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To train a machine to “sense” a users’ feelings through writings (sentiment analysis) has 
become a crucial process in several domains: marketing, research, surveys and more. 
Nevertheless in times of crisis like COVID. Typo is one of the underestimated challenges 
processing user-generated text (comments, tweets, ..etc), it affects both learning and 
evaluation processes. Word tokenization outcome changes drastically even with a single 
character change, hence as expected, experiments have shown significant accuracy 
decreases due to typo. Adding a spelling correction as preprocessing layer, building one 
for every language, is a very time and resources expensive solution, a huge challenge 
against large data and real-time processing. Alternatively, a CNN model consuming the 
same text, once tokenized on characters level and once on words level while inducing 
typo, showed that as the typo percentage approaches 10% of the text, the results with 
characters tokens surpasses words tokens. Finally, on %30 typo of the text, the model 
consuming characters tokenization outperformed itself with the word level by a 
significant %22.3 in accuracy and %24.9 in F1-Score, using the same exact model. This 
approach in solving the inevitable typo challenge in NLP proved to be of significant 
practicality, saving huge resources versus using a spelling-correction model beforehand. 
It also removes a blocker challenge in front of real-time processing of user-generated 
text while preserving acceptable accuracy results. 
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1. Introduction 
 

Text classification, especially sentiment analysis, has become one of the very important NLP 
applications. It helps in processing millions of entries to deduct a sense of a mass satisfaction / 
dissatisfaction through users’ produced text which helps companies and/or organizations and/or 
scientists to form perspective and/or decisions which are based on a big picture and developing 
applications that serves real-life solutions as discussed in [16,20,21].  

Hence, much research studied sentiment analysis comparing different architectures to get to the 
one with highest performance. Although the results slightly differ in accuracy and F1-score results, 
CNN architecture seemed to be the one outperforming other architecture like LSTM and LSTM-CNN 
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as shown by these studies [1-3,5,8,13-15,19,24]. Tokenization in one of the main data pre-processing 
before training or testing the CNN model. It splits the data into smaller chunks (tokens). The two main 
levels to tokenize text are to split words or characters (words and characters tokenization).  

The core idea behind this study is the idea that typo, or typing error, is something to expect its 
occurrence in human-produced text, rather it is inevitable. It even happens with most experienced 
users because -after all- they are humans. Wouldn’t that affect a model performance? Indeed. 

Typo changes characters. For word tokenization, that will change a word’s whole token as it’s a 
different word than the original and correctly spelled word. The study looks through the effect of 
typo using a CNN model results, with both tokenization levels: words and characters. CNN has been 
shown to be one of -if not the- most efficient architecture for sentiment analysis or text classification 
in general [7-8,10-12,19]. The near-obvious expectation was typos would significantly affect accuracy 
for it significantly alter a word’s token, learning and testing mis-spelled word [4,6,9]. 

A solution to tackle the typo problem is spelling-correction models as a preprocessing layer. This 
might be achieved by piping the training and testing text through another model as a preprocessing 
procedure before every training and evaluation process.  That approach might sound intuitive but at 
the same time it creates a new set of greater challenges. The first one is the need to provide and 
maintain a specific model and lexicons for every single language and its dialects, which is already a 
huge challenge in NLP domain due the variant complexity of many languages and dialects regarding 
grammar and structure to begin with as these studies show [11, 21-23,25]. Then comes the challenge 
of the doubled resources needed, due to having two ML models (at least) running instead of one. 
Theses challenge gets more complicated and costly exponentially in regard of data/stream size and 
flow, added to the practical aimed processing timeframe for real-time purposes. This solution will 
consume resources and valuable time evaluating large datasets and/or high flow of streamed data. 
Aside from that, a  spelling-correction model with a certain accuracy percentage would, again, 
replace human-generated typo with computer-generated ones, if not add to it. 

The hypothesis behind this study is this: while, indeed, typo will equally change a word token as 
to a single character, yet a piece of text -obviously- includes more characters than words. Which 
means that for the whole piece of text, the overall tokens pattern will become significantly less 
altered using characters tokenization than word tokenization. 

To test this hypothesis, rebuilding experiments with a typo-less text, an ordinary text 
classification, was the start to get a benchmark for the initial results [2]. Then gradually introduce 
and increase percentage of typo was the way to see how both tokenization levels performs. On each 
step, text is tokenized one time on word and one time on character and investigate the difference in 
performance. 

Before introducing any synthetic typo, a solid ground of the results training a model with the 
clean dataset were needed, on both level: word and character. For the comparison, the start was to 
run the experiment on both tokenization levels: words and characters.  Starting with these results as 
a benchmark, it was able to measure the accuracy decrease due to typo occurrence the same model 
as the percentage of typo occurrence in text increments gradually.  

Upon recording the results on the typo-less dataset, adding synthetic typo to the training data 
and re-train the same model was the second step to get a demonstration of the effect of typo on the 
accuracy on both levels.  

Finally, tweaking the CNN model to improve the accuracy despite the typo then train the new 
model to get the results of the tweaked model’s accuracy. 
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2. Methodology  
2.1 Dataset 
 

This dataset is a large IMDb movie review dataset. The dataset contains 50,000 movie reviews 
categorized into either positive or negative. The dataset is available within Keras’ library where each 
review is encoded as a sequence of word indexes. Then the dataset is split into a 70% for training and 
30% for testing data. 10% of the training samples has been used as validation data duplicating the 
configurations conducted by previous studies [2,13]. The reviews length has been unified by zero-
padding the shorter reviews so that is easy to train the architectures, which is padding. 

 
2.2 Preprocessing 
2.2.1 Padding 
 

All the neural networks require to have inputs of the same shape and size to feed the input nodes. 
However, when it is pre-processed and used the texts as inputs for the model, not all the sentences 
have the same length. In other words, naturally, some of the sentences are longer or shorter. It was 
needed to have the inputs with the same size, this is where the padding is necessary. 

The list of sentences that have been padded out into a matrix where each row in the matrix has 
an encoded sentence with the same length this is due to the: 

 
• Additional zeros for short sentences and 
• Truncating the sentences which exceed the max number of words which is declared by 

maxlen. 
 

For the IMBD dataset, a script has been developed to find the maximum length to find out that 
the longest review. The result was 13,590 characters or 2,461 words. 

 
2.2.2 Synthetic typo 
 

To evaluate how well a CNN model works against text with typo, it was necessary to develop an 
algorithm to generate typo. Intuitively, a typo happens mostly when a finger slips to push a key that 
isn’t supposed to be pushed, changing the word spelling. It’s considered that there are three main 
factors during typo: 

 
i) The switched characters’ positions. 
ii) The replacement character on each typo. 
iii) The amount of typo is a variable and depends on how frequent typo happens, which 

determines the occurrence percentage in a text. 
 

Typo happens randomly. So, it was needed to randomize the key switched while maintaining the 
typo percentage within the text. It was done by choosing one random character in a set of characters 
of length equals to the inverted pre-determined percentage. For instance, a %2 typo occurrence 
translates to a random position of a character among a set of 50 characters, a %4 translates to on 
character of 100 characters, and so on. Dividing text to sets of a certain length is likely to produce a 
single set with less than the intended length to randomize from. The final truncated set’s increase in 
percentage as neglectable is neglected. 

Secondly, the replacement character on each typo is also random. A list of all possible typos for 
each key is set by listing all surrounding keys around each character. For instance, the key “f” is 
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surrounded by the keys: ‘r’, ‘t’, ‘g’, ‘v’, ‘c’, ‘d’ and ‘e’. For each of the surrounding keys are listed, and 
after randomizing the character’s position to be replaced, a randomized pick among the set of 
surrounding keys happens, then the character is replaced. 

Finally, a person’s typing skills determine the frequency of error. To investigate typo effect on the 
model accuracy, the intended was to test the model against different amount of typo in data. It got 
varied the occurrence percentage between %2 to %30 on a %2 interval. 

 
2.2.3 Tokenization 
 

Tokenization is a way of separating a piece of text into smaller units called tokens. Usually, tokens 
can be either words, characters, or subwords. Hence, tokenization can be broadly classified into 3 
types – word, character, and subword (n-gram characters) tokenization. Tokenization prepares the 
text for the CNN embedding layer to be represented by vectors.  

This is the core of the study, to investigate which tokenization level will do better with the 
presence of typo: words or characters tokenization. 
 
2.2.4 Convolutional neural network (CNN) 
 

Convolutional Neural Networks are like typical Neural Networks, these networks are consisting 
of neurons that own learnable weights and biases as demonstrated on the studies [17,18]. Some 
input was received by each neuron; a dot product was performed. CNN consists of one or more 
convolutional layers after that its followed by fully connected layers like the ordinary multilayer 
neural network. CNN works using three key concepts (local receptive fields, shared weight and biases, 
and activation and pooling). A small region of neurons in the input layer are connected to hidden 
layer neurons. These small regions are called local receptive fields. The network has neurons with 
weights and biases. During the training process, the model learns the weight and biases values 
however these values are the same for neurons in the hidden layer. The step of activation function 
applies the conversion to the output of each neuron by using Rectified Linear Unit (ReLU). ReLU is a 
commonly used activation function. The function of pooling step is to condense the output of the 
convolutional layer by half by reducing the dimensionality of the features map. Hence, CNN can be 
used for learning structure in paragraphs of words. 
 
2.2.4.1 Embedding layer 
 

Embedding is one of the main prerequisites for most of the NLP tasks where natural text is the 
subject. While working with any kind of text. Each word/character must be converted into an n-
dimensional vector for fitting to any architecture. 

Now, there is two ways of doing this. One is one-hot key encoding which includes Bag of words 
model and another one is word embedding. Bag of words is a very sparse representation which 
results in a waste of memory whereas Word embedding provides a compact representation of each 
word. Word embedding is done in a way that similar kinds of words are gathered in n’th dimensional 
space. 

Here n represents the vector dimension of each embedded word. There are two pre-trained word 
embedding models. An embedding layer that has been provided by Keas has been used, a vocabulary 
of 8000 unique words is used and each word is embedded into a 100 dimensions vector space. 
Instead of using a pre-trained embedding word model, the embedding layer by has been trained 
using the training samples from IMDb movie review dataset. 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 40, Issue 2 (2024) 152-162 

156 
 

2.2.4.2 Convolution layer 
 

As per text is a 1-dimension data, the Keras’ 1 dimension convolution layer has been used. This 
layer creates a convolution kernel that is convolved with the layer input over a single spatial (or 
temporal) dimension to produce a tensor of outputs. 
 
2.2.4.3 Dense layer 
 

The dense layer’s neuron in a model receives output from every neuron of its preceding layer, 
where neurons of the dense layer perform matrix-vector multiplication. Matrix vector multiplication 
is a procedure where the row vector of the output from the preceding layers is equal to the column 
vector of the dense layer. The general rule of matrix-vector multiplication is that the row vector must 
have as many columns like the column vector. 

For the activation function, the sigmoid function has been chosen because the matter in hand is 
a binary classification [16,20]. 
 

sigmoid(x) = 1 / (1 + exp(-x)) 
 

Sigmoid is equivalent to a 2-element Softmax, where the second element is assumed to be zero. The 
sigmoid function always returns a value between 0 and 1, hence the binary result. 
 
2.3 Experiments 
 

Running the CNN model with different configurations, grouped together, helped in comparing 
results. All Experiments are repeated on both word and characters level, as mentioned above, hence 
the experiments consist of pairs of model compilation and evaluation. Figure 1 shows the Experiments 
architecture. For different typo percentage of the text, the experiment is run once with word tokenization 
and once with character tokenization for results comparison. 
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Fig. 1. Experiments architecture 

 
3. Results 
 

Results showed significant decrease in the model accuracy result with the introduction of 
synthetic typo using both tokenization levels (word and character) on every metric (Table 1). 
Increasing the percentage of typo occurrence in the text demonstrated that the character 
tokenization was significantly affected by typo versus the word tokenization, hence better 
performance with higher percentage. Up to a certain percentage of typo (~10%) the model running 
with tokenized data on the character level outperforms the same model running with tokenized data 
on the word level. 

At 0% of typo (before inducing any synthetic typo), the experiment result showed the same 
accuracy result as this study [2]. This result put a benchmark to have a trust on the following rounds 
of the experiments raising the typo percentage up. 
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Table 1. 
Model performance running with Word tokenization VS Character tokenization 
%   Accuracy F1 Score Precision Loss Recall 

0 C 0.8569 0.8588 0.8317 0.3296 0.8966 
 W 0.895 [2] 0.8923 0.8911 0.3795 0.9004 

2 C 0.8489 0.842 0.8607 0.3413 0.8328 
 W 0.8772 0.8739 0.8717 0.452 0.8836 

4 C 0.8353 0.8645 0.8611 0.3673 0.8709 
  W 0.8600 0.8556 0.8572 0.4983 0.8614 
6 C 0.8064 0.7992 0.8106 0.6953 0.7983 
  W 0.8427 0.8389 0.8426 0.3582 0.8447 
8 C 0.7967 0.7912 0.795 0.7512 0.7976 
  W 0.8244 0.8147 0.8435 0.3862 0.7974 

10 C 0.8095 0.7893 0.8624 0.4166 0.7387 
  W 0.7967 0.7912 0.795 0.7512 0.7976 

12 C 0.8112 0.8155 0.7839 0.4089 0.86 
  W 0.762 0.759 0.7567 0.8922 0.7732 

14 C 0.8088 0.7946 0.8405 0.4199 0.7634 
  W 0.7452 0.7398 0.7412 0.751 0.9406 

16 C 0.8020 0.8068 0.7719 0.4281 0.8559 
  W 0.7290 0.7256 0.7251 0.9698 0.7395 

18 C 0.8070 0.8027 0.8018 0.4156 0.8138 
  W 0.7345 0.7291 0.7328 0.9597 0.7376 

20 C 0.7929 0.7813 0.8094 0.4396 0.7657 
  W 0.7135 0.7086 0.7101 1.0053 0.7212 

22 C 0.7965 0.7884 0.8067 0.4309 0.7813 
  W 0.7109 0.7083 0.7076 1.0747 0.7233 

24 C 0.7838 0.7906 0.7567 0.4545 0.84 
  W 0.6742 0.6708 0.6719 1.1482 0.6833 

26 C 0.79094 0.7849 0.7915 0.4458 0.7901 
  W 0.6762 0.6731 0.6725 1.1435 0.6878 

28 C 0.7813 0.7684 0.799 0.4599 0.7516 
  W 0.668 0.6606 0.6695 1.2086 0.6668 

30 C 0.7683 0.7777 0.736 0.484 0.8356 
  W 0.6282 0.6265 0.6257 1.2072 0.6419 

 
The results show that as the typo percentage raises, even though the metrics decline for both 

experiments, yet the one with character tokenization shows more resilience to the effect of typo. To 
clearly and visually demonstrate the flip of performance, charts have been generated using Table 1 
to demonstrate the change in metrics: Accuracy (Figure 2), F1 score (Figure 3), Precision (Figure 4), 
Loss (Figure 5) and Recall (Figure 6). 
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Fig. 2. Model Accuracy using word vs character tokenization 
Word tokenization accuracy outperforms the word 
tokenization as the typo percentage increases 

 

 
Fig. 3. Model F1 Score using word vs character tokenization 
Word tokenization F1 score outperforms the word 
tokenization as the typo percentage increases 

 

 
Fig. 4. Model Precision using word vs character tokenization 
Word tokenization precision outperforms the word 
tokenization as the typo percentage increases 
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Fig. 5. Model Loss using word vs character tokenization 
Word tokenization loss is more stable compared to the word 
tokenization as the typo percentage increases 

 

 
Fig. 6. Model Recall using word vs character tokenization 
Word tokenization recall outperforms the word tokenization as 
the typo percentage increases 

 
4. Conclusion  
 

From the data and the chart, it is shown that tokenizing on the word level exceeds character at 0 
typos as clearly shown by the following studies [1-3,6,9], a perfectly text with no spelling mistakes. 
But realistically, as typos occur, tokenizing text on characters level helps the CNN model to have 
better accuracy results. Spelling mistakes has less effect on vectoring characters one by one, hence 
making better prediction. AS IF the model is guessing the write spelling from the characters’ vector 
representation. 

Perhaps adding another NLP model to correct spelling before text classification model with word 
tokenization would make the word surpasses the character [14]. But obviously, this would slowdown 
the whole process immensely. That’s why this finding can be practical to have better acceptable 
accuracy on public text classification without the need to correct spelling. 
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