing reactor, after this referred 
to as phytoreactor. 

The special advantage of phytoreactor is that plants are alive, can grow, and have the ability to 
protect their health [21]. Moreover, the influent stream can enter every main part of the plant: roots, 
stems, and leaves [22], so various forms of influent: solid, liquid, and gas, can be processed 
simultaneously. Even effluent streams can recycle themselves, such as influent organic matter 
converted to carbon dioxide, which is the life supply of plants. The power of the plants is promising 
for waste treatment applications and the phytoremediation of polluted environments.  

Retrospective phytoremediation data processing for decades resulted in the formulation of the 
phytoreactor depicted in Figure 1. It is necessary to emphasize that phytoreactor is not just a plant 
process but an integrated flow of pollutant containment, primary physicochemical and biological 
processes, and secondary plant processes. The three integrated processes are balanced with 
phytomicroremediation, which releases antipathogenic plant-derived compounds to maintain plant 
health. Likewise, the remediation process without the presence of plants, which is commonly known 
as bioremediation. Shortly, phytoreactor involve bioremediation and not vice versa.  

Figure 1 describes, firstly, in fulfilling the need for water for plant life, plants undergo the process 
of transpiration of water from their growth medium. The water flow simultaneously immobilizes 
pollutants in the rhizosphere. This immobilization process is called phytostabilization [23] and 
contains pollutants in the rhizosphere.  

At the same time, plants absorb carbon dioxide and water in the photosynthesis process for 
biomass growth and constantly the respiration process. The two processes of photosynthesis and 
respiration are also followed by the transfer of gaseous pollutants, which are transported through 
the stomata. Stomata are the tiny pores of plants for breathing and are located in all parts of the 
plant, especially on the upper and lower sides of leaves, flower petals, stems, and roots [24]. Thus, 
the whole plant can be considered a containment body of gaseous pollutants, called 
phytosequestration [25]. Furthermore, phytosequestration in roots emphasizes pollutant uptake 
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through phytochemical exudation and in roots through mechanisms of protein transfer and cellular 
processes [26]. 

 

 
Fig. 1. Phytoreactor processes for removing pollutants 

 
In the leaf zone, there is microbial life known as leaf-associated microbes. The microbial processes 

can occur for aerosols, which consist of liquid and solid particles and are referred to 
phylloremediation [27]. This process can be considered the primary process of pollutants to be 
further processed in various ways by plants. 

Aerosols can be exposed to growing media, water, or soil [28]. Precipitated aerosols and 
immobilized pollutants can undergo various processes in the rhizosphere before being absorbed into 
the plant for further processing. Various physical, chemical, and microbial processes can operate 
simultaneously and sequentially within the rhizosphere. Physical-chemical processes such as 
precipitation, adsorption, and filtration on roots are known as rhizofiltration [29]. For pollutants that 
soil microbes can convert, the process is called rhizodegradation [30]. The two rhizosphere processes 
can also be seen as a primary process in phytoreactor. 

Pollutants resulting from the rhizosphere process then enter the plant, referred to as 
phytoextraction [31]. All pollutants that enter the plant, either from direct phytosequestration or 
from the results of rhizosphere processes, undergo a degradation process known as 
phytodegradation [32]. Volatile pollutants in plants can experience release outside the plant, referred 
to as direct phytovolatilization via stems and leaves [33]. The sequence of these three processes is a 
secondary process from the plant’s point of view as a reactor for processing environmental 
pollutants. 

Outside the processing of pollutants by plants but balancing the remediation process, as living 
organisms, plants secrete metabolites as exudates through various plant organs such as leaves, 
stems, and roots [34]. This exudation is the reverse of phytosequestration by releasing metabolites 
into the environment or indirect phytovolatilization via roots [33]. Exudate release into the 
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rhizosphere is beneficial, partly for supplying organic matter for plant-associated organisms and 
partly for phytomicroremediation. 

During rainy seasons, the plant canopy becomes a vegetation cap [26] to reduce rainwater falling 
within the phytosphere. As a result, the pollutants concentrated in the rhizosphere are not dispersed 
due to the effects of rain.  

Under certain conditions where the phytoreactor area has a deep groundwater level, plants can 
raise the water level close to the rhizosphere. Such events demonstrate the ability of plants to control 
groundwater hydraulically [26]. 

 
3.2 Arsenic Exposure and Attenuation 

 
In the outdoor environment, the source of arsenic is the earth’s crust, which can be released into 

the soils, waters, and air through natural and human accvices [35]. Naturally, the main mineral 
arsenic binds to sulfides in forms such as realgar (AsS), dimorphite (As4S3), and uzonite (As4S5). Due 
to chemical-physical environmental factors, natural minerals, and their use can change to become the 
polymorphs of arsenolite and claudecte (As2O3) [36].  

Arsenic is a metalloid substance that forms toxic compounds. The trivalent arsenite is more toxic 
than oxidized pentavalent arsenate [37]. The closest places to poison arsenic are soil and water 
environments. Inorganic arsenic is easily soluble in water and acutely toxic to human health, which 
can lead to chronic arsenicosis [38]. Meanwhile, arsenic exposed to flora and fauna forms organic 
arsenic compounds, such as arsenobetaine (AsB) [39]. The bodies of environmental organisms easily 
eliminate these organic compounds so they are less toxic to human health.  

In indoor environments, one source is using paints containing arsenic pigments [40]. In the short 
term, arsenic concentracons may not harm living things. However, changes in physical and chemical 
environmental factors in the long term can threaten indoor life. The air humidity factor affects the 
accumulacon of arsenic, which increases with room humidity. The problem occurs in residencal 
areas, where humidifiers filled with tap water produce arsenic concentracons four cmes higher than 
the arsenic standard in drinking water [41]. The result explains that arsenic is a metalloid substance 
that dissolves easily in water.  

Where indoor decoracve plants are found, it is beneficial to indoor air quality [42]. Like the ability 
of outdoor flora above, indoor plants biotransform arsenic to be less toxic. The path of exposure to 
arsenic in the environment and its ahenuacon with simplificacon related to phytoreactor can be 
depicted in Figure 2.  

The strategic area for arsenic detoxificacon covers the rhizosphere and phyllosphere. In both 
areas, arsenic undergoes bioremediacon through rhizodegradacon and phyloremediacon. Thus, the 
phytoreactor output is less toxic arsenic in plants and the surrounding environment. 
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Fig. 2. Transport and transforma>on of arsenic related to phytoreactor 

 
3.3 Rhizodegradation Detoxifies Arsenic  

 
The biotic richness of the soil ecosystem, apart from terrestrial plants, includes various kingdoms 

of organisms. In the soil can live eukaryotes Fungi, such as Trichoderma sp. [43]; Animalia, such as 
earthworm Eisenia fetida [44]; Protozoa, such as Colpoda sp. [45]; and Chromista, such as Oomycetes 
[46]. Bacteria Actinomycetes [39] and Archaea Nitrososphaerales [43] are abundant in prokaryotes. 
Likewise, in water ecosystems, aquatic plants can live together with various kingdoms of eukaryotes 
Fungi [47], aquatic earthworms Oligochaetes [48], Protozoa [49], Chromista [50], and both 
prokaryotes are ubiquitous [51] that they are undoubtedly present in water.  

Fungal taxa are abundant in healthy-looking trees. On the roots, the richness of the fungal species 
is Trichocladium griseum, and Penicillium restrictum [52]. A direct symbiotic association between 
plant roots and Fungi forms mycorrhizae [53]. The potential of mycorrhizae to control arsenic 
exposure to plants has been studied, which results in arsenic accumulation in soil [54]. Mycorrhizae 
increased cysteine, glutathione, and non-protein thiols and can immobilize arsenic and transform it 
into nontoxic complexation [55]. Therefore, mycorrhizae become an important functional group for 
eliminating inorganic arsenic and producing organic arsenic. 

Another biological relationship between Fungi and green algae forms lichens [56]. The epiphytic 
lichen Xanthoria parietina is physiologically susceptible to exposure to arsenic up to 0.01 ppm [57]. 
Likewise, in the community of lichens-associated organisms, Bacteria can accumulate without 
transforming inorganic arsenic [58]. However, other lichens species of Heterodermia diademata 
(Taylor) D.D. Awasthi, Phaeophyscia hispidula (Ach.) Essl., Usnea longissima Ach., Roccella montageni 
Bél., Parmotrema tinctorum (Despr. ex Nyl.) Hale and Sticta sp. were reported can decrease the 
arsenic concentration. Species of Heterodermia diademata having the highest elemental contents of 
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Carbon, Nitrogen, Hydrogen, and Oxygen is the most effective in removing arsenic of about 40 ppm 
[59].  

Earthworms can reduce the bioavailability of heavy metals [60]. Several species of earthworms, 
such as Eisenia fetida, E. andrei, Perionyx excavatus, Eudrilus eugeniae, and Lumbricus rubellus, 
transform arsenic [61]. Accumulation of metals in the body of earthworms induces metallothioneins 
proteins to bind metals [62]. Even the earthworm species Lumbricus rubellus possesses surface-
sensitive drilodefensin molecules, which counteract the toxicity of plant-derived polyphenols [63]. A 
recent study found a new nematode species, Tokorhabditis tufae, capable of living in arsenic-rich 
environments [64]. However, a species of the nematode phylum, Caenorhabditis elegans, showed 
differences in organic and inorganic arsenic toxicity effects. The dimethylarsinic acid metabolite of 
the species is even more toxic than inorganic arsenic for the third generation onwards [65].  

The freshwater Protozoa Tetrahymena pyriformis was reported to be able to transform inorganic 
arsenic into organic arsenic dimethylarsenate with sufficient phosphate concentration. In the 
phosphate concentration range of 3-30 ppm, the dimethylarsenate product is linear, increasing with 
the phosphate content [66]. 

Chromista organisms, brown algae Oomycetes [67], are plant parasitic pathogens [68]. However, 
the organism can detoxify heavy metals through extracellular immobilization and intracellular 
biosorption, which exceeds the ability of bacteria [69,70]. One can choose plant species capable of 
working as phytomicroremediation in dealing with Oomycetes because other species of Chromista 
can accumulate arsenic [71]. 

Bacteria capable of reducing arsenate are ubiquitous in soil and water contaminated with arsenic, 
such as Anaeromyxobacter dehalogenans found in soil [72]. In addition, a species of Pseudomonas 
aeruginosa is resistant to exposure to arsenic. Concentrations up to 1.4 g/L arsenite and 7 g/L 
arsenate, can remove more than 90% of these pollutants [73]. 

Archaea diversity is high in soil habitats, especially in the rhizosphere [74]. However, Archaea are 
much less understood in dealing with arsenic than Bacteria, and fewer genomes have been 
sequenced [75]. Moreover, arsenite removal is suggested using mixed microbial oxidation, such as 
iron and manganese oxidizing bacteria [76]. At least, it was found for halophilic Archaea Haloarcula 
sp. IRU1 capable of immobilizing arsenite. The yield of arsenite bioaccumulation reaches about 60% 
at a temperature of 40oC and a pH of 8 as a determinant [77]. 

 
3.4 Phylloremediation Detoxifies Arsenic  

 
From the point of view of area coverage, phylloremediation is promising for overcoming the 

problem of air pollution. At least for plants with a single leaf layer for a given land cover area, the 
upper and lower leaves’ total surface area exceeds the soil covered by the plant canopy. The total 
leaf area coverage can continue to increase as the plant grows and regenerates.  

On the leaves, the richness of the fungal species is Trichomerium sp. 5238_8, Aureobasidium 
pullulans, Cladosporium sp. 5238_5, and Vishniacozyma carnescens [52]. The fungal species in the 
leaves are more diverse than the root fungi. In particular, endophytic fungi in the leaves increase the 
bioactive compounds for several medicinal plants in Nigeria, such as Acalypha 27ifurc, Albizia zygia, 
Alcharnea cordifolia, and Chrysophyllum albidum [78]. In addition, lichens containing fungi, such as 
Evernia mesomorpha, Flavoparmelia caperata, and Physcia aipolia/stellaris are useful and reliable 
for air pollution indicators [79]. 

Terrestrial ecosystems are rich in organisms, and all kingdoms of organisms have been shown to 
play a beneficial role in arsenic detoxification without causing harmful effects to plants. In addition, 
all the organisms referred to live in a position that does not damage the aesthetics from a human 
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point of view. However, not all kingdom organisms can be considered for their benefit in detoxifying 
arsenic in the phyllosphere. For example, nematodes living on leaves are mostly pathogenic to plants, 
such as the Aphelenchoides genus and common species of Aphelenchoides (A. besseyi, A. bicaudatus, 
A. fragariae, A. ritzemabosi) [80]. Another species of Caenorhabditis elegans can grow in the 
phyllosphere, especially in decomposing fruits and stems [81]. Low arsenite concentrations can make 
the nematode-resistant to heat and chemicals and extend its life span [82]. These results indicate 
that arsenite can be accumulated by the nematode in question but is not considered a useful animal 
in phylloremediation. 

Some protozoa, such as amoebas and ciliates can ingest pathogenic bacteria and package them 
in their membranes. The encapsulated bacteria become more resistant to environmental stress and 
survive than unpackaged bacteria [83]. Meanwhile, the bactivorous protozoa, Colpoda steinii, did not 
affect the abundance of the kingdoms Bacteria and Archaea and the phyla Proteobacteria and 
Bacteroidetes. The effect of abundance shifts occurs at the bacterial species level. The influence of 
protozoa targets certain bacterial species, or certain bacterial species can avoid protozoa predators 
[84]. 

The brown alga Chromista was found to accumulate arsenic [85], but its ability to transform 
arsenic is unknown. However, the organism has the potential to immobilize arsenic from the 
environment. Even the species brown algae of Bifurcaria 28ifurcate, and Fucus spiralis can be used 
as fertilizer to enhance plant growth [86]. 

Most phyllosphere organisms are non-pathogenic Bacteria. The abundance depends on plant 
species, diversity of organisms, and physical-chemical environmental factors [87]. Some of these are 
numerous duckweed leaf-associated bacteria, which can oxidize toxic arsenite to less toxic arsenate 
[88]. 

Archaea were found to be able to oxidize arsenite as bacteria do [88]. Their interactions with 
bacteria potentially increase plant growth through the biosynthesis of phytohormones, fixation of 
nutrient carbon and nitrogen, and protection against abiotic stresses [89]. 

 
3.5 Suitability of Arsenic Biodetoxification 

 
Based on the interaction of arsenic and the environment, the exposure strategy is containment 

within the rhizosphere. For arsenic elimination, the strategy is to maximize the conversion of trivalent 
arsenite to oxidized pentavalent arsenate and less toxic organic forms. These strategies use a diverse 
approach to the kingdom of organisms for terrestrial and aquatic plants. External chemicals can be 
added sufficiently to optimize process conditions. A summary of arsenic biodetoxification by the 
diversity of the organismal kingdoms is depicted in Figure 3. 

Figure 3 shows the suitability of the phytoreactor application in the field. In operations, 
phytoreactors require priority treatment to maintain plant health, followed by treatment to 
eliminate Animalia in the phyllosphere for aesthetic purposes. Organisms that are pollution 
indicators, such as lichens, can be used for monitoring purposes. 

One way to maximize the detoxification of polluted air is to choose plant species with the widest 
possible leaf surface. Layered leaves characterize suitable plant species, and the size of each leaf is 
narrow [90]; an example is the evergreen plant. The successful removal of arsenic by evergreen plants 
has been demonstrated by the accumulation of arsenic in shoots of Equisetum spp. and 
Calamagrostis epigejos [91]. 

Selecting plant species with long roots that exceed the height of the aerial parts is suitable for 
detoxifying polluted soil and water and designing riparian zones (83). Examples of plants for soil and 
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water remediation include vetiver. Vetiver plants remediated arsenic-polluted water and sediment 
with more than 90% and 80% removal efficiencies, respectively [92]. 

 

 
Fig. 3. Arsenic biodetoxification in the phytoreactor 

 
In practice, pollutants can transport between environmental media, as shown in Figure 2, which 

directs the need for phytoreactors to cover all media. Therefore, plant diversity can meet the targets 
of all environmental media [93]. Ideally, it is necessary to grow plant species in a polluted area, some 
with long roots and some with narrow layered leaves. 

All of the above uses imply the involvement of all organisms across kingdoms in the primary 
treatment of the rhizosphere and phyllosphere simultaneously. Each organism has a specific role, 
namely accumulation or transformation, in removing toxic inorganic arsenic into less toxic products. 
The differences in the variety of organisms and their specific roles direct the suitability of applying 
phytoreactors for the remediation of polluted environments and waste treatment. In particular, the 
specific accumulation ability makes organisms useful as bioindicators in operational and 
environmental monitoring. 

 
4. Conclusion  

 
Phytoreactor is a complex process involving synergistic cooperation between kingdoms of 

organisms and environmental factors. However, the phytoreactor processes can be simplified into 
three consecutive processes. The first is containment, where environmental pollutants flow toward 
the plant. At this containment stage, it is considered that there is no contribution of organisms, which 
deconcentrate and convert pollutants, except through chemical treatment. Thus, this containment 
stage is referred to as a physicochemical process. In addition, the primary process for pollutant 
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detoxification involves organisms outside the plant kingdom. Therefore, this primary treatment can 
be referred to as a biological process. Lastly is the secondary treatment for further pollutant 
detoxification within the plant resulting in a treated flow to the environment. This stage is the ability 
of plants to process pollutants before releasing them into the outside environment. Hence, 
phytoreactor is an integrated sequential process of pollutant containment, physicochemical 
remediation, bioremediation, and plant process.  

For the arsenic-polluted rhizosphere, all organism kingdoms are involved in rhizodegradation but 
not in phyllosphere. These differences challenge further in-depth research for the phytoreactor of 
various pollutants and their mixtures. So far, no research reports have been found regarding the 
ability of stems. When stomata are present in all parts of a plant, it is necessary to deepen research 
on the ability of stems to carry out remediation. Stems are above ground so that they can cover more 
air pollutants.   
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